
 

 

GRAPEVINE RHIZOSPHERE BACTERIA: INFLUENCE 
OF DIVERSITY AND FUNCTION ON TWO ROOT 

DISEASES 
 

 

 

 

A thesis submitted in fulfilment 

of the requirements for the degree 

of 

Master of Science 

At Lincoln University 

by 

Dalin Shelley Dore 
 

 

 

 

Lincoln University 

2009 
 



 ii

 
 
 
 
 

DEDICATION 
 

This thesis is dedicated to my late grandfather, 
 Dennis James Joyce “Pa-Pa” 

1923-2008 



 iii

ABSTRACT 
Abstract of a thesis submitted in fulfilment of the Degree of Master of Science 

GRAPEVINE RHIZOSPHERE BACTERIA: INFLUENCE OF 
DIVERSITY AND FUNCTION ON TWO ROOT DISEASES  

 

by 

Dalin Shelley Dore 

 

The overall goal of this research was to determine what, if any, role grapevine rhizosphere 

bacteria play in the differing susceptibilities of New Zealand grown rootstocks to 

Cylindrocarpon black foot disease. The size and diversity of bacterial populations associated 

with the rhizospheres of grapevine rootstocks: 101-14, 5C, Schwarzmann and Riparia Gloire 

were evaluated. Dilution plating showed that total bacterial (P=0.012, P=0.005 for NA and 

KB, respectively) and fluorescent Pseudomonad (P=0.035) rhizosphere counts differed 

between rhizosphere and bulk soils but did not correlate with the differing susceptibilities of 

the rootstock varieties to black foot. No varietal differences were found for spore forming 

bacteria (P=0.201). SSCP banding patterns showed that species diversity was similar for most 

rootstocks, but that there were some differences in the composition of bacterial populations, 

probably attributable to vigour.  

Some functional characteristics of the bacteria isolated from the rhizospheres of the most and 

least susceptible rootstock varieties were assessed to investigate their potential to suppress the 

pathogen. In dual culture, bacteria from Riparia Gloire, 101-14 and the control soil all had 

little ability to antagonise Cylindrocarpon destructans. However, they differed in their 

degrees of activity for glucanase (P=0.000), protease (P=0.001) and siderophores (P=0.000). 

In all tests, bacterial isolates from the rhizosphere of 101-14 had the largest number of active 

isolates (P≤0.002); however, those from Riparia Gloire had the greatest degree of positive 

responses for the glucanase and siderophore assays. Bacterial isolates from the control soil 

produced few glucanases and no siderophores, but had the highest degree of protease activity. 

Bands excised and sequenced from SSCP gels frequently matched to other ‘uncultured 

bacteria’ in GenBank, as well as to other bacterial phyla, classes and genera commonly 

isolated from soil and sediment samples. These included members of the Firmicutes, 

Proteobacteria (α, δ, γ), Verrucomicrobia, Acidobacteria and Chromatiales. 
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The pathogenicity of C. destructans and Fusarium oxysporum was investigated by inoculating 

soil containing wounded ungrafted rootstocks of 101-14, 5C, Schwarzmann and Riparia 

Gloire. Results indicated that F. oxysporum might be a more aggressive pathogen than C. 

destructans. Inoculation with F. oxysporum or C. destructans increased disease severity, 

P=0.018 and P=0.056, respectively at 0 cm. Rootstock variety influenced disease severity 

caused by C. destructans (P<0.001) and F. oxysporum (P=0.090), with rootstocks 101-14 and 

5C being most susceptible to C. destructans, and Riparia Gloire and Schwarzmann most 

susceptible to F. oxysporum. There was also an indication that inoculation with one pathogen 

increased plant susceptibility to the other, with increased F. oxysporum infection in the C. 

destructans inoculated treatments of Riparia Gloire and Schwarzmann (P<0.05).  

The effect of carbohydrate stress (leaf trimming) and inoculation on C. destructans disease 

severity, incidence, and rootstock rhizosphere bacterial populations was evaluated by 

inoculating the soil containing one year old plants of Sauvignon Blanc scion wood grafted to 

rootstocks 101-14 and Schwarzmann. Disease severity and incidence was similar for both 

Schwarzmann (8.4% and 29.3%, respectively) and 101-14 (14.9% and 31.0%, respectively). 

When data for the moderate and no stress treatments were combined, because their effects 

were similar, the disease severity was significantly higher for the highly stressed plants 

(P=0.043). Stress did not influence disease incidence (P=0.551). Infection occurred in the 

non-inoculated plants, but disease severity was higher in the plants inoculated with C. 

destructans than those that were not. Root dry weight of highly stressed plants was lower than 

in both the moderately stressed (P=0.000) and unstressed plants (P=0.003). An interaction 

between inoculation and stress (P=0.031) showed that inoculated and highly stressed plants 

had the lowest root dry weight but there was no effect of rootstocks (P=0.062). There was no 

significant effect of carbohydrate stress (P=0.259) or inoculation (P=0.885) on shoot dry 

weight. SSCP banding patterns showed that bacterial diversity was generally similar between 

rootstocks, but stress and inoculation altered rhizosphere bacterial communities.  

This study has demonstrated that functionality of grapevine rhizosphere bacteria do differ 

between grapevine rootstock varieties that have different susceptibilities to black foot disease, 

but that this role needs to be further investigated if more accurate and practically relevant 

conclusions are to be drawn.  

