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Abstract
Natural and human-induced events are continuously altering the structure of our land-
scapes and as a result impacting the spatial relationships between individual landscape 
elements and the species living in the area. Yet, only recently has the influence of the 
surrounding landscape on invasive species spread started to be considered. The scien-
tific community increasingly recognizes the need for broader modeling framework 
that focuses on cross-study comparisons at different spatiotemporal scales. Using two 
illustrative examples, we introduce a general modeling framework that allows for a 
systematic investigation of the effect of habitat change on invasive species establish-
ment and spread. The essential parts of the framework are (i) a mechanistic spatially 
explicit model (a modular dispersal framework—MDIG) that allows population dynam-
ics and dispersal to be modeled in a geographical information system (GIS), (ii) a land-
scape generator that allows replicated landscape patterns with partially controllable 
spatial properties to be generated, and (iii) landscape metrics that depict the essential 
aspects of landscape with which dispersal and demographic processes interact. The 
modeling framework provides functionality for a wide variety of applications ranging 
from predictions of the spatiotemporal spread of real species and comparison of po-
tential management strategies, to theoretical investigation of the effect of habitat 
change on population dynamics. Such a framework allows to quantify how small-grain 
landscape characteristics, such as habitat size and habitat connectivity, interact with 
life-history traits to determine the dynamics of invasive species spread in fragmented 
landscape. As such, it will give deeper insights into species traits and landscape fea-
tures that lead to establishment and spread success and may be key to preventing new 
incursions and the development of efficient monitoring, surveillance, control or eradi-
cation programs.
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1  | INTRODUCTION

Preventing the spread of invasive species into new habitats requires 
an awareness of the types of species that might pose a threat to an 
ecosystem, and which ecosystems are especially vulnerable to inva-
sion in the face of increasing land-use and climate change. Theory 
indicates that the distribution and spread of invasive species is the 
result of a complex combination of factors (Catford, Vesk, White, & 
Wintle, 2011). These factors include the size and frequency of intro-
duction (propagule pressure), species-specific traits that are thought 
to confer high fitness such as high reproductive and efficient disper-
sal abilities, and the abiotic and biotic characteristics of the recipient 
ecosystems that may limit or facilitate the establishment of invasive 
species. Surprisingly, dynamic risk predictions of establishment and 
spread typically lack explicit considerations of the interaction between 
these multiple drivers of invasion (Catford et al., 2011; Gallien et al., 
2014). In particular, spatiotemporal predictions of establishment and 
spread, across different species demography and dispersal charac-
teristics and environmental conditions, are very few (Dormann et al., 
2012; Franklin, 2010; Guisan & Thuiller, 2005; Huntley et al., 2010; 
Schurr et al., 2012; Thuiller et al., 2013; Worner, 1994).

Early progress in the development of models of establishment and 
spread was divided into approaches used for modeling large-scale 
species distribution versus those for modeling local-scale population 
spread (Hastings et al., 2005; Hui, Krug, & Richardson, 2011). Broad-
scale projections of species’ distribution, which have dominated the 
recent literature, are largely based on static approaches linking cur-
rent species occurrences to environmental variables such as tempera-
ture, precipitation, and resource distribution (Guisan & Zimmermann, 
2000). These models can be used to project distribution and impacts 
from future land use or climate scenarios (Thomas et al., 2004), yet 
typically overlook important demographic and dispersal processes. On 
the contrary, mechanistic models of spread, such as reaction–diffusion 
processes (Fisher, 1937; Skellam, 1951), integro-difference equations 
(Kot, Lewis, & van den Driessche, 1996), matrix models (Caswell, 2001; 
Ramula, Knight, Burns, & Buckley, 2008), or metapopulation models 
(Hanski, 1999; Hanski & Ovaskainen, 2000), incorporate, to differing 
degrees, both demography and dispersal processes as their basis, link-
ing the spatial location of reproducing individuals to the spatial location 
of their parents through the definition of a dispersal kernel. However, 
at present, it is not clear how an analytically tractable model can for-
mally represent a real landscape in the form of a quality function, and 
thus, consideration of biological and geographical realism is still limited. 
The general evolution of combining demographic, dispersal, and spa-
tial complexity in spatial population models has resulted in mechanistic 
model of spread integrated within geographical information systems 
(GIS) and are often referred as process-based species distribution mod-
eling (SDM; Nehrbass & Winkler, 2007; Pitt, Worner, & Suarez, 2009; 
Renton, Savage, & Chopard, 2011; Guichard, Kriticos, Leriche, Kean, 
& Worner, 2012; Bocedi et al., 2014; Merow, Latimer, et al., 2014; 
Lurgi, Brook, Saltré, & Fordham, 2015). These models are thought to 
be more robust to extrapolation to novel habitat and climate condi-
tions because they rely on the characterization of processes regulating 

