Publication

Soil carbon, erosion, and the stormflow mobilisation of sediment and nutrients in a high-country landscape : A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University

Date
2023
Type
Thesis
Abstract
This study was carried out at Mt. Grand Station, a high-country pastoral farm in the South Island of New Zealand. The landscape (400 - 1300 m altitude) supports a gradient and mosaic of native and endemic woody shrub and tussock grassland vegetation amongst more productive exotic pasture, the latter established through aerial seed top-dressing and fertilisation. In recent years several areas of the farm at higher altitudes have been converted to conservation management following Tenure Review, placing additional pressure on the remaining farmland to maximise productivity, a situation similarly faced by many other high-country farms. However, further intensification of pasture grassland would compromise existing less productive native vegetation. This research project investigated soil conservation and loss, and freshwater quality, aiming to advance existing knowledge relating to environmental sustainability of the high-country. Topsoil carbon stocks were quantified beneath various vegetation communities at different altitudes of the station to gain a better understanding of soil carbon and its dynamics. Two watershed catchments were targeted for high-frequency sampling during rainfall events, to investigate the likely significance of water flow on the mobilisation of sediment and nutrients, and to help improve the accuracy of existing run-off estimates. In addition, soil erosion was estimated from differences in residual soil 137Cs activity, which was generated from historic Pacific nuclear testing, between two of the dominant types of vegetation cover. The results revealed the potential for native vegetation to enhance soil carbon sequestration. At low - middle altitudes (450 - 850 m) of the farm, topsoil beneath a woody shrub (kānuka) vegetation cover had significantly higher carbon concentrations and carbon stocks than areas of adjacent pasture. At higher elevations (>1000 m) topsoil beneath dominant snow tussocks had significantly higher carbon, nitrogen and phosphorus concentrations, with higher carbon stocks than adjacent inter-tussock spaces. The total loads of suspended solids, nitrogen and phosphorus exported to catchment waterways were significantly larger during high-flow events in comparison to baseflow conditions, and large proportions of the high-flow loads were mobilised on the rising hydrograph following high rainfall. These findings draw attention to the significance of taking account of the early stages of rainfall events to improve accuracy when quantifying high-country catchment loads. Data for 137Cs were variable but these provisional results indicate that soil beneath kānuka is likely to have undergone lower rates of erosion over the previous 65 years in comparison to areas of adjacent pasture. The combined findings of the three parts of the experimental work in this study are interpreted as being indicative of the present and future potential for South Island high-country farming environments to make a significant contribution towards climate change mitigation through vegetation management, resultant soil building and prevention of soil erosion. It is argued that closer attention to ecological restoration is likely to have mutual benefits for conservation, the farming system and the environment. Maintenance and better-informed management of the mosaic of native and exotic vegetation can play a more important role in longer-term sustainability of this high-country land management system than is currently appreciated.
Source DOI
Rights
https://researcharchive.lincoln.ac.nz/pages/rights
Creative Commons Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Access Rights