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Warming and redistribution of nitrogen
inputs drive an increase in terrestrial nitrous
oxide emission factor

E. Harris 1,2,16 , L. Yu 3,4,16, Y-P. Wang 5, J. Mohn 4, S. Henne 4, E. Bai 6,
M. Barthel7, M. Bauters 8, P. Boeckx 8, C. Dorich9, M. Farrell 10,
P. B. Krummel 5, Z. M. Loh 5, M. Reichstein 11, J. Six 7, M. Steinbacher 4,
N. S. Wells 12,13, M. Bahn 2 & P. Rayner 14,15

Anthropogenic nitrogen inputs cause major negative environmental impacts,
including emissions of the important greenhouse gas N2O. Despite their
importance, shifts in terrestrial N loss pathways driven by global change are
highly uncertain. Here we present a coupled soil-atmosphere isotope model
(IsoTONE) to quantify terrestrial N losses and N2O emission factors from 1850-
2020. We find that N inputs from atmospheric deposition caused 51% of
anthropogenic N2O emissions from soils in 2020. The mean effective global
emission factor for N2O was 4.3 ± 0.3% in 2020 (weighted by N inputs), much
higher than the surface area-weighted mean (1.1 ± 0.1%). Climate change and
spatial redistribution of fertilisation N inputs have driven an increase in global
emission factor over the past century, which accounts for 18% of the anthro-
pogenic soil flux in 2020. Predicted increases in fertilisation in emerging
economies will accelerate N2O-driven climate warming in coming decades,
unless targeted mitigation measures are introduced.

Nitrous oxide (N2O) is a long-lived greenhouse gas and a key strato-
spheric ozone-depleting substance1,2. The atmospheric N2O mole
fraction has increased from ~270nmolmol−1 in the preindustrial era to
>332 nmol mol−1 today2,3. The primary global source of N2O is pro-
duction during N cycling by microbiota in soils . Soil N cycling also
releases NO and N2, which directly impact tropospheric ozone

production, climate, and soil N content and loss pathways4,5. N cycling
and thus N gas production are strongly enhanced by direct and
indirect anthropogenic N inputs2,6–8. Agricultural fertilisation accounts
for around two thirds of anthropogenic N inputs9, with the remainder
contributed by biological N2 fixation and deposition of NOx and NH3.
Most anthropogenic N is not incorporated into crops or soils but lost
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to the environment10, representing huge monetary losses for the
agricultural sector and causing a cascade of environmental
problems11–13. In the coming decades, N inputs are expected to grow in
line with increasing agricultural production, and to shift towards tro-
pical regions and emerging economies as strict N pollution controls
are introduced in many developed regions14–18. Effective management
of N fertiliser to achieve high N use efficiency is key to balancing food
production with environmental protection and thus reducing N2O
emissions19,20. However, mitigation is challenging, and N2O emissions
are currently exceeding the highest predicted scenarios2.

N is lost from terrestrial ecosystems through several major path-
ways: Microbial and abiotic N gas production in soils; runoff and
leaching of N species; and ammonia volatilization. Despite their
importance, expected changes in N losses in the coming century are
not well known11,21. Nitrification (aerobic) and denitrification (anaero-
bic) are the main processes emitting N gases (NO, N2O and N2) from
soils. The proportion of N inputs released as particular N gases can be
described with the emission factor (EF); for example, an EF for N2O of
2%means that 2% of annual N inputs are released as N2O. On the global
scale, the impacts of climate change on N-gas production processes
are poorly known: Warming is generally expected to enhance micro-
bial activity and increase N-gas EFs, however interactions between
factors such as N availability, plant growth, and precipitation changes
are poorly constrained. Moreover, it is unknown if increased nitrifica-
tion or denitrification rates would in fact lead to increased N gas
production22–24. The proportion of N lost by leaching globally is not
expected to change significantly over time in response towarming due
to the contrasting effects of increased N mineralization and reduced
moisture availability2,25–27. However, leaching losses and predicted
responses to warming vary widely between different regions depend-
ing on soil, hydrological and ecosystem parameters, and may also be
strongly affected by precipitation regime changes28,29. Moreoever,
increasing atmospheric CO2 generally enhances plant growth and N
uptake, thus impacting the availability of N in soils for different loss
pathways30,31. Process models have been used to simulate N loss
pathways in a changing climate (e.g.32–34). Thesemodels used generally
require large amounts of input data and parameterisations as well as
high computing power, whichmakes it difficult to iteratively constrain
and optimize model parameters with observations using typical
inversion frameworks and likelihood approaches, and complicates
investigations of global or long-term emissions. Top-down modelling
efforts can give robust estimates of global emissions for recent
decades35–37, however without the incorporation of isotopes, these
approaches cannot provide mechanistic information.

The isotopic composition of soil N (δ15Nsoil) has been proposed as
an integrated indicator of N loss partitioning in natural systems38–41.
Leaching of soluble N species (eg. NO�

3 ) involves very low isotopic
fractionation, while losses through ammonia volatilization and N gas
production strongly favour 14N and thus cause 15N enrichment in the
remaining soil N pool39. Observations have shown that mean global
δ15Nsoil is elevated relative toN inputs, reflecting significant production
of gaseous N species38,39, although the relationship may be unpre-
dictable in some regions due to N immobilization41. Previous studies
have used δ15Nsoil models to constrain N losses at individual sites or
globally for natural ecosystems38,39, however this approach has not
been applied to estimate temporal changes in N loss pathways. Fur-
thermore, the availability of complementary datasets to validate pre-
vious δ15Nsoil models has been limited to short-term measurements
from individual sites. This approach can be extended to include
records of atmospheric N2O isotopic composition, which reflects N2O
production pathways42–44, and can be used to validate results from
studies of δ15Nsoil. Atmospheric N2O isotopic composition can be
described with the N2O bulk 15-N isotopic composition (δ15Nbulk),
hereafter abbreviated asδ15N, and tjeN2O 15-N isotopic site preference,
hereafter referred to as δ15NSP (see ref. 45 for definitions and review).

Recent advances in spectroscopic isotope instrumentation have
delivered high precision long-term time series of background tropo-
spheric N2O mixing ratio and isotopic composition43,45, allowing an
integrated viewofN2O sources and sinks. These results havebeenused
to estimate total anthropogenic N2O emissions based on two-box
models of the atmosphere42,45,46, however this approach cannot give
spatially resolved information on N2O sources.

Here we aim to gain new insight into the N loss processes
underlying global N2O emissions and their spatiotemporal patterns, in
order to understand how N losses are changing under the influence of
anthropogenic activities and climate change.Weuseanartificial neural
network to estimate a global isoscape of natural soil δ15N. This is used
to initialise a soil module to simulate spatially resolved terrestrial N
losses via leaching, volatilization and gas production pathways. N2O
emissions from the soil module are released to a two-box atmospheric
module to simulate N2O mixing ratio and isotopic composition from
the preindustrial era to the present day. The coupled model frame-
work, ‘IsoTONE’, is optimizedwithin aBayesian framework using ahigh
precision time series of N2O mixing ratio and isotopic composition
from several background sites, as well as estimates of N2O emission
factors from the Global N2O Database.

Results and discussion
Terrestrial N2O emissions
12 key parameters in the IsoTONE model were optimized using a
Markov ChainMonte Carlo (MCMC) approachwith 120 000 iterations,
described in detail in Supplementary Note 3 and Supplementary
Table 1. Total terrestrial N2O emissions from the optimised model
(Table 1) agree well with previous results, providing confidence in the
isotopic basis of the model, for example: Total terrestrial N2O emis-
sions for 1860, 2010 and 2020were 5.3 ± 0.4, 12.6 ± 1.2 and 13.9 ± 1.4Tg
N2O-N a−1 respectively (2020 results shown in Supplementary Fig. 12),
showing good agreementwith 1860 and 2010 estimates of 6.3 ± 1.1 and
10 ± 2.2 Tg N2O-N a−1 from the N2O Model Intercomparison Project8.
The range of 12.6 to 13.9 Tg N2O-N a−1 modelled for 2007-2016 addi-
tionally agrees with a recent global meta-analysis estimating total
terrestrial emissions of 12.2-23.4 TgN2O-N a−1 for the sameperiod2, and
with the mean of 12.9 Tg N2O-N a−1 from a meta-analysis by Scheer
et al.47. Total global soil NO emissions for 2010 were estimated to be
13.7 ± 3.9 Tg NO-N a−1, agreeing well with the high end of estimates
from ameta-analysis suggesting global soil NO emissions of 1.8-12.3 Tg
NO-N a−1 48.

