Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene

    Peng, C.; Svirskis, D.; Lee, S. J.; Oey, I.; Kwak, H. S.; Chen, G.; Bunt, Craig; Wen, J.
    Abstract
    Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.... [Show full abstract]
    Keywords
    Beta-carotene; microemulsion; pseudoternary-phase diagram; oral delivery; conductivity; rheology; Pharmacology & Pharmacy; Humans; Propylene Glycol; beta Carotene; Emulsions; Antioxidants; Administration, Oral; Particle Size; Phase Transition; Solubility; Viscosity; Pharmaceutical Vehicles
    Date
    2017
    Type
    Journal Article
    Collections
    • Metadata-only (no full-text) [4843]
    View/Open
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    DOI
    https://doi.org/10.1080/10837450.2017.1287729
    Metadata
     Expand record
    © 2017 Informa UK Limited, trading as Taylor & Francis Group
    Citation
    Peng et al. (2017). Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene. Pharmaceutical Development and Technology. doi:10.1080/10837450.2017.1287729
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us