Item

Soil microbial biomass and the fate of phosphorus during long-term ecosystem development

Turner, BL
Lambers, H
Condron, LM
Cramer, MD
Leake, JR
Richardson, AE
Smith, SE
Date
2013-06
Type
Journal Article
Fields of Research
ANZSRC::050303 Soil Biology , ANZSRC::050304 Soil Chemistry (excl. Carbon Sequestration Science) , ANZSRC::0602 Ecology , ANZSRC::070502 Forestry Biomass and Bioproducts , ANZSRC::30 Agricultural, veterinary and food sciences , ANZSRC::31 Biological sciences , ANZSRC::41 Environmental sciences
Abstract
Background: Soil phosphorus availability declines during long-term ecosystem development on stable land surfaces due to a gradual loss of phosphorus in runoff and transformation of primary mineral phosphate into secondary minerals and organic compounds. These changes have been linked to a reduction in plant biomass as ecosystems age, but the implications for belowground organisms remain unknown. Methods: We constructed a phosphorus budget for the well-studied 120,000 year temperate rainforest chronosequence at Franz Josef, New Zealand. The budget included the amounts of phosphorus in plant biomass, soil microbial biomass, and other soil pools. Results: Soil microbes contained 68–78 % of the total biomass phosphorus (i.e. plant plus microbial) for the majority of the 120,000 year chronosequence. In contrast, plant phosphorus was a relatively small pool that occurred predominantly in wood. This points to the central role of the microbial biomass in determining phosphorus availability as ecosystems mature, yet also indicates the likelihood of strong competition between plants and saprotrophic microbes for soil phosphorus. Conclusions: This novel perspective on terrestrial biogeochemistry challenges our understanding of phosphorus cycling by identifying soil microbes as the major biological phosphorus pool during long-term ecosystem development.
Rights
© Springer Science+Business Media B.V. (outside the USA) 2012
Creative Commons Rights
Access Rights