Natural N2O emissions are dominated by N inputs from fixation
(4.7 ± 0.8 Tg N2O-N a−1, 90% of natural emissions). In contrast,
anthropogenic soil emissions are dominated by N inputs from
deposition (70% of 1940 and 51% of 2020 emissions), although fertili-
sation is becoming increasingly important (14% of 1940 and 22% of
2020 emissions) (Table 1). The spatial distribution of emissions from
fertilisation, deposition and fixation for natural and anthropogenic
soils for 2020 is shown in Supplementary Fig. 12, with ‘anthropogenic
emissions’ referring to all emissions above the preindustrial baseline,
thus accounting for both direct and indirect anthropogenic N2O
sources. The spatial distribution of N2O emissions agrees well with
inversion estimates from the Copernicus Atmospheric Monitoring
Service (CAMS49;) using data from 123 ground-based sites (Fig. 1), with
significant differences only seen in small isolated regions. The IsoTONE
framework assumes that land use changes—aside from fertiliser use
and other N inputs, which are explicitly provided to the model—have
had a minor impact on N2O emission factors at an annual timescale,
compared to the major impact of pre-existing variability in emission
factors driven by climate and soil parameters. This assumption is
supported by the good agreement between CAMS inversion results
and IsoTONE emission estimates. The largest differences are seen in
tropical South America, Africa and Australia, which may be due to the
scarcity of atmospheric monitoring stations available to constrain
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inversion estimates in these regions49. Differences may also relate to
extensive land use change and cultivation of N-fixing soybean crops in
SouthAmerica. Furthermore, fundamental differences inN cycling and
immobilization in tropical and Arctic regions may affect the accuracy
of the IsoTONEmodel in these regions, as most experimental and field
studies were conducted in temperate soils40,50. Total N2O emissions
agree very well between the two models, with 13.3 ± 0.1 Tg N2O-N a−1

and 13.9 ± 0.9 Tg N2O-N a−1 predicted for 2019 by the CAMS inversion
and IsoTONE respectively.

The incorporation of isotopic composition means that, unlike
previous global models, the IsoTONE framework distinguishes
between different N2O production pathways (Supplementary Note 4).
The model results furthermore suggest that on average, laboratory-
measured fractionation factors for these pathways are only expressed
at ~55% on average in soils (frac_ex = 0.55 ± 0.05, Supplementary
Table 1). This is a global average which we expect to vary widely
between individual sites depending on soil structure, moisture, and
thedepthofN2Oproduction and consumption. For example, soilswith
small N cycling and gas diffusion rates would be expected to have
higher isotopic fractionation during N loss processes compared to
soils with high diffusivity. In 2020, 60% of N2O emitted from soils
(7.5 ± 0.4 Tg N2O-N a−1) was produced from denitrification and 39%
(4.7 ± 0.8 Tg N2O-N a−1) from nitrification. The contribution of nitrifi-
cation to soil N2O emissions has decreased very slightly from 40% in
1850 to 39% in 2020 (Supplementary Fig. 10). The spatial distribution
of nitrification-N2O from IsoTONE agrees verywell with the globalmap
produced by Pan et al.51, with high nitrification in areas such as the
Amazon basin, sub-Saharan Africa, Europe and coastal Australia.
However the model of ref. 51, centers around total nitrification rate,
which is not estimated in IsoTONE, so the results cannot be directly
compared.

Globally, just 30% of fertiliser N appears to be available for N
cycling (fert_EF_red, Supplementary Table 1)—the remaining fertiliser N
is primarily incorporated into harvest, andmayalsobe immobilised via
increased soil storage, or lost through leaching pathwayswhich arenot
explicitly modelled. This is consistent with previous meta-analyses,
which show that 15–70% of fertiliser N is taken up by plants, a sig-
nificant proportion could remain in soils, and 5–25% is unaccounted
for in plant or soil pools and thus lost to the pathwaysmodelled in this

study10,52–54. Therefore, emission factors for fertiliser emissions can be
significantly lower than for other N inputs, with implications for the
applicability of EF measurements from agricultural sites. Mean global
fertiliser N incorporation could be increasing as plant growth and thus
N use is enhanced in response to increasing atmospheric CO2. How-
ever, water and nutrient limitations will also play a role in regulating
plant growth2, and fertiliser use maymoreover increase in response to
higher N use55. These potential effects are not currently captured in
IsoTONE and should be a focus of future model studies.

The anthropogenic N2O budget: Inputs, losses and trends
The anthropogenic N2O soil flux in 2020 was estimated to be 7.1 ± 0.6
Tg N2O-N a−1, close to the highest projected emission scenario
(RCP8.5) estimate for 20202,56 (Fig. 2 and Supplementary Fig. 11).
1.7 ± 0.4, 3.6 ± 0.3 and 1.8 ± 0.6 Tg N2O-N a−1 of the anthropogenic flux
were contributed by soil emissions from fertilisation, deposition and
fixationN inputs respectively (Table 1), with an additional 1.7 TgN2O-N
a−1 from non-soil anthropogenic emission sources (emissions from
EDGAR for categories 1A1, 1A3b, 2B and 6, see Methods: Atmospheric
N2O module). This agrees very well with a recent ensemble analysis,
which estimated a total anthropogenic flux of 7.3 (4.2–11.4) TgN2O-N a
−1 2. We find that deposition N accounts for 41 ± 14% of all anthro-
pogenic emissions in 2020 compared to 19 ± 12% direct emissions
from fertilisation, 21 ± 15% from enhanced fixation, and 19% from non-
soil sources: Deposition N inputs clearly contribute the majority of
anthropogenic emissions. This finding is in contrast to the results of
Tian et al.2, who report that direct N2O emissions from fertilisation are
dominant. These contrasting results are due in part to the classifica-
tion of all emissions above the 1850 baseline (eg. enhanced N2O from
natural sites due to warming, fixation and deposition) being classified
as anthropogenic in this study, whereas in previous studies someor all
of these processes are not considered in the calculation of the
anthropogenic burden. Moreover, our results suggest that emission
factors could be significantly underestimated from field measure-
ments (see Sections 1 and 1), likely due to the highly dynamic nature of
N2O emissions, which are not adequately captured with sparse
sampling20,57,58. Moreover, measured EFs are often based only on
growing season emissions,which can lead to a strong underestimation
of annual emissions that could be particularly important in cold

Table 1 | Changing characteristics of the total and anthropogenic terrestrial N2O flux at the beginning of the anthropocene
(1850) and through the past century

1850 1940 1980 2020

Total soil flux Tg N2O-N a−1 5.3 ± 0.4 6.3 ± 0.5 8.7 ± 0.6 12.4 ± 0.8

Natural soil flux Tg N2O-N a−1 5.3 ± 0.4

Anthropogenic soil emissions Tg N2O-N a−1 0 1.0 ± 0.7 3.4 ± 0.7 7.1 ± 0.9

Growth rate of emissions Gg N2O-N a−1 a−1 19 ± 10 23±0.1 60 ± 5 134 ± 6

Nat. soil emissions—deposition N Tg N2O-N a−1 0.5 ± 0.1

Nat. soil emissions—fixation N Tg N2O-N a−1 4.7 ± 0.5

Anth. soil emissions—fertilisation N Tg N2O-N a−1 0 0.1 ± 0.1 0.9 ± 0.2 1.7 ± 0.4

