Application of MALDI-TOF analysis to reveal diversity and dynamics of winemaking yeast species in wild-fermented, organically produced, New Zealand Pinot Noir wine
Date
2021-10
Type
Journal Article
Collections
Abstract
Rapid yeast identification is of particular importance in monitoring wine fermentation and assessing strain application in winemaking. We used MALDI-TOF MS analysis supported by 26 S rRNA gene sequence analysis and Saccharomyces-specific PCR testing to differentiate reference and field strains recovered from organic wine production facilities in Waipara, New Zealand, in which Pinot Noir wine was produced by spontaneous fer-mentations in the vineyard and in the winery. Strains were isolated from each of four key stages of each ferment to evaluate changes in taxonomic diversity. MALDI-TOF MS analysis was confirmed as an excellent yeast identification method, with even closely related Saccharomyces species readily distinguished. A total of 13 indigenous species belonging to eight genera were identified from Pinot Noir ferments, with taxonomic diversity generally reducing as fermentation progressed. However, differences between the taxa recovered were observed between the vineyard and winery ferments, despite the grapes used being from the same batch. Furthermore, some consistent proteomic differences between strains of S. cerevisiae, Hanseniasporum uvarum, Candida cal-ifornica, Pichia membranifaciens and Starmerella bacillaris correlated with the different fermentation systems used. The high speed, low cost, taxonomic resolution and ability to characterise subtle changes in phenotype that may result from variations in environmental conditions makes MALDI-TOF analysis an attractive tool for further and wider applications in the wine industry. Such applications may include monitoring wine fermentation to actively support the consistency of high-quality wine products, and potentially for the development of such products too.
Permalink
Source DOI
Rights
© 2021 Elsevier Ltd. All rights reserved.