the probability of a population surviving to reproduce and disperse in 
response to local environment conditions. Therefore, such models ac-
count for the effect of landscape characteristics on the mobility and 
survival of invading species (Ewers & Didham, 2006; Pitt et al., 2009).

Despite much progress, understanding how life-history traits and 
landscape characteristics, such as the amount and spatial distribution 
of habitat cover classes, interact to determine the dynamics of invasive 
species spread is currently confined to broad generalization (Catford 
et al., 2011; McConkey et al., 2012). Particular issue is that most empiri-
cal and theoretical studies evaluate questions and hypotheses about the 
role of landscape structure within a single landscape and thus provide no 
replication (but see With, 2002; Vilà & Ibáñez, 2011; González-Moreno, 
Pino, Gassó, & Vilá, 2013). Additionally, the majority of these studies 
focus on a single species and thus do not provide insight into trait vari-
ability in the same landscape (but see Catford et al., 2011; Robinet et al., 
2012; Wang & Jackson, 2014). More fundamentally, in a thorough re-
view of contemporary plant dispersal ecology, Robledo-Arnuncio, Klein, 
Muller-Landau, and Santamaría (2014) emphasized that spatially explicit 
spread modeling is confronted with difficulties arising from a lack of a 
conceptual framework to investigate the relationships between quanti-
tative measures of spatial heterogeneity and the spread of species.

The primary aim of this study was therefore to present a general mod-
eling framework that allows for a systematic investigation of the impact 
of landscape structure on invasive species establishment and spread. 
The essential parts of the framework are (i) an individual-based spatially 
explicit model (MDIG) that allows population dynamics and dispersal 
to be modeled in GIS (Pitt, 2008), (ii) a landscape generator that allow 
replicated landscape patterns with partially controllable spatial proper-
ties to be generated, and (iii) landscape metrics that depict the essential 
aspects of landscape with which dispersal and demographic processes 
interact. Such a framework will give deeper insights into species traits 
and landscape features that lead to establishment and spread success 
and may be key to preventing new incursions and the development of 
efficient monitoring, surveillance, control and eradication programs. The 
framework is unique in two key aspects. First, it includes the capability 
for much greater realism when modeling reproduction and dispersal pro-
cesses as it accounts for that interindividual variability and key stochas-
ticities in demographic and dispersal processes. Second, the framework 
explicitly relates demographic and dispersal processes to the landscape in 
which these processes occur, using either the open-source GIS program 
GRASS (http://grass.osgeo.org) or computer-generated landscapes. The 
extended framework therefore offers possibilities for a broad range of 
simulation-based modeling experiments, from basic theoretical investiga-
tions of invasion dynamics in fragmented landscapes, to strategic model-
ing of spatiotemporal species distribution and management options.