Anth. soil emissions—deposition N Tg N2O-N a−1 0 0.7 ± 0.1 1.8 ± 0.2 3.6 ± 0.3

Anth. soil emissions—fixation N Tg N2O-N a−1 0 0.2 ± 0.6 0.7 ± 0.7 1.8 ± 0.6

Anth. emissions not from soils Tg N2O-N a−1 0 1.0 ± 0.7 1.4 ± 0.7 1.7 ± 0.9

δ15N, natural soil emissions ‰ −22.4 ± 2.7

δ15N, anthrop. soil emissions ‰ NA −15.3 ± 1.1 −17.0 ± 1.1 −18.7 ± 1.1

δ15NSP, natural soil emissions ‰ 6.7 ± 0.6

δ15NSP, anthrop. soil emissions ‰ NA 5.9 ± 0.2 6.0 ± 0.2 6.8 ± 0.2

EF, area-weighted % 1.1 ± 0.1

EF, N input-weighted % 3.6 ± 0.7 3.8 ± 0.7 4.0 ± 0.8 4.3 ± 0.3

Thenaturalfluxand the area-weighted emission factors (EFs) donot vary temporally. Growth rate is the 10-yearmeangrowth rate centredon theyear of interest, ie. the 10-year average for 2000 is the
average from 1995-2005. The area-weighted EF is themean global EF calculated using the areas of grid cells as weights; theN-input weighted EF is calculated using the total N inputs of grid cells as
weights.

Article https://doi.org/10.1038/s41467-022-32001-z

Nature Communications |         (2022) 13:4310 3



regions59–61. EFs will be particularly underestimated from field mea-
surementsmade at agricultural sites, where a significant proportion of
N is removed through harvest or immobilization as described by fer-
t_EF_red, thus leading to low EFs. These combined effects will lead to
underestimation of deposition emissions when measured EFs are
applied at non-agricultural sites in bottom up-N2O emission
frameworks.

The 10-year mean growth of total anthropogenic N2O emissions
was between 0 and 0.04 Tg N2O-N a−1 a−1 until ~1945 (Fig. 2). Between
1945 and 1980 the 10-yearmean growth rate in emissions increased to
0.12 ± 0.02TgN2O-Na−1 a−1 due to rapid growth in fertiliser inputs, after
which it stabilised at around 0.1 Tg N2O-N a−1 a−1, corresponding to a
steady rate of changeof around0.015 nmolmol−1 a−1 a−1 in tropospheric
background N2O growth rate. The growth rate of anthropogenic
emissions was particularly high between 2010 and 2015 (3-year growth
rate up to 0.3 Tg N2O-N a−1 a−1) compared to the average of the last 50
years (0.09 ±0.06 Tg N2O-N a−1 a−1), in agreement with two recent

studies2,37. This caused the rate of change for the tropospheric N2O
burden to peak at 0.026 nmol mol−1 a−1 a−1 (Fig. 2). After 2015, the
growth rate of emissions strongly decreased, meaning the 10-year
mean growth for 2010–2020 was 0.14 Tg N2O-N a−1 a−1 and thus within
then normal range for the last half-century (Fig. 2). Fluctuations in the
growth rate for tropospheric background N2O mixing ratio reflected
the growth rate in emissions driven by different input categories.
Variability in fixation N inputs dominates subdecadal interannual
variability in total terrestrial N2O emissions, such as the 2010–2015
peak, contributing >70% of variability within decadal bins (Fig. 2).
Fixation inputs are 2–10 times more variable than other input types at
subdecadal timescales, thus accounting for their key role in driving
variability in N2O emissions. In contrast, changes in fertilisation inputs
drive the changing growth rate of anthropogenic emissions at time-
scales larger than 1–2 decades. Increases in both fertilisation and
deposition are responsible for the strong and constant increase in N2O
emissions and tropospheric background mixing ratio over the last

Fig. 1 | A comparison of total N2O emissions from the IsoTONE and CAMS
models for the year 2020.Modelled total terrestrial N2O fluxes from the IsoTONE
model (a) and from CAMS (b) (R. Thompson, 2021; regridded to 0.5◦using linear
interpolation) for the year 2019. Both panels use the same logarithmic colour scale.

The difference between the IsoTONE and inversion estimates is shown in c; areas
where the difference is significant compared to the uncertainty are highlighted
with black outlines. Maps generated with Cartopy (Met Office, 2015,132).
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Fig. 2 | Temporal evolution of N inputs and N2O emissions, and growth rates of
N2O emissions and N2Omixing ratio. aAnnual inputs for fertilisation, deposition,
fixation, and total N used in the model (see Methods: at the same geographical
locations to gapfill the ancillary data for data sources). b The anthropogenic flux
broken down into N input categories of fertilisation, deposition and fixation, esti-
mated by assuming that all increases in N2O emissions for all input categories
(fixation, fertilisation, deposition) after 1850 are due to anthropogenic influences.
Total N2O emissions, including non-soil N2O emissions, are also shown. The shaded

areas indicate the 1σ uncertainty.N2O emission data prior to 1900 as well as the
breakdown of natural emissions driven by deposition and fixation are shown in
Supplementary Fig. 11. c The growth rate of N2O emissions from each input cate-
gory calculated over 3 and 10 year windows (pale and dark lines respectively, using
colours indicated for fertilisation, fixation and deposition). d The growth rate in
modelled N2O tropospheric mixing ratio (left axis; purple solid line) as well as the
modelled change in mixing ratio growth rate (right axis; blue dotted line).
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Office, 2015,132).
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century. These findings could be impacted by uncertainties in the
input datasets, which should be investigated further using targeted
isotopic and modelling approaches at the site and regional scale in
regions with particularly high uncertainty.

The isotopic composition of the total anthropogenic N2O source
reflects changing emission processes (Supplementary Fig. 11). During
the growth rate acceleration of 1945–1980, δ15N and δ15NSP of the
anthropogenic source were relatively constant, however after 1980
they changed more rapidly. These fluctuations were also observed by
Prokopiou et al.62, who used a two-box model to interpret N2O source
isotopic composition from firn air data, and found similar but more
uncertain values for anthropogenic source isotopic composition. δ15N
of the anthropogenic source is higher than the mean soil source
(Table 1) and shows a strong decreasing trend, which may indicate an
increasing dominance of agricultural emissionswith low δ15N-N2O after
198062. An increasing proportion of agricultural emissions could also
explain the trend in anthropogenic source δ15NSP, which approaches
the estimated agriculturalmean of 7.2 ± 3.8‰45. Other explanations for
changing source isotopic composition include changes in the extent of
pathways such as consumption via N2O reduction and production via
nitrification and denitrification. Variability in δ15NSP and δ15N are in
opposite directions, and thus unlikely to be caused by changes in the
extent of N2O reduction to N2, which would increase both the δ15NSP

and δ15N of remaining N2O
63. Furthermore, our results suggest a 1%

decrease in nitrification contribution to global N2O emissions and thus
very little change in the nitrification:denitrification ratio, thus this
could not account for the observed increase of ~1‰ in δ15NSP of
anthropogenic N2O based on δ15NSP endmembers of 0 and 30‰ for
N2O from denitrification and nitrification.

Drivers of spatiotemporal variability in N2O emission factors
Soil moisture, N content, mean annual precipitation and soil bulk
density (21, 9, 5, 4% of variability respectively) were the main para-
meters causing broad geoclimatic gradients in N2O EFs and the
proportion of N lost to N gas production between different regions
(Fig. 3 and Supplementary Figs. 3 and 13), consistent with previous
laboratory and field results64–67. Mean annual temperature was
important for total N gas production, but not for N2O EF (5 vs. 0.2% of
variability in fgas and EF). Total gas production accounts for the lar-
gest proportion of N losses inwarm, dry regions, whereasN2O EFs are
highest in non-desert tropical regions, in particular sub-Saharan
Africa, southern India, China, and south east Asia, and low in drier
and colder areas. This agrees well with results from refs. 2 and 68, as
well as in situ measurement studies showing high N losses via both
leaching and denitrification from ‘leaky’ N cycles in tropical
regions69,70. Geoclimate-driven variability in emission factors can be
clearly seen in regions underrepresented in EF compilations, such as
Australia, which shows a clear gradient from low to high N2O EFs
between the dry centre and wetter coastal and northern regions, but
very little gradient in total N gas production. This pattern, whereby
arid regions show relatively highN gas production dominated by NO,
but low N2O EFs, can be seen across central North America, the
Sahara, Australia, and central Asia. This suggests global applicability
of the experimental results from ref. 71, who used isotopic tracing to
show high NO production from arid soils was due to reduced plant N
uptake and low leaching.

