Characterising the methylome of Legionella longbeachae serogroup 1 clinical isolates and assessing geo-temporal genetic diversity
Date
2020-09-11
Type
Preprint Server Paper
Collections
Keywords
Fields of Research
Abstract
Legionella longbeachae is an environmental bacterium that is commonly found in soil and composted plant material. In New Zealand (NZ) it is the most clinically significant Legionella species causing around two-thirds of all notified cases of Legionnaires’ disease. Here we report the sequencing and analysis of the geo-temporal genetic diversity of 54 L. longbeachae serogroup 1 (sg1) clinical isolates that were derived from cases from around NZ over a 22-year period, including one complete genome and its associated methylome.
Our complete genome consisted of a 4.1 Mb chromosome and a 108 kb plasmid. The genome was highly methylated with two known epigenetic modifications, m4C and m6A, occurring in particular sequence motifs within the genome. Phylogenetic analysis demonstrated the 54 sg1 isolates belonged to two main clades that last shared a common ancestor between 108 BCE and 1608 CE. These isolates also showed diversity at the genome-structural level, with large-scale arrangements occurring in some regions of the chromosome and evidence of extensive chromosomal and plasmid recombination. This includes the presence of plasmids derived from recombination and horizontal gene transfer between various Legionella species, indicating there has been both intra-species and inter-species gene flow. However, because similar plasmids were found among isolates within each clade, plasmid recombination events may pre-empt the emergence of new L. longbeachae strains.
Our high-quality reference genome and extensive genetic diversity data will serve as a platform for future work linking genetic, epigenetic and functional diversity in this globally important emerging environmental pathogen.
Permalink
Source DOI
Rights
© The Authors
Creative Commons Rights
Attribution