2  | MODEL DESCRIPTION

2.1 | Component 1: A spatially explicit dispersal 
model

Recent advances in establishment and dispersal modeling have in-
tegrated population dynamic processes into SDMs, to simulate the 
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response of an individual or a population to environmental conditions 
to predict abundance, cover, or probability of presence of a species at 
a given location (Lurgi et al., 2015). Among these models often referred 
as process-based SDMs, the modular dispersal model (MDiG) is a spa-
tially explicit, stochastic spread model originally developed as a freely 
available, open-sourced application by (Pitt, 2008, http://github.com/
ferrouswheel/mdig). MDiG uses GRASS-GIS raster maps to represent 
either the presence/absence or abundances of the species under study 
in raster cells. Initial distribution data can be imported or defined by the 
user. The model architecture was designed to be extensible to cope with 
many different taxa, characterized by different population dynamics and 
dispersal strategies, over realistic landscapes. At a population scale, a de-
mographic submodel provides different levels of complexity to mimic 
the fate of individual organisms, by simulating the life-history events of 
birth and death. At the landscape scale, a dispersal submodel provides 
explicit rules that determine the pattern of dispersal for each individual. 
The model definition file is specified in a file formatted in XML that de-
fines when and how demography, dispersal, simulation results, and other 
model aspects are specified. The flexibility of the model facilitates future 
research by allowing influences on growth and dispersal, additional to 
those investigated in this study and previous work, to be easily incorpo-
rated and investigated (Lurgi et al., 2015; Pitt, 2008). All these features 
will encourage researchers to use a single (or a small set of) modeling 
platform(s) rather than having a large set of user- or group-specific tools, 
thus limiting the duplication of effort in software development, reducing 
model-based errors through improvement (Lurgi et al., 2015).

2.1.1 | The population submodel

The growth module, “r.mdig.growth”, is designed to represent local 
growth or the number of individuals within each raster cell, from one 
time step to another. The definition of a time step is up to the user, but 
applies to the entire model. The carrying capacity parameter indicates 
the maximal number of individuals in a cell. It can be specified as a 
global value, for each land-cover category or for each cell of the map, 
to accommodate for spatiotemporal variation in habitat quality. The 
population growth dynamic is determined by a difference equation 
chosen and parameterized by the user. The options include the logistic 
growth (Verhulst, 1838), Beverton–Holt equation (Beverton & Holt, 
1957), Ricker equation (Ricker, 1958), Neubert equation (Neubert, 
1997), Wang equation (Wang, Kot, & Neubert, 2002), Keitt equa-
tion (Keitt, Lewis, & Holt, 2001), or the user can add more functions 
as the need arises. Population-based simulations with different life 
stages can apply a matrix-based population model using the life-stage 
module, “r.mdig.agepop”, for which fecundity, survival, development, 
and dispersal can be stage/age dependent. The module is designed to 
account for growth and dispersal age dependency.

2.1.2 | The dispersal submodel

Local dispersal
The neighborhood module, “r.mdig.neighbour”, is designed to repre-
sent local spread or a diffusion process based on random walks to 

surrounding adjacent cells. The proportion of individuals that spread 
from any cell can be specified as a parameter. Both the shape, which 
defines the direction of the neighborhood of a cell (east, north, west, 
south), and the range, which predetermines the extent of the neigh-
borhood (2 or 4 cells), are used to represent local random movement 
of individuals.

Long-distance dispersal events
The kernel module, “r.mdig.kernel”, is designed to represent long-
distance dispersal events, resulting, for example, from wind distur-
bances, animal dispersal, or through human transportation. A Poisson 
process is used to approximate the number of long-distance dispersal 
events that are generated from an occupied cell. The user can param-
eterize a Cauchy (Shaw, 1995) or exponential (Mollison, 1972) disper-
sal kernel to determine the distances travelled from the occupied site 
(Levin, Muller-Landau, Nathan, & Chave, 2003; Nathan et al., 2002). 
Finally, a uniform distribution in the range of [0, 2π] is sampled to 
determine the direction of each generated long-distance event (Pitt, 
2008). The relative contribution of multiple vectors to particular dis-
persal pathways can be investigated using dispersal kernels charac-
terized by mixed probability distributions (Gilbert, Grégoire, Freise, & 
Heitland, 2004).

2.1.3 | Postdispersal survival

The survival module, “r.mdig.survival”, allows the species–landscape 
interactions to be incorporated. The user specifies a habitat suitability 
map that can be either realistic maps based on known habitat suitabil-
ity generated in GIS (Pitt, 2008) or artificial maps produced by a land-
scape generator, in the form of survival probability maps ranging from 
0 to 1, reflecting the difficulty that populations have in establishing 
within each raster cell. The framework is asynchronous. The individu-
als modeled through the local dispersal, and dispersal kernel modules 
are passed through the survival module to determine the population in 
each cell surviving to the next simulation step based on the underlying 
suitability value. It is also possible to provide a single survival value 
if the landscape is homogeneous, such as with a monoculture in an 
agricultural field or glasshouse (Pitt, 2008).