The spatial distribution of N inputs plays a key role in determining
the overall global EF for N2O (Fig. 4). The mean global EF for N2O
weighted by area was 1.1 ± 0.1%, close to the IPCC default value of 1.4%

Fig. 4 | Impact of changing spatial distributionof fertilisation aswell as climate
warming on N2O emissions from 1940 to 2020. a The average change in annual
N2O emissions due to the shifting spatial distribution of fertiliser N inputs, calcu-
lated using the 1940 spatial distribution of fertilisation scaled to the 2020 total
fertilisation quantity as a baseline, and comparing this to the actualmodelled 2020
emissions. b The average change in annual N2O emissions due to climate warming
and the temperature dependency of N2O production, found by calculating 2020

emissions with and without the impact of warming on EFs since 1940. c The pro-
portion of anthropogenic N inputs from fertilisation, deposition and fixation in
1940, 1980and2020 accounted forwithin bins defined according to the EF forN2O.
20 bins were used; 19 were distributed evenly between the parameter minimum
and the mean + 3 standard deviations; the highest bin was for all data >mean +
3 standard deviations. Maps generated with Cartopy (Met Office, 2015,132).
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for combined direct and indirect emissions72,73. However, the mean
global EF weighted by total N inputs per grid cell in 2020 was
4.3 ± 0.3%, as a much greater proportion of total N inputs are in ‘high
emission’ temperate and tropical non-arid latitudes compared to dry
and cold areas (Fig. 3). This builds upon the observation of Tian et al.2,
who showed that the mean global EF for N2O from agricultural soils is
significantly higher than the IPCC default value. Measurements of
mean annual EFs using chambers and similar methodologies are far
more time intensive and expensive than measurements of soil δ15N,
thus isotopic modelling of the N cycle can be used to understand
regional variability in EFs to facilitate upscaling and extrapolation of
data from traditional methods. Modelled EFs were compared to the
compiled values for croplands used in the meta-anlysis of ref. 74 by
finding the mean and standard deviation of all EFs reported by Cui
et al.74 in each gridcell. Field EF measurements are laborious and
challenging, thus relatively few data points are available—of the 55 478
gridcells with a valid modelled EF, only 179 have one or more EF
measurements. The agreement between modelled values and obser-
vations was relatively good, with a Spearman correlation coefficient of
0.4 (p <0.01) indicating moderate agreement. However, the slope of
0.15 suggested that measurements may consistently underestimate
EFs due to insufficient measurement frequency and duration and the
importance of ‘hot spots’ and ‘hot moments’ for annual N2O emission
totals57,75. The impact of climate change—in particular changing pre-
cipitation patterns—on N2O emissions in rapidly developing regions
like sub-Saharan Africa and India is not yet captured by observations,
and should be a focus of future studies. Understanding the large-scale
impact of moisture availability and other climate parameters on N loss
processes through targeted measurements campaigns and model
development will be key to predicting interactions between climate
change-driven precipitation changes and N2O emissions.

The proportion of N2O lost to different pathways shows clear
temporal changes, particularly for fertilisationN inputs,which showan
increase in mean EF of N2O from <4% prior to 1940 to >5% in 2020
(Supplementary Fig. 14). This has two major causes: Changing spatial
distribution of N inputs and climate warming feedback (Fig. 4). The
impact of changing spatial distribution of N inputs on annual N2O
emissions and EFs was estimated by calculating a baseline, using the
1940 spatial distribution of fertilisation scaled to the 2020 total ferti-
lisation quantity, and comparing this to the modelled 2020 maps of
emissions and EFs. The shift in fertilisation from North America and
other temperate regions (EFs for N2O of 4–5%) towards emerging
economies in warmer regions with higher EFs (EFN2O

>7.5%), in parti-
cular China, has caused additional emissions of 0.5 ± 0.3 Tg N2O-N a−1

since 1940 (Fig. 4c). This effect is only seen for fertilisation N inputs:
Deposition and fixation inputs show very minor spatiotemporal
changes (Fig. 4c). Deposition inputs are stabilising in China due to
vigorous controls on N pollution76, and changes in N2O from deposi-
tion in coming decades are likely to be ofminor importance compared
to fertilisation- and climate-driven emissions. The impact of climate
warming (Fig. 4b) has led to an increase in total microbial gas pro-
duction of around 3% between 1850 and 2020 (Supplementary Fig. 14),
resulting in additional emissions of 0.8 ± 0.4 Tg N2O-N a−1, and a con-
sequent decrease in leaching losses. The parameterised ‘warming’
impact will be a combination of feedbacks driven by both changing
precipitation and increased temperature, which cannot be separated
in the current IsoTONE framework. The combined increase of 1.3 Tg
N2O-N a−1 from spatial input changes and climate warming represents
18% of soil and 15% of total anthropogenic N2O emissions in 2020. As
climate warming continues, and fertiliser use increases in many tro-
pical and subtropical regions, themean EF of N2O and thus the growth
rate of tropospheric N2O will accelerate, unless significant efforts are
focussed on N2O mitigation and increased fertiliser N use efficiency in
emerging economies2. Moreover, the impact of potential unknown
climatic feedbacks, in particular non-linear responses associated with

extremeevents suchasdrought andflooding, shouldbea key focus for
both measurement and model studies.

Applications and outlook
N2O emissions over the past decades have increased strongly, fol-
lowing the trajectory predicted by the highest emission scenario
(RCP8.5)2, which suggests an increase in the global emission factor for
N2O. We developed and applied a coupled soil-atmosphere nitrogen
isotope model framework—‘IsoTONE’—using soil δ15N as an emission
proxy to understand the processes underlying spatiotemporal
dynamics of global N2O emissions. Thismodel set up developed in this
study used isotopic composition to trace different N loss and N2O
production processes, with a Markov Chain Monte Carlo approach
implemented to constrain themodel using tropospheric time series of
N2O isotopic composition. Results from IsoTONE agree well with the
CAMS inversion model49, providing confidence in both methodolo-
gies. Compared to CAMS, IsoTONE is able to harness isotopic infor-
mation to understand spatial variability in emission factors and
production and loss processes; moreover, the simplified approach
means IsoTONE has low computational requirements and can be used
to explore questions requiring many simulations.

Themodel results show thatfixationN inputs drive themajority of
natural N2O emissions, but deposition N inputs account for the
majority of anthropogenic emissions. Fertilisation N inputs are
responsible for multidecadal variability in emissions, whereas sub-
decadal variability in N2O emissions is driven by biological N fixation.
We show that the effective (N-input weighted) EF in 2020 is 4.3 ± 0.3%,
much higher than the IPCC default value of 1.4%. N2O EFs are highly
spatially heterogeneous—highest in warm, wet ecosystems—and thus
strongly underestimated by default values based on area-weighted
means.N2OEFs have increasedover thepast century, drivenby climate
warming as well as spatial redistribution of fertiliser N inputs. These
two phenomena have led to additional emissions of 0.8 ± 0.4 and
0.5 ± 0.3 TgN2O-N a−1 respectively between 1940 and 2020. Feedbacks
between climate warming, spatial changes in agriculture, and N2O
emissions should be considered in the development of emission pro-
jections and mitigation policies. Monitoring of annual N2O emissions
as well as the soil δ15N emission proxy in both understudied regions
and regions with particularly high emission factors will be key to
reduce uncertainty, focus mitigation efforts, and combat rising N2O
emissions.

