Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    •   Research@Lincoln Home
    • Metadata-only (no full-text)
    • Metadata-only (no full-text)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing the yield and load of contaminants with stream order: Would policy requiring livestock to be fenced out of high-order streams decrease catchment contaminant loads?

    McDowell, Richard; Cox, N.; Snelder, Antonius H.
    Abstract
    Catchment contaminant loads vary with stream order as catchment characteristics influence inputs and in-stream processing. However, the relative influence and policy significance of these characteristics across a number of contaminants and at a national scale is unclear. We modeled the significance of catchment characteristics (e.g., climate, topography, geology, land cover), as captured by a national-scale River Environment Classification (REC) system, and stream order in the estimation of contaminant yields. We used this model to test if potential regulation in New Zealand requiring livestock to be fenced off from large (high)-order streams would substantially decrease catchment contaminant loads. Concentration and flow data for 1998 to 2009 were used to calculate catchment load and yields of nitrogen (N) and phosphorus (P) species, suspended sediment, and Escherichia coli at 728 water quality monitoring sites. On average, the yields of all contaminants increased with increasing stream order in catchments dominated by agriculture (generally lowland and pastoral REC land cover classes). Loads from low-order small streams (<1 m wide, 30 cm deep, and in flat catchments dominated by pasture) exempt from potential fencing regulations accounted for an average of 77% of the national load (varying from 73% for total N to 84% for dissolved reactive P). This means that to substantially reduce contaminant losses, other mitigations should be investigated in small streams, particularly where fencing of larger streams has low efficacy.... [Show full abstract]
    Keywords
    contaminant; yields; stream order; Agronomy & Agriculture; Animals; Nitrogen; Phosphorus; Rivers; Environmental Monitoring; Water Pollution; Agriculture; Animal Husbandry; Livestock
    Date
    2017-09
    Type
    Journal Article
    Collections
    • Metadata-only (no full-text) [4836]
    View/Open
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    DOI
    https://doi.org/10.2134/jeq2017.05.0212
    Metadata
     Expand record
    © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is maintained by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us