2.2 | Component 2: Modeling habitat suitability

2.2.1 | Generating habitat suitability maps or the 
survival layer

There are numerous ways to create habitat suitability maps, and 
they can be based on a wide range of data (Guisan & Thuiller, 2005; 
Guisan & Zimmermann, 2000). The most common methods are based 
on static approaches linking current species distribution to environ-
mental variables such as climate, vegetation, or human disturbance 
(Guisan & Thuiller, 2005; Thuiller et al., 2008). Others used pheno-
logical models (Pitt, Régnière, & Worner, 2007; Régnière & Nealis, 
2002) or expert opinion (Harris, 2002). In a thorough review of the 
ecological principles and assumptions underpinning habitat suitability 
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modeling, Guisan and Thuiller (2005), Araújo and Guisan (2006), and 
Elith, Leathwick, and Hastie (2009) have all highlighted the key steps 
in good habitat–suitability–modeling practice including gathering the 
relevant data, dealing with correlated predictor variables, selecting an 
appropriate modeling algorithm, fitting and evaluating the model per-
formance and predictive performance.

2.2.2 | Computationally generated landscapes

Another option for creating habitat suitability maps comprises using 
a landscape simulator that provides a framework for generating repli-
cated landscape patterns with partially controllable spatial properties, 
particularly with respect to their composition and configuration of 
components (Turner, 1990; With & King, 1997). When combined with 
a population dynamic model such as MDiG, these artificial landscapes 
serve as a template to systematically investigate the effect of land-
scape structure in fragmented and heterogeneous landscapes (Turner, 
2005). The successful application of computer-generated landscapes 
has also led to the development of software designed to create them 
using a variety of algorithms. Examples include QRULE (Gardner & 
Urban, 2007), SIMMAP (Saura, 2003), as well as software packages 
such as the ecomodtools package for R (Chipperfield, Dytham, & 
Hovestadt, 2011) or the python-based NLMpy package (Etherington, 
Holland, & O’Sullivan, 2014). These tools provide easy integration 
with geospatial data and can be integrated within MDiG, allowing the 
design of models ranging from a very simple static spatial establish-
ment and spread model to very complex dynamic ones.

2.3 | Component 3: Characterization of landscape 
structure

The ability to quantitatively describe landscape structure is a prereq-
uisite to detect changes and to investigate the relationship between 
landscape structure, and demographic and dispersal processes. The 
plethora of metrics available means that an exhaustive review of all 
published metrics is beyond the scope of this study. To date, the most 
comprehensive overview of formulae and domains of traditional met-
rics has been provided by McGarigal, Cushman, and Ene (2012). The 
general perception is that there are three important problems asso-
ciated with the use of landscape metrics. They are (i) a high degree 
of correlation in between the metrics themselves, (ii) ambiguous re-
sponses to different spatial processes, and (iii) sensitivity to changes 
in spatial scale. Quantifying the specific effect of habitat configura-
tion on spread success, for example, is difficult because many con-
figuration metrics are correlated with the percentage of habitat in the 
landscape (Kupfer, 2012). Such limitations can often be addressed, or 
put in perspective, through careful data manipulation, analysis, and 
interpretation (Kupfer, 2012; Lustig, Stouffer, Roigé, & Worner, 2015; 
McGarigal et al., 2012; Uuemaa, Mander, & Marja, 2013). To calculate 
landscape metrics, computer programs have been developed such as 
Fragstats (McGarigal et al., 2012), as well as the python-based vLATE 
and Patch Analyst 4.1 modules implemented on ArcGIS (Rempel, 
Kaukinen, & Carr, 2012), or the plugin LecoS (http://www.qgis.org/

en/site/) for the Quantum GIS freeware and the two open-source 
modules r.le and r.li (Rocchini et al., 2013) implemented in GRASS-GIS.

3  | EXAMPLE OF APPLICATIONS

3.1 | The effect of spatial heterogeneity on the 
establishment and spread of Pieris brassicae

We use the invasive great white butterfly, P. brassicae, to investigates 
how different representation of realistic spatial patterns can change 
the final projected distribution of the spread of this species in Nelson 
area, New Zealand. The chosen spatial extent roughly measures 
35 × 40 km around Nelson port, which is suspected to be the intro-
duction site of P. brassicae. The cell resolution was set to 50 m and 
covers a heterogeneous area in terms of both land cover and climatic 
composition (Section 1.2 in Supporting Information).