Methods
Soil, climate and N input datasets
Mean annual surface temperature (MAT) and precipitation (MAP) at
10minute spatial resolution were taken from the Climate Research
Unit high resolution global climatology dataset77. Global soil organic
carbon estimates and topsoil (0–30 cm) bulk density were taken from
theHarmonizedWorld Soil Databasewith a spatial resolution of 30 arc
seconds78,79. Aridity index at a spatial resolution of 30 arc seconds was
taken from the Global Aridity Index and Potential Evapotranspiration
ClimateDatabase (v2)80. Global soil pH at >60,000 sitesworldwidewas
taken from the database compiled by Slessarev et al.81. TheWorldwide
Organic Soil Carbon and Nitrogen Dataset82 was used to estimate soil
organic nitrogen content with data from >4000 sites rasterised using
linear interpolation. Total fertiliser N inputs were taken from the Land
UseHarmonizationDatabase (LUH)with the historical dataset used for
1800–2015 (LUH2 v2h) and the future forcing dataset for 2015–2020
(LUH2 v2f)9. The Community Atmosphere Biosphere Land Exchange
(CABLE) Australian community land surface model (17,83, https://www.
cawcr.gov.au/research/cable/) was used to estimate global mean
water-filled pore space (WFPS), fractional NH3 losses (no temporal
variability) and deposition and fixation N inputs (annual)17,83,84. All
datasets were converted to the model grid with 0.5∘ ×0. 5∘ resolution
for −180∘ to +180∘ longitude and −60∘ to +85∘ latitude (720 × 290
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gridcells) using the Python function scipy.interpolate.griddata
with linear interpolation.

Global dataset for δ15Nsoil

Data for δ15Nsoil for >6000 soil samples from natural (non-agricultural)
sites was compiled by Craine et al.41. This database also includes
ancillary data such as MAT, MAP, carbon and nitrogen concentration,
C:N ratio, soil texture, density and pH, and site coordinates and ele-
vation, although not all parameters are available for all samples. Geo-
graphical coveragewas improved by adding a further 748 samples85–88,
including unpublished data for 112 samples from Australia (BASE
database;89) and 392 from Africa (experimental sites and set up
described in refs. 90–96)—regions which were underrepresented in
the Craine database. The majority of data was from near-surface soil
(0–50 cm depth). Within this depth range, no significant effect of
depth on δ15Nsoil was seen in the data. The sample-specific reported
ancillary data was compared to the global gridded datasets (see
Methods: Soil, climate and N input datasets) at the same geographical
locations to gapfill the ancillary data (Supplementary Note 1). Rela-
tionships between ancillary data and δ15Nsoil measurements were then
used to predictδ15Nsoil using an artificial neural network (ANN)with the
Python package Keras (97; details in Supplementary Note 1). Using the
ANN, global δ15Nsoil on an 0.5∘ ×0. 5∘ grid was estimated in order to
drive the soil isotope module (see Methods: Soil nitrogen module). A
bootstrapping approach was used to estimate uncertainty in gridded
δ15Nsoil.

Atmospheric data
A tropospheric background time series of N2O mixing ratio and iso-
topic composition since the preindustrial era formed the core set of
observational data used to constrain simulation results in this study
(Fig. 5). The backgroundmixing ratio, for the purposes of this study, is

defined as the concentration of a given species when the impact of
local or recent sources and sinks is absent—also known as the baseline
concentration98. The primary dataset comprised tropospheric back-
ground measurements of N2O mixing ratio, δ15N and N-isotope δ15NSP

from the Jungfraujoch High Alpine research station and the Cape Grim
Air Archive (CGAA), as well as firn air sampled during the 2018 East
GReenland Ice coring Project (EGRIP) campaign45,99 covering the per-
iod from 1982 to the present day, all measured at Empa, Switzerland.
Additionally, mixing ratio, δ15N and δ15NSP data fromCGAA (1979-2005)
and firn air (1939-1995) from ref. 6 were used. These were corrected to
the Empa dataset scale using the mean offset in the overlap period,
with offsets of −1.1‰ and −1.0‰found for firn and CGAA data for δ15N,
and +1.5‰ and +1.3‰ for firn and CGAA data for δ15NSP. To extend the
isotopic timeseries further back, ice core and interstitial snowpack air
measurements from the Greenland Ice Sheet Project II (GISP II)46 were
also used, covering the period from 1785–1990. This dataset showed
no offset for δ15N compared to the Empa dataset, and did not include
δ15NSP measurements. Other available datasets (e.g.42,62) were not
integrated, as theywouldnot have improved the temporal range of the
combined dataset, and would have introduced additional calibration
scale uncertainty.

N2O mixing ratio in the preindustrial era was constrained using
two Antarctic ice core datasets—from ref. 100 covering the period
1735–1964, and from ref. 101 covering the period from 154–1986.
Additionally, measurements of N2Omixing ratio available at theWorld
Data Centre for Greenhouse Gases (WDCGG, https://gaw.kishour.go.
jp) supported by the Global Atmosphere Watch (GAW) Program at
Jungfraujoch (2005-present) and the Cape Grim Baseline Atmospheric
Pollution Station (1980–present; ALE/GAGE/AGAGE program) were
used. CapeGrimdata comprisemeasurements from three instruments
covering different time periods, so overlapping periods were used to
correct scale offsets, with themost recent dataset (1993–2018) used as

Fig. 5 | Tropospheric background N2O mixing ratio and isotopic composition
(δ15N and δ15NSP) measured in different datasets. Scale offsets between different
datasets have been corrected using overlapping periods tomatch the Empadataset

as described in the text. Mean data at 25-year intervals (1740–1940) and 2-year
intervals (1940–2018) are shown as orange points with black outline; the standard
deviation of the data averaged for each point is shown as the orange shaded region.
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an anchor. The dataset from 1981–1994 was +0.03 nmol mol−1 offset
from the most recent dataset, and the dataset from 1978–1985 was
−0.07 nmol mol−1 offset from the 1981–1994 dataset.

To allow comparison to simulated results and minimize the
impact of any strong episodic local sources, average values for mixing
ratio and isotopic composition were binned into 25-year intervals
(1740–1940) and 2-year intervals (1940–2018) (Fig. 5). Differences
between northern and southern hemisphere sites were not significant
given the measurement uncertainty, thus the troposphere was con-
sidered as a single well-mixed box to facilitate comparison with Iso-
TONE simulations. The average standard deviation within each time
window for 1740–1940 data was 5.4 nmol mol−1, 0.5‰ and 1.2‰ for
mixing ratio, δ15N and δ15NSP, compared to 0.8 nmol mol−1, 0.2‰ and
0.6‰ for mixing ratio, δ15N and δ15NSP for 2000–2020, reflecting both
the strong improvement in measurement techniques for recent in situ
data and the particular challenges of firn and ice core measurements.
The trend in mixing ratio for averaged data over the last 40 years was
+0.8 nmol mol−1 a−1, with trends of −0.03‰ a−1 and −0.006‰ a−1

observed for δ15N and δ15NSP respectively.

N2O fluxes and emission factors
Data for N2O fluxes and emission factors (EF) for >300 sites has been
compiled in the ‘Global N2O Database’102. This database also includes
ancillary data such as MAT, MAP, carbon and nitrogen concentration,
C:N ratio, soil texture, density and pH, and site coordinates and ele-
vation, although not all parameters are included for all samples. The
sample-specific reported ancillary data was compared to the global

gridded datasets at the same geographical locations (see Supple-
mentary Note 1). The strongest relationships between ancillary data
and emission factorsweredetermined, and used to bin emission factor
data into 16 different geographical regions to simplify comparison
with modelled emission factors and minimise the impact of localised
emission hotspots (see details in Supplementary Note 1: N2O emission
factors).

