Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a lucerne model in APSIM next generation: 1 phenology and morphology of genotypes with different fall dormancies

    Yang, Xiumei; Brown, H. E.; Teixeira, E. I.; Moot, Derrick J.
    Abstract
    Prediction of lucerne phenological and morphological development is important for optimising the defoliation schedule and time of other management events. A challenge for any lucerne phenology module is to capture the seasonality of development processes in response to environment, management and genotype. To date, lucerne phenological modules have not been evaluated under different defoliation regimes or with genotypes of different fall dormancy (FD) classes. This research integrated data of lucerne phenological development into the Agricultural Production Systems sIMulator (APSIM) next generation (APSIM NextGen) model framework to develop and verify a phenology module. Relationships derived from the FD5 genotype, grown under a 42 day (LL) defoliation treatment were used for model development. These were further tested for two genotypes with contrasting FD (FD2 and FD10) under frequent (28 day: S) or long (84 day: H) defoliation regimes, all under irrigated conditions. Development was parameterized based on thermal time targets to reach specific phenological stages and modified by photoperiod responses. Development stage and node appearance were shown to be independent of defoliation treatment and FD class. Simulation results showed good agreement for prediction of development stages (NSE of 0.77 for days to buds visible and 0.67 for days to flowering stage) and number of main stem nodes (NSE values were ranged from 0.53 to 0.84). However, both defoliation management treatment and FD classes affected stem height. For FD5, there was good agreement for the 84 day treatment (NSE of 0.83) and the 42 day treatment (NSE of 0.66), but it was poor for the 28 day treatment (NSE of -0.08). This was probably due to reduced stem extension rates, limited by low C and N reserves in perennial organs under the frequent (28 day) defoliation regime. For FD2 and FD10, two separate sets of parameters were used to improve model prediction of height to account for their contrasting seasonal C partitioning patterns. These results show that the APSIM NextGen lucerne phenology module was able to simulate crops grown under unconstrained growing conditions. However, the reason for under estimation of stem height for the 28 day treatment needs further investigation.... [Show full abstract]
    Keywords
    alfalfa; defoliation regimes; fall dormancy; photoperiod; temperature; Agronomy & Agriculture
    Date
    2021-10
    Type
    Journal Article
    Collections
    • Metadata-only (no full-text) [4833]
    View/Open
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    DOI
    https://doi.org/10.1016/j.eja.2021.126372
    Metadata
     Expand record
    © 2021 Elsevier B.V. All rights reserved.
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us