Keywords: Cylindrocarpon destructans, Fusarium oxysporum, grapevine, rootstock, bacteria, 

rhizosphere, SSCP, pathogen, soil, carbohydrate, stress, biocontrol 
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CHAPTER 1  
INTRODUCTION 

1.1 GRAPEVINES 

1.1.1 New Zealand grapevine industry 
The last ten to twenty years has seen the New Zealand wine industry grow enormously 

(Figure 1.1). In 2008 there were almost 30,000 hectares of grapevines planted in New Zealand 

which produced 205.2 million litres of wine. A total of 88.6 million litres of wine was 

exported, bringing $NZ 797.8 million into the country. Domestic sales in 2008 were 

equivalent to about half this, with 46.5 million litres of wine reported to be sold within the 

country (Smith & Fistonch, 2008). Grapevines and their products, particularly with respect to 

wine, are clearly of great importance to the New Zealand economy. 
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Figure 1.1: Total New Zealand producing vineyard area 1996-2008 (actual) and 2009-2010 (forecast). 
Data from the New Zealand Winegrower’s Statistical Annual 2008 (www.nzwine.com/statistics). 

1.1.2 Grapevine rootstocks 
In the last 20-30 years, the world-wide losses caused by grape phylloxera (Daktulosphaira 

vitifoliae), a root-feeding insect, has led to the introduction of phylloxera resistant grapevine 

rootstock varieties into most of the wine producing regions of the world. To minimise losses 

caused by grape phylloxera, new vineyards used grafted plants, Vitis vinifera (with its desired 

fruit quality) grafted onto phylloxera resistant rootstocks (North American Vitis species or 

hybrids of these species and the European V. vinifera) (Powell, 2008). North American Vitis 

species are largely resistant to grape phylloxera, while the European V. vinifera is extremely 
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susceptible (Mullins et al., 1992). The insect that causes phylloxera feeds only on the leaves 

and non-lignified roots of American species or hybrids, however, on European species, it 

feeds on leaves and all root tissues, even the lignified roots. The main damage caused to the 

plants is through reduction of nutrient and water uptake, causing reduced yields and even 

death of plants (Powell, 2008). Additionally, the feeding sites provide for entry of fungal 

pathogens including Cylindrocarpon destructans and Fusarium oxysporum which then cause 

root necrosis (Omer et al., 1995; Granett et al., 1998).  

The rootstock varieties onto which the fruiting scion wood is grafted can have very different 

characteristics, and so are selected according to the characteristics of the intended vineyard 

soil. They may confer more or less vigour and tolerance to drought, water-logging, lime 

content, acidity and salinity. They may also affect fruit composition and wine type as some 

rootstock varieties have a greater uptake of potassium which can alter the pH of the wine 

(Whiting & Buchanan, 1992). They also differ in scion compatibility and resistance to 

particular pests and diseases. However, the need for resistance to phylloxera has been the 

primary driver of rootstock breeding and selection (Granett et al., 2001). 

The introduction of the phylloxera resistant rootstocks has had some adverse effects; it has 

been accompanied by widespread vine losses in many regions, due to infection of trunks and 

roots by fungal pathogens. Vines planted on American and hybrid rootstocks seem to be more 

susceptible to some diseases than V. vinifera cultivars (Wallace et al., 2003). For example, 

Eskalen et al (2001) reported that Petri disease was not a serious threat to Californian 

vineyards prior to the 1990s when grafted vines were introduced, even though the fungi 

responsible (Phaeomoniella chlamydospora and Phaeoacremonium species) were first 

recorded in the 1900s. Petri disease, which causes a young vine decline, became prevalent 

only after the introduction of the grafted rootstock varieties currently in use (e.g. 101-14, 5C, 

3309 and 110R). Above ground symptoms of Petri disease are similar to those of 

Cylindrocarpon black foot (Eskalen et al., 2001) whose prevalence in young vines has also 

been anecdotally noted to increase with the use of phylloxera resistant rootstocks. The same 

may be true for other root-infecting diseases, for example, wilt caused by Fusarium 

oxysporum.  

1.1.3 Grapevine root diseases 
Cylindrocarpon destructans and F. oxysporum are two common grapevine root pathogens 

(Edwards et al., 2007). When investigating decline of young vines in Sicily, Grasso (1984)  
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isolated both species from rotting roots. Other fungal grapevine root rot pathogens have 

included Pythium spp., Phytophthora spp. (Marais, 1980) and Armillaria mellea  

(Pertot et al., 2008).  

1.1.3.1 Cylindrocarpon destructans and black foot disease 
Black foot disease is a serious and relatively new threat to vineyards around the world, 

including those in South Africa (Halleen et al., 2003; Fourie & Halleen, 2004), Australia 

(Edwards & Pascoe, 2004; Whitelaw-Weckert et al., 2007), the Mediterranean region (Rego 

et al., 2000; Aroca et al., 2006; Rumbos et al., 2008), North and South America (Scheck et al., 

1998a; Scheck et al., 1998b; Gubler et al., 2004; Halleen et al., 2006a), and New Zealand 

(Bleach et al., 2007). Cylindrocarpon species are commonly found in soil, and are typically 

associated with the roots of herbaceous woody plants where they may exist as saprophytes or 

weak pathogens (Brayford, 1992; Halleen et al., 2006a). Black foot disease of grapevines is 

caused by several Cylindrocarpon species including C. destructans, C. macrodidymum, and 

C. liriodendri (Halleen et al., 2007) which were almost uniformly isolated in a survey of 

symptomatic grapevines in New Zealand (Bleach et al., 2007). In North America, the disease 

is mainly caused by C. destructans, which was reported by Gubler et al (2004) to be “by far 

the most serious pathogen of those recently discovered”. The disease will often cause decline 

of the grapevines in the year following their planting and is known to kill both young and 

mature vines; primarily it is the young vines, between the ages of 2 and 8 years, that are killed 

(Larignon, 1998; Halleen et al., 2004). 