In this case study, we focus on a dynamic presence/absence 
model. The average frequency of long-dispersal events emerging from 
each occupied cell was drawn from a Poisson process (λ = 11,894 m), 
while the median distance travelled was approximated by a Cauchy 
distribution (x0 = 24,752; f = 0.41; Senay, 2014). Two suitability maps, 
given as 0–1 survival probability, were developed to investigate the 
effect of landscape composition and configuration on invasive spe-
cies spread (Figure 1—Section 1.3 in Supporting Information). The 
first landscape (LS1) included a raster layer that reflects the necessary 
base temperature to complete the P. brassicae life cycle within a sea-
son (Senay, 2014), and the New Zealand Land Cover Dataset LCDB2 
(Ministry for the Environment, NZ, 2004) that allowed the land covers 
that are suitable to P. brassicae to be differentiated. The second sur-
vival layer (LS2) comprised components of the first landscape, as well 
as a raster layer that captures local elevation variation. The rationale 
for incorporating local elevation gradients is that migrating P. brassicae 
have been seen flying following altitudinal ridges (personal communi-
cation, Department of Conservation, NZ). Both survival layers were 
characterized by three commonly used landscape metrics: a measure 
of the proportional abundance of habitat in the landscape (PLAND), a 
simple measure of fragmentation (NP), and a measure of the degree 
of connectedness among habitat patch on a landscape (CONNECT; 
McGarigal et al., 2012). These metrics were calculated for the land-
scape as a whole, and, respectively, for the suitable areas (survival 
probability > .5), less suitable areas (survival probability ∈ [.1,.5[), and 
marginal areas (survival probability < .1; Section 1.3.4 in Supporting 
Information).

For both survival layers, the area occupied remains relatively low 
during the first seven years of simulation before the surface invaded 
increased exponentially toward saturation of the considered spatial 
extent (Figure 2a). Recording the elevation gradients (LS2) reduced 
by a factor of three, the proportion of highly suitable sites (PLAND) 
in the landscape (Figure 2c), and resulted in an apparent decrease in 
the surface invaded (Figure 2a). Interestingly, the survival layer that 
included elevation gradients showed, on average, a higher level of 
fragmentation (NP) and a lower degree of connectedness among hab-
itat type (CONNECT). However, recording elevation had a relatively 

http://www.qgis.org/en/site/
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low effect on the spatial arrangement of suitable patches that re-
main highly connected (CONNECT) compared with less suitable area 
(Figure 2c). The reclassification scheme used in LS2 did not limit ac-
cess to suitable habitat patches, and in both scenarios, the species 
was able to invade about 75% of the suitable areas in the landscape 
over the simulation time frame (Figure 2b). The results show the im-
portance of three different landscape metrics for robust habitat char-
acterization. The metrics may be considered as “landscape signature” 
as they serve as discriminators of land cover/land uses within the 
study area.

3.2 | Impact of landscape structure on mean 
population size and mean dispersal distances

We investigated how change in habitat composition and configura-
tion can affect population density and the dispersal abilities of the 
Asian gypsy moth, Lymantria dispar. We used the computer pro-
gram Qrule 4.2 to generate binary (suitable, unsuitable) landscapes, 
in which habitat configuration (spatial autocorrelation, H = .3, .5, .7) 
and habitat amount (P = 35%, 55%, 75%) can be systematically and 
independently controlled (Gardner & Urban, 2007; Figure 3—Section 
2.2 in Supporting Information). The cell resolution was set to 10 km 
to approximate the median distance of local movements of L. dis-
par as shown in Johnson, Liebhold, Tobin, and Bjørnstad (2006) and 
Liebhold, Halverson, and Elmes (1992) (Section 2.3 in Supporting 
Information). The average frequency of long-dispersal events emerg-
ing from each occupied cell was drawn from a Poisson process (λ = 3 
or 5 cells), while the median distance travelled was approximated by 
a Cauchy distribution (x0 = 1; f = 0.05; Jankovic & Petrovskii, 2013; 
Section 2.4 in Supporting Information). The initial dispersal site was 
arbitrarily set in the landscape. Following Johnson et al. (2006) and 

Liebhold and Bascompte (2003), the local density of L. dispar was ap-
proximated by a deterministic Allee logistic growth model (Section 2.5 
in Supporting Information).

