Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Faculty of Agriculture and Life Sciences
    • Department of Soil and Physical Sciences
    • View Item
    •   Research@Lincoln Home
    • Faculty of Agriculture and Life Sciences
    • Department of Soil and Physical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of organic and mineral amendments on microbial soil properties and processes

    Stark, Christine H. E.; Condron, Leo M.; Stewart, Alison; Di, Hong J.; O'Callaghan, M.
    Abstract
    Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha⁻¹) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.... [Show full abstract]
    Keywords
    urea; microbial community structure; DGGE; nitrogen mineralisation; organic and conventional farming practices; lupin (Lupinus angustifolius L.) green manure; Agronomy & Agriculture
    Date
    2007-01
    Type
    Journal Article
    Collections
    • Department of Soil and Physical Sciences [491]
    Thumbnail
    View/Open
    organic_and_mineral_amendments.pdf
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    Metadata
     Expand record
    Copyright © 2006 Elsevier B.V. All rights reserved.
    Citation
    Stark, C., Condron, L. M., Stewart, A., Di, H. J., & O'Callaghan, M. (2007). Influence of organic and mineral amendments on microbial soil properties and processes. Applied Soil Ecology, 35(1), 79-93.
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us