Symptoms of Cylindrocarpon black foot disease may be different for nursery and vineyard 

infections. In nurseries, and newly established vineyards, the young vines may be chlorotic 

and stunted, often dying during the hot dry conditions of their first summer. In established 

vineyards (> 2 years) however, the infection causes a more gradual decline as plants age, and 

death may take up to a year or more (Gubler et al., 2004; Halleen et al., 2006), indicating that 

plant vigour may play a role in tolerance to the disease (Gubler et al., 2004). 

Plants with black foot disease typically have “reduced vigour, poor growth, small trunks, 

abnormally shortened internodes, uneven wood maturity, sparse foliage, and small leaves, and 

interveinal chlorosis” (Halleen et al., 2006a) (Figure 1.2, A), which precedes necrosis and 

premature defoliation (Scheck et al., 1998a).  Budding and shoot formation are typically 

absent or delayed (Halleen et al., 2007) after winter dormancy, and shoots may dry out and 

die during summer (Halleen et al., 2004; Halleen et al., 2006). Those that remain may perish 

the following winter (Halleen et al., 2006a), or be noticeably stunted (Petit & Gubler, 2005).  
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Feeder roots and root hairs may have sunken necrotic lesions (Scheck et al., 1998a; Halleen  

et al., 2006a), and total root biomass may be reduced due to fewer feeder roots or root hairs. 

To compensate for the loss of functional roots at the basal crown, a second crown of roots 

may develop, with roots emerging from the upper level of the rootstock and running  

parallel to the soil surface (Fourie et al., 2000; Halleen et al., 2007) (Figure 1.2, B). Root 

damage results in reduced water and mineral acquisition and eventually plant dieback  

(Petit & Gubler, 2006). 

Internal symptoms of black foot disease include dark brown to black vascular streaking 

caused by the blockage of most of the xylem vessels, and sometimes functional phloem, with 

thick-walled tyloses or gum, as well as internal necrosis often extending from the bark to the 

pith which is compacted and discoloured (Larignon, 1998; Halleen et al., 2006a). Trunks of 

infected vines are often discoloured below ground level, sometimes at ground level and up to 

15 cm above ground level (Figure 1.2, C). However, hyphae are not usually located in the 

xylem vessels or functional phloem, often being found in the ray cells (a convenient supply  

of metabolisable carbon for the pathogen) of the phloem and in the younger xylem  

(Halleen et al., 2006a).  

   

Figure 1.2: Symptoms of black foot disease: stunting and chlorosis in vines (A), development of a 
second root crown (B) and dark staining of the stem base (C). 

Preliminary work has indicated that the different grapevine rootstocks used in New Zealand 

exhibit different susceptibilities/tolerances to Cylindrocarpon black foot disease (Harvey & 

Jaspers, 2006). Harvey and Jaspers (2006) performed two pathogenicity trials (2005/2006) 

from which they reported some trends in resistance (Table 1.1). Overall rankings were based 

on the recovery of Cylindrocarpon species from plant tissue, with a ranking of 1 being the 

most tolerant and 14 being the most susceptible. Prior to this very little information was 

available regarding rootstock susceptibility (Gubler et al., 2004). Eskalen et al (2001) 
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suggested that differences in susceptibilities may be due to the differing ability of 

Cylindrocarpon species to move in the vascular tissue of rootstocks. 

Table 1.1: Results table from the PLANTwise Services Ltd report to the New Zealand Winegrowers 
research council (Harvey & Jaspers, 2006). Stem base isolation incidence scores from the root-soak 
inoculated grapevine treatments, with lowest ranks being the most tolerant. 

 Trial 1: 2005 Trial 2: 2006

Variety Ranking Ranking 

Rupestris St. George 1 - 

Riparia Gloire 2 4 

R 140 3 1 

3309 4 3 

3306 5= 7 

420 A 5= 6 

Schwarzmann 5= 11 

SO4 (5C) 8= 2 

Paulsen 1103 8= 9 

Gravsac 8= - 

T 5BB 8= 10 

101-14 12 8 

R 110 13 - 

Fercal 14 5 
 

1.1.3.2 Fusarium oxysporum and root rot /wilt 

Fusarium oxysporum is a fungal species common in agricultural soils around the world and 

closely associated with plant roots (Gordon & Martyn, 1997). Granett et al (1998) reported 

that F. oxysporum is relatively common in all root systems. Non-pathogenic strains are 

effective colonisers of the root cortex and it is thought that pathogenic strains evolved from 

these originally non-pathogenic forms. Gordon and Martyn (1997) postulated that over time, 

endophytic associations may have become latent infections and that in wilt diseases, these 

pathogens resulted from the selection of forms with shorter latent periods. These F. 

oxysporum infections can reduce the water conducting capacity of the plant, causing wilting 

(Beckman & Roberts, 1995).  

