Publication

Bacterial leaching from dairy shed effluent applied to a fine sandy loam under flood and spray irrigations

Date
2008
Type
Thesis
Fields of Research
Abstract
Land application of wastes has become increasingly popular, to promote nutrient recycling and environmental protection, with soil functioning as a partial barrier between wastes and groundwater. Dairy shed effluent (DSE), may contain a wide variety of pathogenic micro-organisms, including bacteria (e.g. Salmonella paratyphyi, Escherichia coli. and Campylobacter), protozoa and viruses. Groundwater pathogen contamination resulting from land-applied DSE is drawing more attention with the intensified development of the dairy farm industry in New Zealand. The purpose of this research was to investigate the fate and transport of bacterial indicator-faecal coliform (FC) from land-applied DSE under different irrigation practices via field lysimeter studies, using two water irrigation methods (flood and sprinkler) with contrasting application rates, through the 2005-2006 irrigation season. It was aimed at better understanding, quantifying and modelling of the processes that govern the removal of microbes in intact soil columns, bridging the gap between previous theoretical research and general farm practices, specifically for Templeton soil. This study involved different approaches (leaching experiments, infiltrometer measurements and a dye infiltration study) to understand the processes of transient water flow and bacterial transport; and to extrapolate the relationships between bacterial transport and soil properties (like soil structure, texture), and soil physical status (soil water potential ψ and volumetric water content θ). Factors controlling FC transport are discussed. A contaminant transport model, HYDRUS-1D, was applied to simulate microbial transport through soil on the basis of measured datasets. This study was carried out at Lincoln University’s Centre for Soil and Environmental Quality (CSEQ) lysimeter site. Six lysimeters were employed in two trials. Each trial involved application of DSE, followed by a water irrigation sequence applied in a flux-controlled method. The soil columns were taken from the site of the new Lincoln University Dairy Farm, Lincoln, Canterbury. The soil type is Templeton fine sandy loam (Udic-Ustochrept, coarse loamy, mixed, mesic). Vertical profiles (at four depths) of θ and ψ were measured during leaching experiments. The leaching experiments directly measured concentrations of chemical tracer (Br⁻ or Cl⁻) and FC in drainage. Results showed that bacteria could readily penetrate through 700 mm deep soil columns, when facilitated by water flow. In the first (summer) trial, FC in leachate as high as 1.4×10⁶ cfu 100 mL⁻¹ (similar to the DSE concentration), was detected in one lysimeter that had a higher clay content in the topsoil, immediately after DSE application, and before any water irrigation. This indicates that DSE flowed through preferential flow paths without significant treatment or reduction in concentrations. The highest post-irrigation concentration was 3.4×10³ cfu 100 mL⁻¹ under flood irrigation. Flood irrigation resulted in more bacteria and Br⁻ leaching than spray irrigation. In both trials (summer and autumn) results showed significant differences between irrigation treatments in lysimeters sharing similar drainage class (moderate or moderately rapid). Leaching bacterial concentration was positively correlated with both θ and ψ, and sometimes drainage rate. Greater bacterial leaching was found in the one lysimeter with rapid whole-column effective hydraulic conductivity, Keff, for both flood and spray treatments. Occasionally, the effect of Keff on water movement and bacterial transport overrode the effect of irrigation. The ‘seasonal condition’ of the soil (including variation in initial water content) also influenced bacterial leaching, with less risk of leaching in autumn than in summer. A tension infiltrometer experiment measured hydraulic conductivity of the lysimeters at zero and 40 mm suction. The results showed in most cases a significant correlation between the proportion of bacteria leached and the flow contribution of the macropores. The higher the Ksat, the greater the amount of drainage and bacterial leaching obtained. This research also found that this technique may exclude the activity of some continuous macropores (e.g., cracks) due to the difference of initial wetness which could substantially change the conductivity and result in more serious bacterial leaching in this Templeton soil. A dye infiltration study showed there was great variability in water flow patterns, and most of the flow reaching deeper than 50 cm resulted from macropores, mainly visible cracks. The transient water flow and transport of tracer (Br⁻) and FC were modelled using the HYDRUS-1D software package. The uniform flow van Genuchten model, and the dual-porosity model were used for water flow and the mobile-immobile (MIM) model was used for tracer and FC transport. The hydraulic and solute parameters were optimized during simulation, on the basis of measured datasets from the leaching experiments. There was evidence supporting the presence of macropores, based on the water flow in the post-DSE application stage. The optimised saturated water content (θs) decreased during the post-application process, which could be explained in terms of macropore flow enhanced by irrigation. Moreover, bacterial simulation showed discrepancies in all cases of uniform flow simulations at the very initial stage, indicating that non-equilibrium processes were dominant during those short periods, and suggesting that there were strong dynamic processes involving structure change and subsequently flow paths. It is recommended that management strategies to reduce FC contamination following application of DSE in these soils must aim to decrease preferential flow by adjusting irrigation schemes. Attention needs to be given to a) decreasing irrigation rates at the beginning of each irrigation; b) increasing the number of irrigations, by reducing at the same time the amount of water applied and the irrigation rate at each irrigation; c) applying spray irrigation rather than flood irrigation.
Source DOI
Rights
Creative Commons Rights
Access Rights