Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Theses and Dissertations
    • Theses and Dissertations with Restricted Access
    • View Item
    •   Research@Lincoln Home
    • Theses and Dissertations
    • Theses and Dissertations with Restricted Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Plant growth and yield in beet in response to reduced plant numbers

    Mannan, M. A.
    Abstract
    The main object of this study was to investigate the effect of poor plant establishment on growth and yield of beet. Two experiments were undertaken with the approach of establishing poor plant stands by reduction of plant numbers from normal crops. In the first experiment, one fodder beet and two sugar beet cultivars were grown in populations of 75,000 and 150,000 plants ha⁻¹, and the stands were reduced by one-third and two-thirds respectively at a seedling age of 10 weeks. The second experiment was conducted with only one sugar beet cultivar; the crops were initially established in populations of 80,000 and 160,000 plants ha⁻¹ and half the plants were removed from both densities at 6, 10 and 14 weeks after germination in December, January and February respectively. The sugar beets showed significantly higher root dry matter and sugar yield than fodder beet. The superiority of sugar beet was attributed to its higher leaf area index (LAI), higher dry matter and sugar content in the roots, and a longer growth period. In both experiments the increase in population by double the optimum did not improve economic yields; individual root weight decreased by increasing population. Plant reduction from the stands had a substantial effect on growth and yield of the remaining plants. Reduction of one-third of the plants from an optimum population (75,000 plants ha⁻¹) , at the age of 10 weeks did not result in any significant loss in root dry matter and sugar yields compared with the normal stand. Similarly, on average, yield losses due to reduction of half the plants from 80,000 and 160,000 plants ha⁻¹ at six weeks were only slight; the differences were not significant. The effect of plant loss on yield was more drastic when the reduction occurred gradually at an older age of the plants; root and sugar production declined linearly at the rate of 1.3 and 0.9 t ha⁻¹ respectively as plant reduction became progressively later. However, the decreases in yield due to the loss of plants were not proportionate to the degree of reduction in plant numbers in the stand. Additional root growth achieved by each individual plant in reduced stands compensated for yield losses by missing plants. The amount of compensation depended on the initial population of the stand, the proportion of plant loss, and the age of the crop at the time of plant loss and hence the length of the remaining growing period. The extra growth in individual roots following plant removal was mainly due to increase in cell size of the parenchyma tissue and resulting increases in the cambial ring distances; these did not affect the dry matter or sucrose content of the roots. The results confirmed that beet plants have considerable potential for additional growth under poor establishment conditions to compensate for yield losses due to plants missing from the stand.... [Show full abstract]
    Keywords
    beets; plant growth; plant density; plant reduction; plant population; total dry matter; root development; leaf area; crop yield
    Date
    1984
    Type
    Thesis
    Access Rights
    Digital thesis can be viewed by current staff and students of Lincoln University only. Print copy available for reading in Lincoln University Library. May be available through inter-library loan.
    Collections
    • Theses and Dissertations with Restricted Access [1958]
    • Department of Agricultural Sciences [1215]
    Thumbnail
    View/Open
    mannan_thesis.pdf (6.259Mb)
    Permalink
    https://hdl.handle.net/10182/1801
    Metadata
     Expand record

    Related items

    Showing items related by title, author, creator and subject.

    • A review of some aspects of the protection of native flora in New Zealand 

      Edwards, J. A. (Lincoln College, University of Canterbury, 1988)
      The many special features of the New Zealand environment are the culmination of its natural and geological history and, more latterly, human history. The isolation of New Zealand for such a long time ensured that it remained ...
    • The impact of host-plant stress on the performance of two insect biological control agents of Broom (Cytisus scoparius) 

      Galway, Kylie E. (Lincoln University, 2005)
      Weeds often grow over a wide range of environments, experiencing a number of environmental stresses with varying intensities. As a consequence these weeds will often exhibit differences in morphology and physiology. It has ...
    • Why are some species invasive? : determining the importance of species traits across three invasion stages and enemy release of southern African native plants in New Zealand 

      Nghidinwa Kirsti, C. (Lincoln University, 2009)
      There are many factors that have been proposed to contribute to plant invasiveness in nonnative ecosystems. Traits of invading species are one of them. It has been proposed that successful species at a certain invasion ...
    This service is managed by Library, Teaching and Learning
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is managed by Library, Teaching and Learning
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us