Fusarium oxysporum is frequently isolated from grapevine trunks when surface sterilised 

tissue fragments are plated out onto agar. These F. oxysporum isolates and other Fusarium 

species are some of the most common plate contaminants in studies looking at the 

pathogenicity of other fungi in grapevine trunk bases (pers. comm. C. Bleach, 2007). 
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Fusarium oxysporum is also frequently isolated from necrotic grapevine roots in phylloxera 

infested soils, and was reported by Edwards et al (2007) to be the most virulent fungal 

pathogen associated with such root necrosis. It appears to enter the roots via wounds 

associated with the feeding sites of phylloxera and the subsequent root rot can be severe 

enough to cause portions of the root system to become detached from the vine, resulting in 

vine death (Omer et al., 1999). However, although a known cause of root rots and wilts in 

other plants (de Andrade, 1993), and present in the rotting roots of declining grapevines 

(Grasso, 1984), F. oxysporum was not regarded as being the causal agent in the past. In 

California, Granett et al., (1998) reported that while Fusarium species were common in 

vineyard soils, they were rarely invasive unless roots were damaged or phylloxera galled. 

However, Highet and Nair (1995) confirmed the pathogenicity of F. oxysporum with isolates 

taken from the roots of declining grapevines that were used to infect grapevines in glasshouse 

trials. Fungal hyphae could also be seen in sections of roots under a transmission electron 

microscope within and between root cortex cells. There was limited disintegration of cortical 

cells and loss of cell contents, however, the fungus did not pierce the endodermis. van Coller 

et al (2005) also confirmed the pathogenicity of Fusarium species including F. oxysporum on 

grapevines grafted onto 99 Richter and 101-14 Mgt. 

In Brazil, F. oxysporum f.sp. herbemontis was considered by de Andrade et al (1993; 1995) to 

be the most important pathogen of grapevine cultivars since it caused significant plant death. 

Their infection experiments showed that the wilt caused by this pathogen was largely 

responsible for decline and mortality of young grapevines, since inoculated cuttings failed to 

establish and decline occurred in older inoculated plants. Root symptoms included root decay 

with brown vascular discoloration (de Andrade et al., 1995), pink discolouration in the 

cortical and vascular tissues, tyloses in the xylem and rotting of epidermal tissues of the roots 

of infected plants (Highet & Nair, 1995). Highly infected roots had a tendency to die, and this 

loss of roots may be partly responsible for vine decline (Granett et al., 1998). Foliar 

symptoms have also been reported. They included yellow spots which expanded into streaks 

before leaves died and dropped and were reported by de Andrade et al (1995) and also by 

Grasso (1984) in Sicily. In Australia, Highet and Nair (1995) also found above ground 

symptoms included delayed, weak shoot growth and low fruit yields.  

While the resistances, of rootstocks commonly used in New Zealand, to F. oxysporum are not 

well established, de Andrade et al (1993) observed differences in the resistance of grapevine 

rootstocks to F. oxysporum f.sp. herbemontis infection in Brazil. Hybrids of Vitis riparia x 

Vitis berlandieri were highly susceptible, but some degree of resistance was noted in Vitis 
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berlandieri x Vitis rupestris hybrids. Rankings (1-4) were based on disease symptoms: 

absence of symptoms on roots (1), vascular discolouration of roots 10 cm from the shoot base 

(2), vascular discolouration of the roots 5 cm from the shoot base (3), and vascular 

discoloration of roots at the shoot base (4) (Table 1.2).  

Table 1.2: Results table adapted from de Andrade et al (1995). The reported resistance of grapevine 
rootstock varieties to F. oxysporum f.sp. herbemontis in Brazil, in inoculated pots and naturally 
infected soils in field conditions. Ranking 1-4, with 1 being most resistant. Data from the 1989-1991 
period. 

 
 
 
 
 
 
 
 
 
 
 

 

1.1.4 Economic implications of grapevine root diseases 
Soil-borne diseases are a major concern for nurseries that supply grafted grapevine plants.  

In New Zealand, 30-40% of grafted grapevine plants fail every year (about 5,000,000 plants 

worth about NZ$25 M), and some of this is thought to be caused by grapevine root disease, 

especially black foot. Since mature mother-vines which are used to produce the cuttings for 

grafting are also affected, there may be additional production losses of NZ$3 M per year, due 

to re-establishment costs (pers. comm. B. Corban, 2006). When vineyards are affected by 

these root diseases, there are additional losses from reduced yield and inferior fruit quality 

(Gugino & Travis, 2003). Diseased plants must be removed and it is the subsequent replanting 

costs that cause most of the high economic losses (Petit & Gubler, 2005). The economic 

impact that comes from needing to replant infected young vineyards is felt most in major 

production regions. For example, California has experienced severe economic losses 

associated with such replantings and the associated downtime. Sometimes only the weakest 

vines are replaced but growers have been known to replant substantial areas where the young 

vines have been growing very slowly (Scheck et al., 1998a).  

COPYRIGHTED TABLE REMOVED 
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1.1.5 Control of grapevine root diseases 
Very little is known about managing F. oxysporum infections of grapevines, particularly in 

New Zealand. However, since Fusarium spp. like F. oxysporum are soil-borne and able 

to multiply rapidly, leading to high levels of inoculum and root disease, management 

strategies need to focus on reducing Fusarium populations in both plant and soil (van Coller 

et al., 2005). Since both F. oxysporum and C. destructans are (primarily) soil-borne root 

pathogens of grapevines, one would expect control measures to be similar. Control of 

Cylindrocarpon black foot currently focuses on eliminating inoculum from the soil and on 

preventing infection of young plants, either through chemical or biological treatments or with 

hot water treatment. Management processes for young vines, which primarily focus on 

avoiding plant stress have also been successful in the control of other vine decline diseases 

(Gubler et al., 2004).  

