Oleic acid alleviates cadmium-induced oxidative damage in rat by its radicals scavenging activity

Wang, Jingwen
Zhang, Yuanyuan
Fang, Zhijia
Sun, Lijun
Wang, Yaling
Liu, Ying
Xu, Defeng
Nie, Fanghong
Gooneratne, R
Journal Article
Fields of Research
Toxic heavy metal cadmium wildly pollutes the environment and threats the human health. Effective treatment of cadmium-induced toxicity and organ damage is an important issue. Cadmium causes organ damage through inducing oxidative stress. Our previous study also found oleic acid (OA) synthesis-related gene can confer resistance to cadmium and alleviate cadmium-induced stress in yeast. However, its alleviation mechanism on cadmium stress especially in animals is still unclear. In this study, the alleviative effects of OA on cadmium and cadmium-induced oxidative stress in rats were investigated. Oral administration of 10, 20, and 30 mg/kg/day OA can significantly increase the survival rate of rats intraperitoneally injected with 30 mg/kg/day cadmium continuously for 7 days. Similar to ascorbic acid (AA), OA can significantly reduce the cadmium-induced lipid peroxidation in multiple organs of rats. The investigation of OA on superoxide dismutase (SOD) activity showed that OA increased the SOD activity of cadmium-treated rat organs. More important, OA reduced the level of superoxide radical O2−of cadmium-treated rat organs. And OA exhibited a strong DPPH radicals scavenging activity at dose of 10, 20 and 30 mg/mL, which may contributed to alleviating cadmium-induced oxidative stress. This study revealed that OA could significantly alleviate cadmium stress via reducing cadmium-induced lipid peroxidation and SOD activity inhibition through its radicals scavenging activity.
© Springer Science+Business Media, LLC, part of Springer Nature 2018
Creative Commons Rights
Access Rights