Coupled soil-atmosphere model
The model used in this study is an extension of the simple soil isotope
model presented by Bai et al.39, coupled to an extended version of the
atmospheric box model described in ref. 45 to simulate gridded N2O
fluxes as well as tropospheric mixing ratio and isotopic composition
from 1800 to 2020. The full coupledmodel was written in Python and
will be hereafter referred to as the IsoTONE model (ISOtopic Tracing
Of Nitrogen in the Environment). A schematic of themodel is shown in
Fig. 6 and a detailed description is given in the following subsections.

Soil nitrogen module
The soil N module of IsoTONE estimates fractionational losses of N to
different pathways based on δ15Nsoil (see Methods: Global dataset for
δ15Nsoil). The module is based on the equations used by Houlton, Bai38

and Bai et al.39, which state that the δ15Nsoil reflects the balance between
N inputs (i), with a relatively constant rate and isotopic composition,
and variable N losses. Loss pathways are divided into leaching (L), with
low isotopic fractionation; NH3 volatilization, with high isotopic frac-
tionation but a low contribution to total losses (NH3); and abiotic and

Fig. 6 | A schematic view of the IsoTONE model and inversion structure,
showing different input and output data types. Optimized variables (green) are
defined in Supplementary Table 1. Sources of input and observation data are given
in the Methods . MAT Mean Annual Temperature, WFPS Water-Filled Pore Space,

CABLE Community Atmosphere Biosphere Land Exchange land surface model,
MCMCMarkovChainMonte Carlo; fG, fL, fNO, fN2O, and fN2 refer to the proportion of
N lost through leaching and N gas production, discussed in the Methods.
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microbial gas production (G), with high and variable isotopic fractio-
nation. At steady state, inputs must equal outputs for both total
amounts and isotopic composition:

f L + f NH3 + f G = 1 ð1Þ

δ15Nsoil = δ
15Ni � εG × f G � εL × f L � εNH3 × f NH3 ð2Þ

where ε is the fractionation factor (k15N
=k14N

expressed in permil,
where k is the reaction rate) for the respective loss pathway and δ15Ni

was set as −1.5‰39. Assuming steady state, the fraction of N loss
accounted for by leaching (fL), NH3 volatilization (fNH3) and gas pro-
duction (fG) can be calculated from δ15Nsoil. The steady state assump-
tion is only valid for natural ecosystems, thus only δ15Nsoil

measurements from natural sites were used to initialise the model.
Unlike39, 14N and 15N were traced separately in Eq. (2), whereby the rate
of 15N loss via a pathway is the rate of 14Nmultiplied by the fractionation
factor, for example, for leaching:

k15
L = k14

L ×
εL

1000
+ 1

� �
ð3Þ

The rate of 15N addition was calculated analogously. Tracing isotopes
separately facilitated calculation of the stepwise impact of N losses on
the remaining N reservoir isotopic composition (‘Rayleigh
fractionation’103), and necessitated an iterative solution to Eq. (2).
Rayleigh fractionation describes how the isotopic composition of
reactant and product pools change as a reaction proceeds depending
on the fractionation factor and the fraction of reactant consumed,
assuming both reactant and product pools are well mixed103.

We assumed that N loss processes are primarily linked with the
inorganic N pools (i.e. NO�

3 and NH+
4 ), and estimated fractionation

factors related to the two species. Fractionation during N mineraliza-
tion was assumed to be minor104. Soil organic N was not considered,
given that the rates of turnover processes and their associated isotopic
fractionation effects are very scarcely studied at the global scale.
Fractionation during leaching (εL) was estimated to be 1‰39. Fractio-
nation during NH3 volatilization (εNH3) was estimated to be −17.9‰
based on the equation in ref. 105. Fractionation during N gas produc-
tion (εG) was estimated based on the relative contributions of the two
dominant microbial processes: (i) Fractionation for N2O production
during nitrification of NH+

4 (εnit) was estimated as −56.6 ± 7.3‰ with
δ15NSP of 29.9 ± 2.9‰106. (ii) Fractionation for N2O production during
denitrification of NO�

3 (εdenit) was estimated by adding the fractiona-
tion factor for reduction of NO�

3 to NO�
2 (−31.3 ± 6.1‰) and for rmNO�

2

to N2O (−14.9 ± 6.7‰)106, thus εdenit = −46.2‰. δ15NSP for N2O produced
fromdenitrificationwas estimated as −1.6 ± 3.0‰ (iii) Fractionation for
N2O reduction during denitrification (εred) was estimated as
−6.6 ± 2.7‰ with δ15NSP of −5 ± 3‰106.

In contrast to bacterial and abiotic denitrification, fungal deni-
trification results in N2O with a high and variable δ15NSP. The parti-
tioning of N2O production into fungal denitrification as compared to
bacterial nitrification and denitrification (shown in Supplementary
Fig. 6) is currently not known and therefore cannot be parameterised
within this model. Fungal denitrification is a minor source of N2O,
expected to contribute less than 10–15% globally107. Similarly, co- and
chemodenitrification are poorly constrained pathways, both in terms
of drivers and isotopic composition44,108,109. Fungal denitrification and
co- and chemodenitrificationwill be included in a future version of this
model as data to drive parameterisations becomes available.

These fractionation factors refer to the immediate production or
consumptionofN substrates andN2O, and thus do not account for the
complexity of processes leading to the net isotopic composition of
emitted N2O in real environments. Several studies have recognised

that soil gas is not a homogeneous, well-mixed environment—instead,
gas production and consumption occurs in pores that are only par-
tially connected relative to the rate of microbial processes110,111. This
means thatRayleigh fractionation processes occurwithin all pores and
microenvironments, and thus the effective net fractionation may be
significantly lower than calculated from measured fractionation fac-
tors, often referred to as ‘underexpression’110. We therefore introduce
a parameter called the fractionation expression factor (frac_ex) to the
model such that net or effective fractionation = ε × frac_ex for all
modelled processes. Thereby, frac_ex = 1 would reflect a well-mixed
soil gas reservoirwhere effective fractionation is equal to expectations
from laboratory measurements, and frac_ex = 0 would reflect a com-
pletely closed soil gas environment where all reactions go to com-
pletion within separate pores and thus no effective fractionation is
observed. The initial value of frac_ex was set to 0.7 and it was opti-
mized in the MCMC framework (see Methods: Optimization of model
N cycle parameters) assuming a uniform error distribution between
0.3 and 1.0. In reality, different values for frac_ex may be expected for
different processes and environments, in particular depending on soil
texture and pore structure, however this cannot be determined within
the available model-data framework.

The soil model was run on an 0. 5∘ × 0. 5∘ grid from −60∘ to 80∘

latitude and −180∘ to 180∘ longitude. The δ15N grid (seeMethods:Global
dataset for δ15Nsoil; Supplementary Fig. 2a) was first initialised in each
model run by adding 5% of the uncertainty in δ15N (Supplementary
Fig. 2b) multiplied by a normally distributed random number (μ =0,
σ = 1). For each grid cell, the soil model was initialised with an available
soil nitrogen pool of size 1 (unitless) with δ15N of 0‰, and a soil N2O
pool of of size 1 (unitless) with δ15N and δ15NSP of 0‰. The 14N input rate
(ki) was set at 1 (unitless) and the 15N input rate (ki,15) calculated using
δ15Ni of 0.5‰ (based on39,112–114). Changing the unitless pool sizes affects
only thenumber of iterations until steady state is reached in themodel,
and not the final result of the model. Reducing δ15Ni by 1‰ increased
the calculated mean global fG by ~1%, while increasing δ15Ni by 1‰
increased the calculated mean global fG by ~5%, with very little impact
of spatial distribution of fG.