Inoculum of soil-borne diseases may build up over time if grapevine nurseries and vineyards 

use the same soil repeatedly, as has been reported with black foot disease increase (Halleen  

et al., 2003; Halleen et al., 2004). Many soil-borne pathogens can survive as saprophytes in 

soil. The ability of Cylindrocarpon species and F. oxysporum to produce chlamydospores also 

allows them to survive in the soil environment without a host for significant lengths of time. 

In light of this, the standard two year rotation system employed by some propagation 

nurseries may need to be reviewed (Toussoun & Nelson, 1968; Scheck et al., 1998b). 

Fumigation of the soil with methyl bromide prior to planting has been successful in 

controlling black foot disease but the use of such fumigants is being phased out (Petit & 

Gubler, 2006).   

Using plant material sourced from reputable nurseries is a good pre-emptive disease 

management strategy (Stamp, 2001). In some nurseries, only 5% of vines carry the pathogen 

and have symptoms, while in others it may be as high as 40% (Gubler et al., 2004). 

Additionally, the basal ends of cuttings provide one of the highest risk areas in terms of 

infection and so the focus should be on protecting them. Various treatments can be used prior 

to planting, but, whether chemical or biological in nature, their effectiveness has not been 

convincing. However, it may still be worth examining the effectiveness of dipping the basal 

end of cuttings in a fungicide or biocontrol agent (Halleen et al., 2003). In vitro studies 

indicated that benomyl, flusilazole and prochloraz manganese chloride fungicides, used alone 

or with a wax formulation, had the most promise (pers. comm. F. Halleen, 2006). Due to there 

being several fungi involved in causing Cylindrocarpon black foot disease, control is more 

complicated, on account of different fungi having significantly different epidemiology and 
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susceptibilities to fungicides (Halleen et al., 2004). Hot water treatment of dormant nursery 

grapevines has also shown strong potential (Halleen et al., 2006a), with 30 minutes at 50°C 

seemingly sufficient (pers. comm. F. Halleen, 2006), but when grown in cool climates, 47°C 

and 48°C were equally effective (pers. comm. C. Bleach, 2007). 

There is no curative strategy for declining grapevines in vineyards and currently no fungicides 

are registered for the control of Cylindrocarpon black foot in vineyards (Halleen et al., 

2006a). However, recently, the efficacy of several fungicides was tested in vitro and in the 

field to protect young vines preplanting, with some success (pers. comm. C. Bleach, 2008). 

Trichoderma treatments were also shown to reduce the incidence of Cylindrocarpon species 

and greatly improve root development in young vines (Fourie & Halleen, 2001). The 

mycorrhizal fungus Glomus intraradices has also been reported to protect against infection by 

C. destructans if applied early (Gubler et al., 2004; Halleen et al., 2006). Arbuscular 

mycorrhizae (AM) are able to increase plant resistance to abiotic and biotic stresses and 

consequently, colonised plants are less susceptible to disease, due to an improved nutritional 

status (especially an enhanced uptake of phosphorous), or because the AM occupies potential 

infection sites. Alternatively, the fungus may suppress the pathogen by stimulating the growth 

of antagonistic microorganisms in the rhizosphere (Petit & Gubler, 2006).  

Soil health is also an important factor in suppression of root diseases because soil can contain 

significant populations of bacteria and other microorganisms that are capable of killing or 

suppressing plant pathogenic fungi (Broadbent et al., 1971; Sturz et al., 1997). Changes in the 

soil organic matter content, due to composted soil amendments can alter the populations of 

bacteria and actinomycetes (Hoitink & Boehm, 1999). Some of these microorganisms could 

be antagonistic towards pathogens like C. destructans or F. oxysporum. For example, it has 

been established that some bacteria isolated from vineyard soil are able to antagonise both 

these grapevine root pathogens (in vitro) possibly through the production of diffusible 

antibiotics (Whitelaw-Weckert, 2004). Soils with higher organic matter content and higher 

microbial activity, with significant populations of soil bacteria tend to display high fungistatic 

activity (Sturz et al., 1997). Composts have been demonstrated to reduce C. destructans 

populations in soils due to the antagonism of microorganisms associated with these soils 

(Gugino & Travis, 2003). High levels of microbial activity in soils can also result in 

competition effects that could reduce pathogen activity and survival, helping to reduce the 

pressure of a high pathogen inoculum and even resulting in disease suppression (Sturz et al., 

1997). Therefore, managing soil microbial communities could provide a means of 
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diminishing the activity of soil-borne plant pathogens and, by doing so, improve plant health 

(Mazzola, 2004). 

1.1.6 Abiotic factors influencing disease development 
Abiotic stresses have been demonstrated to influence plant disease development in several 

pathogen-host systems (Schoeneweiss, 1981). With respect to Cylindrocarpon black foot, 

growers have focussed on eliminating or preventing the stresses that predispose the plants to 

disease (Halleen et al., 2006a). Malnutrition or an excess of nutrients, poor water drainage, 

soil compaction, heavy crop loads on young plants, planting of vines in poorly prepared soil 

and improper plant holes are stresses that can impair root development, favour disease 

development and worsen disease severity (Larignon, 1998; Fourie et al., 2000; Fourie & 

Halleen, 2001; Halleen et al., 2004). Planting in heavy and wet soils or on susceptible 

rootstocks may also increase losses to this disease (Gubler et al., 2004). During summer, the 

high temperatures also mean that infected vines (with their compromised root systems) are not 

able to obtain the water needed to compensate for the increased transpiration rate (Halleen  

et al., 2006a).  