Each landscape was characterized by two commonly used land-
scape metrics: a measure of the proportional abundance of each class 
type in the landscape (PLAND) and a measure of the degree of con-
nectedness among class type on a landscape (CONNECT; Section 2.2 
in Supporting Information). Finally, MDiG was used to quantify the 
dependency of population density (d) and rate of spread (ROS) on the 
landscape characteristics (PLAND and CONNECT), the population 
traits dispersal ability (dist) and intrinsic rate of increase (r).

For a single introduction of five individuals into the landscape, the 
simulated average population density remains relatively low during the 
first 25 years before the population density increases exponentially 
towards the habitat carrying capacity (K = 100; Figure 4). The rate of 
spread is characterized by an initial phase with a relatively low spread. 
New sites are further colonized only after the population locally grows 
in the newly invaded sites (t = 25) and starts to produce new propa-
gules that can sustain the wave of advancement (Figure 4). The exis-
tence of such dynamics in rate of spread has long been reported and 
may occur for several reasons (Hastings et al., 2005). For example, in-
dividuals must overcome Allee effects that may constrain growth in 
newly invaded sites before generating propagules for further invasion, 
potentially imposing limits on totally unregulated spread (Smith et al., 
2014).

Increasing the percentage of suitable habitat cover in the landscape 
(PLAND) and the degree of connectedness among suitable patches on 
a landscape (CONNECT) resulted, on average, in a more prolific spread 
but reduced the local density of the population (Figure 4). This asym-
metry in the response to changes in the structure of the landscape 
suggests that species that have limited dispersal opportunities tend to 

F IGURE  1 Two suitability maps used to build the survival layers of Pieris brassicae. (a) Survival layer, LS1, including the necessary base 
temperature to complete the P. brassicae life cycle within a season (GDD) and the New Zealand Land Cover Dataset LCDB2 (LCC), (b) Survival 
layer, LS2, comprised components of the first landscape, as well as a raster layer that captures local elevation variation (LEV)

(a) (b)
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maximize their populations locally but will be limited for establishing 
a population over a large area. On the other hand, species that have 
high dispersal opportunities may spread but face the added risk of 
not establishing or going extinct due to lower population density and 
consequent Allee effects. Interestingly, the response of the species to 
changes in habitat structure was independent of the intrinsic dispersal 
abilities of the species. However, species with a higher intrinsic rate of 
increase (r) systematically outperformed species with a lower rate of 
intrinsic increase.

4  | DISCUSSION AND CONCLUSION

The conceptual framework introduced in this study relies on a combi-
nation of methods, namely the use of a spatially explicit spread simu-
lator, a landscape generator, and landscape metrics. In this study, we 
have shown these elements can be combined in an iterative process, 
to provide quantitative information about the relationship between 

demography and dispersal processes, and the environment in which 
they occur.

Demography and dispersal processes are clearly key determinants 
of species’ spatial dynamics and responses to rapid environmental 
change. However, insufficient representation of dispersal at the land-
scape scale is still a major limitation in many approaches used for SDMs 
(Baguette & Van Dyck, 2007; Clobert, Baguette, Benton, Bullock, & 
Ducatez, 2012; Travis et al., 2013). In contrast, MDiG allows demog-
raphy and dispersal to be modeled explicitly to explore responses to 
landscape structure (Pitt, 2008). The model is very flexible in that it can 
be applied at multiple spatiotemporal scales and can be easily modi-
fied for species with structurally different demographic and dispersal 
behaviors thus generalizing its use to many different taxa. It also al-
lows the manipulation of natural and/or anthropogenic landscapes to 
test predictions regarding landscape modification or regional climate 
change for invasive species management and conservation purposes. 
In particular, process-based models such as MdiG differ from correl-
ative models in that they consider how the environment constrains 

