Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Theses and Dissertations
    • Doctoral (PhD) Theses
    • View Item
    •   Research@Lincoln Home
    • Theses and Dissertations
    • Doctoral (PhD) Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy consumption and carbon footprints of New Zealand dairy systems: Comparison of pastoral and barn dairy farming systems : A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University

    Ilyas, Hafiz M.
    Abstract
    Over the last years, New Zealand dairy farming has expanded both in dairying area and milk production and became more intensive in terms of energy inputs. The usage of higher energy inputs are responsible for significant direct and indirect fossil energy consumption, which produces carbon dioxide (CO₂) emissions both on-farm through consumption of fossil fuels in machinery and off-farm during the production of fertilizers and imported feed supplements inputs. The aim of this research study was to estimate and compare energy consumption, efficiency and related carbon footprints of New Zealand pastoral (PDFs) and barn dairy farming systems (BDFs). The estimation of energy use and associated carbon emissions (CO₂) will help to identify an energy and emission efficient dairy farming system for the future of the New Zealand dairy industry. Accordingly, the energy efficiency of both dairy systems was evaluated based on the Data Envelopment Analysis (DEA) approach. The study was conducted on 50 dairy farms including 43 pastoral and 7 barns, in Canterbury, New Zealand. Canterbury represents 16% of the total dairy land and comprises 19% of total dairy cows of New Zealand. In this study, energy consumption was defined as energy involved to produce the milk until it leaves the farm gate. The data were collected through a survey questionnaire for the dairy season 2016-17. The energy inputs considered in this study are those involved in on-farm milk production excluding post-processing components. On average, the energy consumption of pastoral (PDFs) and barn (BDFs) dairy systems was estimated as 50538 MJ ha⁻¹ and 55833 MJ ha⁻¹ respectively. In the total energy consumption, electricity (35.5%) and fertilizer (29.9%) were the main energy inputs in PDFs, while in BDFs, electricity (34.8%) and imported feed supplement (24.1%) were the leading energy inputs. The difference in total energy consumption was 5295 MJ ha⁻¹ indicating that pastoral (PDFs) systems used 9.5% less energy compared to barn dairy farming systems (BDFs). Energy related total annual carbon footprints (CO2) of pastoral (PDFs) and barn (BDFs) dairy systems were equivalent to 2857 kgCO₂ ha⁻¹ and 3379 kgCO₂ ha⁻¹ respectively. In terms of individual energy input contribution to total carbon footprints, machinery (27%) and fertilizer (25%) were the major carbon sources in PDFs, while in BDFs, imported feed supplements (30%) and machinery (24%) were the dominant sources of carbon emissions. From a system comparative perspective, pastoral (PDFs) system have 15% lower carbon footprints than the barn dairy system (BDFs) with total difference of 522 kgCO₂ ha⁻¹. Based on the Data Envelopment Analysis (DEA) approach, the energy efficiency results highlighted the average technical, pure technical and scale efficiencies of pastoral (PDFs) as 0.84, 0.90, 0.93 respectively and for barn dairy systems (BDFs) as 0.78, 0.84, 0.92 respectively, indicating that energy efficiency is slightly better in the PDFs systems compared to BDFs. Further, this study suggested energy auditing and usage of more renewable energy sources for on-farm energy efficiency improvement in both dairy systems.... [Show full abstract]
    Keywords
    Canterbury; New Zealand; energy consumption; carbon footprints; energy efficiency; pastoral dairy farming system (PDFs); barn dairy farming system (BDFs); dairy farming
    Fields of Research
    0502 Environmental Science and Management; 0701 Agriculture, Land and Farm Management; 070108 Sustainable Agricultural Development; 070105 Agricultural Systems Analysis and Modelling; 099901 Agricultural Engineering; 050205 Environmental Management; 050209 Natural Resource Management; 091305 Energy Generation, Conversion and Storage Engineering
    Date
    2019
    Type
    Thesis
    Access Rights
    Restricted item - embargoed until 31 May 2021
    Collections
    • Department of Land Management and Systems [402]
    • Doctoral (PhD) Theses [961]
    Thumbnail
    View/Open
    Ilyas_PhD.pdf
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    Metadata
     Expand record

    Related items

    Showing items related by title, author, creator and subject.

    • Measuring the integration and retention of migrant dairy workers in New Zealand: A case study of migrant dairy farm workers in the Canterbury region: A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University 

      Kambuta, Jacob (Lincoln University, 2020)
      The dairy industry is one of the most important sectors of the New Zealand economy. In the year ending March 2016 it accounted for 3.5% of the nation’s GDP ($7.8 billion dollars) and contributed a further $12.2 billion to ...
    • Dairy farming with reduced inductions 

      Pangborn, Marvin C.; Trafford, Guy M.; Woodford, Keith B. (South Island Dairy Event (SIDE)., 2011-06)
      The New Zealand (NZ) dairy industry is reliant on seasonal pasture production and a concentrated calving interval to best match pasture supply and animal demand. To achieve this goal, some farmers induce lactation in late ...
    • Technology adoption in New Zealand pastoral-based system: A study of Automatic Milking System (AMS) : A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University 

      Mansouri, Nazanin (Lincoln University, 2021)
      New Zealand dairy farming is a primary industry suppling 3% of the world’s milk. One of the primary tasks in traditional herringbone and rotary milking systems is to milk the cows. As milking can occur up to three times a ...
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us