A potential cause of stress is the use of canopy thinning which is a standard practice in cool 

climate viticultural regions. It involves the removal of leaves from around fruit clusters and/or 

shoot trimming several times over the growing season thereby reducing grapevine 

carbohydrate stores and causing stress (Chanishvili et al., 2005). However, controlled and 

properly timed partial defoliation of grapevines has been demonstrated to confer benefits such 

as increased yields, improved bud fertility (Hunter et al., 1995), higher numbers of fine and 

extension roots that improve the ability of the plants to penetrate deeper soil (Hunter et al., 

1994; Hunter et al., 1995). Grapevine carbohydrate reserves are also significantly influenced 

by environmental and management factors, including seasonal weather (Bains et al., 1981), 

crop load (Balasubrahmanyam et al., 1978), pests, diseases (Ryan et al., 2000) and methods of 

vine pruning and training (Koblet et al., 1993; Schultz et al., 2000). 

The dominant forms of carbohydrate in grapevines are starch and soluble sugars (sucrose, 

glucose, fructose and myo-inositol) (Hamman et al., 1996), although others including 

raffinose and stachyose are present in less significant quantities (Loescher et al., 1990). In 

grapevines, both the trunk and roots are storage sites for carbohydrate during dormancy 

(Wood, 2000), although roots are the primary storage organs (Loescher et al., 1990). They 

provide the carbohydrates for new growth in spring, including shoots and inflorescences 

(Scholefield et al., 1978).  
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With defoliation, carbohydrate production and transport by the leaves is reduced, decreasing 

its availability to sinks. “The number, severity and timing (within growing season and number 

of consecutive years) of defoliations and the physiological condition of the tree when 

defoliation occurs contribute to the outcome” (Horsley et al., 2000). Defoliation alters the 

carbohydrate physiology of mature grapevines (Bennett, 2002) and if too severe can cause 

stress. For example, in grapevines, incorrect timing or excessive leaf removal can result in 

unwanted outcomes, including greatly reduced yields (the consequence of fewer flowers per 

inflorescence and fewer inflorescences per grapevine) (Bennett, 2002), reduced bud fertility 

and delayed ripening (Hunter et al., 1995), reduced berry weight (Kliewer, 1970), as well as 

significantly reduced cane, trunk, root and total vine dry weights. 

1.2 THE RHIZOSPHERE 

1.2.1 Definitions 
The rhizosphere is the zone of soil close enough to living plant roots to be directly influenced 

by the root activity and exudates (Hinsinger et al., 2005). Pinton et al. (2000) defined it as 

“the field of action or influence of a root”. Similarly Darrah (1993) defined it as a “zone of 

soil surrounding the root which is affected by it”. 

1.2.2 Rhizodeposits 
The interface between plant roots and the immediate soil layer is affected by the compounds 

(rhizodeposits) released into that area by the plant. These include exudates, sloughed off cells 

and decaying root material (Gregory, 2006). Of the carbon that plants assimilate via 

photosynthesis, between 10% and 30% is transferred to the rhizosphere as rhizodeposits 

(Morgan et al., 2005). Marschner (1995) put this figure at between 5 and 21% of all 

photosynthetically fixed carbon. These deposits into the rhizosphere alter its chemical and 

physical characteristics and stimulate the growth of soil microorganisms which are able to 

utilise them (Gregory, 2006).  

Root exudates are generally grouped into low molecular weight compounds such as simple 

polysaccharides, amino acids, amides, organic acids, phenolics and some secondary 

metabolites, and high molecular weight compounds such as flavonoids, peptides, proteins 

(e.g. enzymes), fatty acids, growth regulators, nucleotides, tannins, carbohydrates, steroids, 

terpenoids, alkaloids, polyacetylenes, vitamins and mucilage (Curl & Truelove, 1986; Bertin 

et al., 2003; Walker et al., 2003; Gregory, 2006). Root exudates also contain lesser amounts 

of ions (e.g. H+ and inorganic ions), oxygen and water (Bertin et al., 2003). Some of these 

compounds are water soluble and leak from the root, some are secretions that depend on 
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metabolic processes for their release, and some are released when cells autolyse and still 

others are released as gases (Lynch & Whipps, 1990). 

The organic materials released from the roots are a key source of carbon and energy for soil 

microorganisms (Whipps, 2001), with some exudates even serving as specific signals to soil 

microorganisms (Grayston et al., 1995). All root exudates in the rhizosphere are believed to 

“stimulate or inhibit microbial populations and their activities” (Morgan et al., 2005). 

Generally, saprotrophic and biotrophic organisms in the rhizosphere grow in response to the 

presence of plant derived rhizodeposits, but it is also possible for soil-borne plant pathogens 

to do so. This rhizodeposition can encourage pathogen growth towards the roots, resulting in 

infection (Whipps, 2001). Consequently, the rhizosphere community structure is influenced 

by the quality and quantity of organic substances released from plant roots (Bazin et al., 

1990). Biocidal compounds released by roots may also significantly influence the 

composition of rhizosphere microbial communities (Rumberger & Marschner, 2003). The 

composition, size and activity of soil microorganism populations can influence plant 

development and growth, alter nutrient dynamics and modify plant susceptibility to disease 

and abiotic stress (Morgan et al., 2005).  