F IGURE  2 Pieris brassicae, range expansion over the two suitable layer LS1 (yellow) and LS2 (blue). Subfigures (a) and (b), respectively, 
represent the total surface area invaded and the proportion of highly suitable patches occupied as a function of time. The mean value and 
standard deviation of the 500 simulation replicates are represented. Subfigure (c) represents a measure of the proportional abundance of habitat 
type in the landscape (PLAND), the number of patch for each class type (NP), and a measure of the degree of connectedness among class type 
on a landscape (CONNECT). These metrics were calculated for the landscape as a whole, and, respectively, for the highly suitable areas (survival 
probability > .5), less suitable areas (survival probability ∈ [.1,.5]), and marginal areas (survival probability < .1). When calculated for the landscape 
as a whole, the three metrics measure the aggregate properties of every habitat patch in the landscape, When calculated for a specific habitat 
type (e.g., highly suitable habitat type), the three metrics measure the aggregate properties of the habitat patches belonging to this particular 
habitat type (e.g., CONNECT for highly suitable habitat measure the average connectivity between highly suitable patches)
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physiological performance at a given location (Evans, Diamond, & 
Kelly, 2015; Pacifici et al., 2015). MdiG contains explicitly defined pa-
rameters that have clear ecological interpretation (Pitt, 2008). As such, 
MDiG can facilitate mechanistic explanations of the factors underly-
ing responses to environmental change, while clarifying the roles of 

important environmental and landscape influences. The spread simu-
lator was integrated and extended to allow change in the structure of 
the landscape to be described and quantified by means of landscape 
metrics. These metrics provide a unique means of investigating how 
small-grain landscape characteristics, such as habitat size and habitat 

F IGURE  3 Example of survival 
layers used in Lymantria dispar dispersal 
model. The landscapes were simulated 
across a three-step gradient of habitat 
fragmentation (H) and a three-step gradient 
of habitat amount (P). These landscapes 
are used to test the effect of landscape 
structure on the establishment and spread 
of an invasive species

F IGURE  4 European gypsy moth, Lymantria dispar, range expansion. The first column shows (a) the population density and (b) the rate of 
spread (no. of new occupied cells/year) over a period of 100 years. Each time series depicts one of the 500 simulation replicates for a different 
combination of intrinsic rate of increase (r) and long-distance dispersal ability (dist) of the species. In the middle, (c) the average population 
density (d) and (d) rate of spread (ROS) for each combination of r and dist are represented as a function of the percentage of suitable habitat in 
the landscapes (PLAND), while the column on the right (e,f) represents the same output as a function of the connectivity index (CONNECT)
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connectivity, interact with life-history traits to determine the dynam-
ics of invasive species spread in fragmented landscapes.

MDiG was initially developed to support strategic forecasts of 
spatiotemporal invasive species distribution and management options 
(Pitt, 2008). Accurately estimating the distribution of an invading or-
ganism at any time in the future, including the time it takes to reach 
an equilibrium within its new environment, is of paramount impor-
tance for planning eradication strategies or even to decide whether 
any eradication effort is necessary or possible (Venette, 2015). When 
used for spread forecast purposes, MDIG integrates specific charac-
teristics of the studied species, for example, specific dispersal strate-
gies or habitat requirements, to obtain “realism”. A particular challenge 
for establishment and dispersal modeling is to decide the appropriate 
extent, resolution, and level of landscape details over which dispersal 
studies are carried out (Venette, 2015). A good example from this re-
search was that recording the elevation gradients for investigating the 
spread of P. brassicae in New Zealand reduced by a factor of three the 
proportion of highly suitable sites in the landscape and resulted in an 
apparent decrease of the surface invaded. The most important impli-
cation of such a result is that any overestimation of future dispersal 
potential, by incorrectly identifying the landscape factors that might 
constrain species establishment and spread, might incorrectly dis-
courage an eradication attempt (Epanchin-Niell, Haight, Berec, Kean, 
& Liebhold, 2012; Senay, 2014; Venette, 2015). In particular, overes-
timation of establishment and spread rates increases the likelihood 
that an area will be covered by biosecurity measures (Epanchin-Niell, 
Brockerhoff, Kean, & Turner, 2014; Hauser & McCarthy, 2009; Holden, 
Nyrop, & Ellner, 2016). If policymakers assume the possibility of harm 
is certain due to high establishment and spread rates estimates, and 
they act to mitigate the invasion, they could be wrong and have com-
mitted suboptimal allocation of resources and investment. Similarly, if 
policymakers fail to act because establishment or spread rates have 
been underestimated—and they are wrong—then the failure to act 
could be catastrophic. In this study, we have shown that selective re-
coding of certain areas of the landscape based on species attributes 
can help optimize the level of landscape details required for reliable 
projections of species spread case by case. Nevertheless, the result of 
the simulations remain closely linked to the choice of the parameters 
rather than providing any insight into general principles.