To solve Eq. (2) for each grid cell, the soil module was run over
four iterations (n = 4). For the first iteration, fG was set at 0.1 for all
gridcells. fNH3 was estimated using the CABLE model17,83. fNH3 is nearly
always <0.05, therefore the model results are not highly sensitive to
the parameterisation of fNH3. fL was then determined as 1 − fG − fNH3.
Partitioning of total gas losses (fG) into N2O, N2 and NO (f N2O

, fNO, f N2
)

was estimated with a sigmoid fit of WFPS to available experimental
measurements (Supplementary Note 2, Supplementary Fig. 5), with
mean globalWFPS from CABLE used to constrain partitioning for each
grid cell in the model. Similarly, denitrification (fdenit) and nitrification
(fnit) contributions to N2O production were estimated with a sigmoid
fit to available experimental data (Supplementary Note 2, Supple-
mentary Fig. 6). Neither WFPS nor other potential proxies such as soil
oxygenation can adequately describe the microenvironment in which
microbes conduct N cycling44,115. WFPS represents the amount of pore
space filledwithwater andwith air and canbe compared between soils
with different textures, thus it can be used as a proxy for the ability of
gases and substrates to move through aqueous and gaseous environ-
ments, which is key in determining both substrate supply and soil
oxygenation, and thus N cycling and gas production. Mean WFPS will
not describe all variability in gas partitioning, given the highly variable
and non-linear nature of N gas emissions, however it provides the best
available estimate based on the current status of experimental and
modelling research. An overall εGwas estimated based on fdenit and fnit
and the fractionation factors for the individual processesmultiplied by
frac_ex,with ameanvalue of −30‰. This is lower than in ref. 39where a
range of −16 to −20‰ was assumed for εG without explicit considera-
tion ofmicrobial pathways—measurementsmade since the publication
of ref. 39 have shown that fractionation is much larger than previously
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estimated106. To achieve steady state, 10 cycles of N addition and
removal were conducted within each iteration. First, N inputs for 14N
and 15N were added to the initial soil N pool. N was then removed via
leaching, volatilization, and gas production for 14N and 15N. The steady
state soil pool δ15N value at the end of each iteration (δ15Nss) was
compared to the δ15N value for the gridcell (δ15Nsoil) tofindan improved
fG for the next iteration according to:

f G,n + 1 = f G,n �
δ15Nsoil � δ15Nss

εG
ð4Þ

Following four iterations, δ15Nsoil and modelled δ15Nss agreed
within 0.01‰ and final values of fG and fL were accepted.

In addition to the calculation of fG and fL, the soil module esti-
mated N2O production rate and isotopic composition for each grid
cell. The production rates for 14N-N2O and 15N-N2O were calculated
from the fractionation factors for each pathway multiplied by frac_ex;
both 15Nα and 15Nβ were traced separately to consider N2O δ15NSP. For
example, the 14N reaction rate for nitrification N2O production was
estimated as f G × f N2O

× f nit and the corresponding reaction rate for 15N
as:

k15N,nit = f G × f N2O
× f nit ×

εnit × frac ex
1000

+ 1
� �

ð5Þ

Analogously, rates for each isotopic variant were also calculated
for denitrificationproduction and reduction. Theproduction ofN2was
assumed to represent the consumption of N2O via complete deni-
trification, as no other significant N2 sources are known, thus the
extent of N2O reduction could be estimated and its isotopic effect
calculated. N2O production and consumption were estimated in each
step of the steady state calculation to give a final N2O flux and isotopic
composition (δ15N and δ15NSP) for each gridcell to pass on to the
atmospheric module described in the following subsection.

Atmospheric N2O module
The atmospheric module takes the fractional losses, estimated by the
soil module described in the previous subsection, and uses a two-box
model representing a well-mixed troposphere and stratosphere to
reconstruct N2O background mixing ratio and isotopic composition.
Absolute N emissions into the tropospheric box were calculated using
the fractional estimates of losses for each grid cell from the soil
module, combined with annual N inputs to each grid cell for fixation,
deposition and fertilisation for the period 1800–2020. Fertiliser N
inputs were taken from the LUH database and covered the whole time
period (see Methods: at the same geographical locations to gapfill the
ancillary data). Deposition N inputs for 1860–2050 were from ref. 116.
Fixation (for 1901–2100) was estimated using the CABLE model with
scenario A1 as described by Peng et al. 17, where fixation is calculated
using resourceoptimizationwith temperature dependence84. The 1901
fixation values were used to estimate fixation in earlier years and the
1860 values for deposition in earlier years, thus assuming negligible
anthropogenic influence before 1850. As none of the N input datasets
included significant anthropogenic inputs before 1850, 1850 is taken as
the preindustrial ‘baseline’ throughout this study.

Deposition andfixation inputswere assumed to generally fulfil the
steady state criteria required by the soil module, however harvest N
exports mean that this assumption is not valid for fertiliser N inputs.
Harvested N is often returned to the soil or atmosphere via manure or
deposition at a different location117. Previous studies have shown that a
largeproportionof fertiliserN is incorporated into crops and therefore
removed during harvest, as well as potentially stored in soils (10,52,53,117

and references therein)—thus not available for ‘normal’ N loss parti-
tioning. Therefore, we added a factor fert_EF_red to the model to
account for N that is harvested or stored. Fertiliser N inputs are

multiplied by fert_EF_red to account for the removal of harvested N or
stored in soils before losses by other pathways are calculated; fer-
t_EF_red of 0 would mean that all N is removed in harvest, and fer-
t_EF_red of 1 would mean no N is removed. The isotopic impact of
harvest N exports cannot be accounted for within the scope of this
study, as the required input data (in particular the proportion of N
removed in harvest per grid cell annually) is not currently available.
Harvest N will be explicitly incorporated into a future version of the
IsoTONE framework. EF changes with fertilisation rate were not con-
sidered: A recent meta-analysis showed that the dependence of EF on
fertilisation rate is highly variable, and at the global scale EF is not
strongly dependent on fertilisation rate118, although some studies have
shown a strong non-linear relationship between EF and N inputs at the
site and regional scale119. Tian et al.2 report that recent increases in EF
for direct soil emissions are likely due to climate change feedbacks and
interactions, rather than a direct increase in EF due to increasing fer-
tiliser application. As more evidence regarding the non-linearity of
fertiliser EFs becomes available, this will be incorporated into the
IsoTONE model.

Previous studies have shown that microbial N gas production is
temperature sensitive23,48,120 and likely increasing in a warming climate
by between 0.5 and 1.0 Tg N2O-N a�1�C−1, with a best estimate of
0.6 ± 0.2 Tg N2O-N a�1�C−18,33,121. We assume that this increase in
emissions relates to a general sensitivity of microbial activity to tem-
perature, and is therefore likely to affect production of N2 and NO as
well as N2O. We therefore incorporated a temperature sensitivity
increase of 10% of microbial N emissions from the year 1800 per
degree of warming (temp_sens = 1.1 ± 0.04) for N2O, N2 and NO, which
corresponds to 0.6 Tg N2O-N a�1�C−1 according to the best estimate of
6.3 ± 1.1 Tg-N a−1 for N2O emissions in the preindustrial era8. Tem-
perature anomalies from theCRUTEM-4.6.0 datasetwere used to drive
the temperature sensitivity calculation122. N losses through leaching
were consequently reduced to maintain N mass balance.

Yearly soil emissions of N2O, NO and N2 were calculated for each
input type for each grid cell incorporating both fert_EF_red and tem-
perature sensitivity of emissions. In addition, EDGAR (Emission Data-
base for Global Atmospheric Research,123,124) gridded emissions for the
major non-soil anthropogenic N2O emission categories (1A1 = power
industry, 1A3b = road transport, 2B = chemical processes, and 6 =
wastewater treatment) were added to estimate total terrestrial N2O
emissions. Isotopic composition was estimated as δ15N = 3.9 ± 2.9 and
δ15NSP = 17.6 ± 0.5 for power industry, δ15N = −7.2 ± 1.2 and δ15NSP =
10.0 ± 4.3 for road transport, δ15N = −8.3 ± 10.6 and δ15NSP = 3.3 ± 5.5 for
chemical processes, and δ15N = −11.6 ± 12.7 and δ15NSP = 10.0 ± 5.7 for
wastewater treatment43. Isotopic composition of natural soil N2O
emissionswas given by the soilmodule for each grid cell, andweighted
by the emissions per grid cell to calculate overall isotopic composition
of soil N2O emissions. The δ15N isotopic composition of fertiliser N
inputs is estimated to be 3‰125,126 compared to −1.5‰ for natural N
inputs39, thus increasing the δ15N of emitted N2O. Total global emis-
sionswere foundby adding the oceanic emissions (Focean) to the global
terrestrial emissions using the flux and isotopic compositions listed in
Supplementary Table 1.