Root exudates are released by living root hairs, as well as by actively growing primary and 

secondary roots (Bertin et al., 2003). However, the pattern of exudation is not homogenous 

along the root axis (Walker et al., 2003). Along the root axis there are qualitative and 

quantitative differences in root exudation, meaning that different root zones can have distinct 

bacterial communities (Yang & Crowley, 2000). Additionally, different types of exudates are 

released from different parts of the root system. Near the root tip recently assimilated carbon 

is secreted as relatively simple molecules, while more complex compounds are released from 

the more mature root zones, mostly in the form of sloughed off root cells (Jaeger et al., 1999; 

Gregory, 2006).   

Plant developmental phase can also influence the quantitative and qualitative characteristics 

of root exudates (Marschner et al., 2002; Morgan et al., 2005), with root exudation typically 

decreasing as plants age. However, abiotic stresses frequently result in increased root 

exudation rates (Bertin et al., 2003), likely due to biotic and abiotic plant stresses which 

compromise cell membranes, causing increased permeability, and so diffusional loss of 

carbon compounds into the rhizosphere, thereby increasing microbial growth (Farrar et al., 

2003). Soil type can also influence root exudation because it affects carbon availability and 

root-soil adhesion (Gregory, 2006). The rhizosphere bacteria themselves can produce 

metabolites that induce root exudation responses (Sturz & Christie, 2003). For example, in 
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one study of perennial ryegrass, when the plants were not inoculated with a selection of 

bacteria or fungi (including Penicillium spp., Aspergillus spp., Fusarium spp., Mucor sp., 

Cladosporium sp., and Pseudomonas sp.), only 1% of an assimilated label was detected in 

root exudates, but when plants were inoculated the percentage exuded increased to 3-34% 

(Meharg & Killham, 1995). 

Vigour can also influence the quantity and quality of root exudation, and therefore soil 

microbial populations, since soil microbial biomass increases with rhizodeposition (Merckx et 

al., 1985; 1987). More vigorous plants are likely to have greater root exudation than less 

vigorous plants because shoot development and root growth rate significantly influence 

rhizodeposition (Kuzyakov, 2002). Farrar et al (2003) stated that the flow of carbon into the 

rhizosphere is dependent upon the amount of root tissue, as well as how much exudate is 

released from individual root apices and root lengths. Root exudation can also differ between 

plant species or even cultivars of the same species (Grayston et al., 1998), with differences 

being both qualitative and quantitative (Badri & Vivanco, 2009). 

1.2.3 Plant selection of microorganisms 
It is still not known conclusively if plants can “selectively favour microbial communities most 

beneficial to themselves” (Frey-Klett et al., 2005), but it has often been assumed that plant 

communities control the below-ground soil microorganism diversity. Although little is known 

about how plant species composition and diversity actually influence the rhizosphere 

community composition (Sharma et al., 2005), some results indicate that the composition of 

the most dominant bacterial populations in the rhizosphere is strongly driven by plant species 

and their processes (Kowalchuk et al., 2002). The release of particular root exudates and 

leachates influences which specific bacterial communities are activated and sustained in a 

plant’s rhizosphere (Sturz & Christie, 2003). Jaeger et al (1999) also concluded that the 

structural and functional diversity of rhizosphere populations is in part a result of plant 

species and the associated differences in root exudation. 

Ibekwe and Kennedy (1999) reported that rhizosphere microbial communities varied with the 

host plant species (wheat, barley, pea, jointed goat-grass and downy brome). Smalla et al 

(2001) used DGGE to show plant specific shifts in the relative abundance of bacterial 

populations in the rhizosphere of potato, strawberry and oilseed rape. Some Nocardia 

populations for example, were specific to strawberry. Germida et al (1998) concluded that 

canola and wheat plants must have different effects on the composition and diversity of their 

root associated bacteria because bacterial communities of canola and wheat differed when 

plants were grown at the same site, with there being significantly more bacilli in the wheat 
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rhizoplane than the canola. Rhizosphere bacterial communities can also differ between 

cultivars of the same species. For example, Fromin et al (2001) reported that the genetic 

structure of Pseudomonas brassicacearum rhizosphere populations was influenced by 

Arabidopsis thaliana genotype. The P. brassicacearum bacterial populations were isolated 

from the rhizospheres of A. thaliana Wassilewskija (WS) and A. thaliana Columbia (COL), as 

well as an A. thaliana mutant and a genetically distinct plant species (wheat). However, the 

genetic structure of the P. brassicacearum populations varied between plant species and 

between A. thaliana ecotypes.   

Allelochemicals released by plant roots can inhibit the growth of only one microorganism, or 

several species of microorganisms (Bertin et al., 2003). Some of the root exudates, or 

compounds produced by other soil flora, may act as “messengers”, causing the initiation of 

root-root, root-microbe and root-faunal interactions (Walker et al., 2003). Bauer and Teplitski 

(2001) noted that exudates have the potential to repress or simulate microbial signalling in the 

rhizosphere, and suggested that plants can actively stimulate specific microbial populations in 

the rhizosphere. These compounds include signal mimics, signal blockers and signal-

degrading enzymes (Gregory, 2006). 