In this research, however, a more holistic approach was adopted 
where the patterns of invasion generated by multiple species scenarios 
(variation in intrinsic growth rates and dispersal abilities) within different 
landscape structure were used to infer key drivers of population density 
and spread, using L. dispar, as a case study. These relationships between 
life-history traits and landscape characteristics were evaluated for their 
generality and robustness via the manipulation of computationally gen-
erated landscapes with known landscape structure. A key aspect of this 
assessment was to identify which model parameters were likely to have 
a large impact on population density and spread estimates. The analyses 
in this study were built around a series of relatively simple assumptions 
regarding the characteristics of the species and the environment, such 
as a random walk for approximating local diffusion of the insects, a sin-
gle Cauchy distribution for approximating long-distance dispersal events 

or a binary distinction of suitable and unsuitable habitat. Despite this 
simplicity, the model as a whole is structurally complex and produced a 
variety of plausible range expansion dynamics that remain to be tested 
empirically. For example, the response of the species to changes in hab-
itat structure was independent of the intrinsic dispersal abilities of the 
species. However, species with a higher intrinsic rate of increase sys-
tematically outperformed species with a lower rate of intrinsic increase 
for all landscapes considered. This result suggests that spread rate is 
more strongly related to intrinsic rate of increase, which determines the 
total number of individuals participating in dispersal, than it is to a spe-
cies’ intrinsic dispersal ability. This suggestion also supports the study 
by Cassey, Prowse, and Blackburn (2014) which also identified demo-
graphic traits to be the most important factor influencing the probability 
of invasion of exotic birds. From an invasive species management per-
spective, this result suggests that priority should be placed on species 
with high intrinsic rate of increase and that eradication programs should 
focus on limiting reproductive stages as a priority. Ultimately, a gener-
alized and exhaustive study that could elucidate a possible relationship 
between species attributes and mode of dispersal with optimum land-
scape resolution, configuration, and composition is greatly needed.

What is encouraging for future studies is that the availabil-
ity of movement data is increasing rapidly, particularly with data of 
long-distance dispersal in heterogeneous landscapes as well as with 
meaningful characterization of average growth and dispersal patterns 
across temporal scales (Cagnacci, Boitani, Powell, & Boyce, 2010; 
Morales et al., 2010; Robledo-Arnuncio et al., 2014). High-quality data 
of multiple species growth and movement across complex landscapes 
will allow better parameterization of the framework and better rep-
resentation of population growth, density, rate of spread and trajec-
tories of invasive species over different taxonomic groups and spatial 
scales, in environmentally and demographic explicit contexts. In turn, 
the framework can help to generate hypotheses to be tested empiri-
cally and determine how these hypotheses scale over time and space. 
A set of research questions for which a modeling framework such as 
MDiG could be used to help progress our understanding of the estab-
lishment and spread of invasive species in heterogeneous landscapes 
has been proposed in Lustig (2016). They include questions related to 
the relative contribution of multiple spread vectors to rate of spread, 
the implication of landscape-dependent variation on demography and 
dispersal ability or the implications of demographic and environmen-
tal stochasticity on rate of spread. Choosing the appropriate degree 
of abstraction of species demography, dispersal, propagule pressure, 
and ecosystem characteristics to keep a balance between maintaining 
reality and reducing model complexity, is a fundamental challenge to 
establishment and spread modeling (Lurgi et al., 2015; Merow, Smith, 
et al., 2014; Venette, 2015). Thuiller et al. (2008) suggested that such 
a decision is scale dependent. Complex models are likely to be more 
accurate at finer resolutions, whereas simple models are likely to offer 
useful and parsimonious solutions at broader scales. Yet, the develop-
ment of complex models are necessary not only to help understand 
the relative importance of different drivers and their interactions on 
the population density and spread of invasive species, but also as an 
aid to optimize the trade-off between precision and model complexity.
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