Total global N2O was emitted into a two-box atmospheric model
comprising a well-mixed troposphere and a well-mixed stratosphere,
based on themodel described in ref. 45. Emissions were assumed to be
immediately well-mixed through the atmosphere, as the time required
for tropospheric mixing is estimated to be around one year127, which is
the time resolution of the model. Previous versions of this model
explicitly calculate the required preindustrial terrestrial N2O flux to
achieve steady state in the preindustrial era accounting for best esti-
mates of tropospheric N2O mixing ratio, N2O lifetime, and
stratosphere-troposphere exchange. However, in the atmosphere
module of IsoTONE, preindustrial terrestrial emissions (Fterr) are pre-
scribed by the soil module. An iterative calculation (maximum of 20
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iterations) is therefore used to optimize the preindustrial oceanic N2O
flux (Focean) and the troposphere-stratosphere exchange term (T_to_S)
by shifting these two terms stepwise according to their prior uncer-
tainty (SupplementaryTable 1) using twoequations until steady state is
achieved. First, tropospheric N2O inputs are balanced against losses to
the stratosphere:

Fterr + Focean =T to S× ðMRPI �MRPI,stratÞ ð6Þ

whereMRPI andMRPI,strat are the N2Omixing ratios in the preindustrial
troposphere and stratosphere respectively. The preindustrial strato-
spheric N2O mixing ratio at steady state is then calculated based on
stratosphere-troposphere exchange and stratospheric N2O
destruction42,63:

MRPI,strat = �MRPI ×molestrop ×MWN2O�N � T to S ×MRPI ×MWN2O�N × τPI
T to S ×MWN2O�N × τPI +molesstrat ×MWN2O�N

ð7Þ

where MWN2O−N is the molecular weight of N in N2O (28 g mol−1) and
molestrop andmolesstrat are themoles of air in the troposphere and the
stratosphere (1.5 and 0.27 × 1020 moles respectively). This iteration
meant that optimized values for both Focean and T_to_S were found for
each solution of the model, although they were not explicitly targeted
in the inversion described in the following subsection. Focean was not
varied with time, as recent results suggest that the oceanic flux is
relatively stable compared to the terrestrial flux2. Smaller, dynamic
aquatic and semiaquatic ecosystems, such as estuaries and coastal
wetlands, show highly dynamic and variably N cycling and N2O
emissions128–130, but are too small to be resolved at the global scale of
this study.

Once steady state was achieved for preindustrial N2O fluxes and
mixing ratio, model calculations proceeded as described by Yu et al.45

and will therefore only be briefly presented here. First, net strato-
spheric fractionation and the isotopic composition of the preindustrial
stratosphere were found for δ15N and δ15NSP assuming steady state. The
model was then run forwards with annual time steps using annual
terrestrial emissions and isotopic composition provided by the soil
module of IsoTONE. At each time step, N2O inputs and destruction
were considered to estimate the rate of change inN2Omixing ratio and
isotopic composition, and thus calculate a time series of mixing ratio,
δ15N and δ15NSP for a well-mixed troposphere45.

Optimization of model N cycle parameters
Twelve key model parameters were optimised using a Markov Chain
Monte Carlo (MCMC) approach (Supplementary Table 1), with several
datasets used to constrain the results. The geoclimatic gradients
(spatial variability) were constrained using N2O emission factors from
the Global N2O Database, binned for 16 climatic zones (see Methods:
N2O fluxes and emission factors). Temporal variability was constrained
using a combined background tropospheric timeseries of N2O mixing
ratio and isotopic composition (δ15N and δ15NSP) from several different
sites, averaged for 25-year blocks from 1740 to 1940 and for 2 year
blocks from 1940 to 2020 to give a total of 49 data points (see
Methods: Atmospheric data and Fig. 5). Data was reduced to 16 climate
zone EFs and49 temporal data points to avoid strongoverweighting of
recent atmospheric results, which are much more frequent and less
uncertain than older measurements (e.g. biweekly monitoring at
Jungfraujoch station45) but highly covariable. Observation uncertainty
was defined as the standard deviation of measurements within each
spatial or temporal block. Model uncertainty was set at 0.5 nmol mol−1

for N2Omixing ratio, 0.1‰ for δ15N and δ15NSP, and 0.5 for climate zone
EF. The incorporation of isotopic composition in the atmospheric
model gave an implicit sensitivity to the spatial distribution of emis-
sions, as the isotopic composition of emitted N2O depends on the

dominant emission processes in a particular gridcell, thus allowing the
model to distinguish between changes in different regions and
input types.

The MCMC was run with three different stepsizes: 0.75, 0.5 and
0.25. Within each iteration i of the MCMC, parameters following a
Gaussian uncertainty distribution (see Supplementary Table 1), were
varied according to:

Pi+ 1,G =Pi,G + 1σ uncertainty × stepsize × runif ð8Þ

where Pi,G is the value of the Gaussian parameter in iteration i and runif
is a uniformly distributed random number between -1 and 1. Uniform
parameters were varied according to:

Pi+ 1,U = Pi,U +
Rmax � Rmin

4
× stepsize × runif ð9Þ

where Pi,U is the value of the uniformly-distributed parameter in
iteration i, and Rmax and Rmin are the maximum and minimum of
the parameter uncertainty range. Independent values of runif were
determined for every parameter. Observation uncertainty follows
a Gaussian distribution, thus observations were also varied within
each iteration using Eq. (8), however runif was determined
separately only for different groups of observations, e.g. N2O
mixing ratio, N2O δ15NSP.

Once parameters were varied within an iteration i, the
Metropolis rule was applied to determine if parameters and
observations could be accepted131. If both were accepted, the
model was run for the parameter set i, and the model-observation
probability was calculated for i. The Metropolis rule was then
applied to determine if model-observation i could be accepted
compared to i − 1. 5000 iterations were run at each step size
sequentially until a total of 120,000 iterations had been run
(40,000 at each step size), which was sufficient to achieve stable
results with no significant difference between posterior para-
meters by step size, and no change in posterior parameters fol-
lowing more iterations. All tested and accepted parameter sets
were saved; tested parameter sets were used to check coverage of
the parameter uncertainty space (Supplementary Fig. 7), and
accepted parameter sets were used to find posterior results and
uncertainties for the parameters (Supplementary Table 1). The
parameters Focean and T_to_S (see Methods: Atmospheric N2O
module) were not explicitly varied in the MCMC but were calcu-
lated to achieve steady state in the atmospheric module in each
accepted iteration, thus posterior estimates for these parameters
were also obtained.

Estimating uncertainty in posterior model results
The uncertainty in posterior parameters shown in Supplementary
Table 1 was estimated as the standard deviation of all accepted
results. To estimate uncertainty in the posterior model results,
100 iterations of the model were run using 100 randomly selected
sets of accepted parameters. The standard deviation of results
from all 100 iterations was used to estimate the uncertainty in the
final model results. Standard error propagation was used to
estimate uncertainty in all subsequently calculated values, eg.
ratios and sums across time or space.

Data availability
The gridded input datasets generated in this study have been depos-
ited in the public, open access model code repository: https://github.
com/elizaharris/IsoTONE. δ15Nsoil point data not present in the41 data-
set are also included in this repository, and also archived in the Pan-
gaea data repository (doi currently being processed). Tropospheric
background N2O isotopic data collected at Empa and used for model
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optimization will be released open access in 2022 together with the
associated manuscript99.

Code availability
The full IsoTONE model code including implementation of the MCMC
optimization is included in the public, open access repository: https://
github.com/elizaharris/IsoTONE. The repository doi for the associated
release IsoTONE_v1 is 10.5281/zenodo.6772207.
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