1.2.4 Microbial diversity in the rhizosphere  
The microbial composition of the rhizosphere is significantly different from that of the bulk 

soil, being “a hot spot for microbial colonization and activity” (Sharma et al., 2005). The 

biological, biochemical, chemical and physical processes in the rhizosphere are responsible 

for the differences between rhizosphere and bulk soils. Root growth, respiration, 

rhizodeposition, and water and nutrient uptake are some of the driving forces for the processes 

above. Differences between the bulk and rhizosphere soils are also due to the activity of 

microorganisms stimulated in the rhizosphere by root exudates, microorganisms which can 

harm or benefit the plant (Hinsinger et al., 2005). The rhizosphere will thus contain 

populations of bacteria, actinomycetes, fungi, protozoa, viruses and nematodes significantly 

different to those of the bulk soil (Gregory, 2006), with the rhizosphere typically having a 

lower diversity of soil microorganisms than the bulk soil (Morgan et al., 2005). Bacterial and 

fungal communities can also be significantly different within the rhizosphere; varying 

between the root tip and the more mature parts of the root system (Gregory, 2006).  

1.2.5 Disease suppression 
In some soils, disease development is minimal, even when a pathogen and its susceptible host 

are present. These soils are termed ‘suppressive’, and the suppression can be general or 
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specific. General suppression of a soil-borne pathogen is related to the total amount of 

microbial activity in a soil, and cannot be attributed to a specific microorganism, or group 

of microorganisms while specific suppression can be attributed to a specific microorganism, 

or group of microorganisms that are inhibitory or antagonistic to specific pathogens  

(Mazzola, 2002).  

Pathogen or disease suppressive soils are able to limit the survival or growth of soil-borne 

bacterial or fungal pathogens. Biotic and /or abiotic factors may also influence a soil’s 

suppressiveness to a particular plant pathogen, although soil microorganisms are thought to be 

the most influential factor (Mazzola, 2002; Garbeva et al., 2004). For example, van Os and 

van Ginkel (2001), concluded that high microbial biomass and activity suppressed Pythium 

root rot in bulbous Iris. Workneh and van Bruggen (1994) also observed a link between soil 

microbial diversity and the suppression of root disease. They reported that the total numbers 

and diversity of actinomycetes and numbers of fluorescent Pseudomonads, as well as the 

proportions of cellulolytic actinomycetes and chitinolytic fungi, were all positively correlated 

with the suppression of corky root of tomato caused by Pyrenochaeta lycopersici. In a study 

on suppression of watermelon root rot caused by F. oxysporum f. sp. niveum, suppressive 

soils had larger populations of actinomycetes, fluorescent Pseudomonads and total bacteria 

than conducive soils (Larkin et al., 1993a).  

Disease suppression can also be specific. For example, several Pseudomonas species have 

been shown to have effective biological control capabilities against the soil-borne fungus, 

Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease of wheat. 

With successive wheat monoculture, the proportion of pathogen antagonistic bacteria in the 

rhizosphere has been shown to increase (Cook & Rovira, 1976), resulting in take-all decline. 

This is a natural phenomenon observed in the field whereby the disease severity of Ggt 

decreases over time. It is attributed to the selection of populations of fluorescent 

Pseudomonads in these soils and on wheat roots (Sanguin et al., 2008). For example, Chapon 

et al (2002) isolated a bacterial strain P. fluorescens Pf29Arp, from a suppressive soil which 

was capable of antagonising this pathogen and reducing lesion size. Take-all decline is 

believed to be attributed to the ability of these bacteria to produce metabolites like  

2,4-diacetylphloroglucinol (2,4-DAPG) that are able to suppress the pathogen (Raaijmakers & 

Weller, 1998). 

1.2.6 Biocontrol of plant pathogens by rhizosphere bacteria 
Rhizosphere bacteria are able to inhibit plant pathogenic fungi or bacteria through: the 

production of anti-fungal metabolites, niche exclusion, competition for nutrients, and/or 
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induced systemic resistance (ISR) (Bloemberg & Lugtenberg, 2001). However, the 

rhizosphere bacteria involved in biological control may exhibit several of these characteristics 

(Whipps, 2001). The following sections will outline how bacteria can potentially interact with 

plant pathogenic fungi to restrict their development. 

1.2.6.1 Competition 
Competition for colonisation sites on the host, and for nutrients and minerals can result in the 

biological suppression of pathogenic fungi in the rhizosphere (Morgan et al., 2005). For 

example, some rhizosphere bacteria produce siderophores, which are iron chelating 

compounds with a high affinity for ferric iron (Fe 3+) (Whipps, 2001), that allow the bacteria 

to compete for iron in the soil environment under iron-limiting conditions. Siderophores are 

produced by nearly all bacteria and fungi when iron is scarce (Buyer & Sikora, 1990), but 

fungal siderophores are thought to have a lower affinity for iron (Compant et al., 2005) than 

those of bacteria. Some siderophores can only be utilized by the bacteria that produce them 

while others can be used by a range of bacteria (Frey-Klett et al., 2005). Bacterial 

siderophores which can scavenge and sequester the iron in the rhizosphere, then transport it 

into the bacterial cells, make it unavailable to pathogenic fungi, and so restrict their 

development (Chet et al., 1990; Whipps, 2001). This competition associated with the 

production of siderophores can result in the displacement of the phytopathogen (Chet et al., 

1990). For example, siderophores, most commonly from Pseudomonas spp., have been shown 

to have a suppressive effect on several plant pathogens including: Rhizoctonia solani, 

Fusarium oxysporum, Pythium aphanidermatum and Phytophthora parasitica (Whipps, 2001; 

Dianez et al., 2006).  

1.2.6.2 Antibiosis 
Antibiosis is the inhibition of the fungal pathogen through the production of antimicrobial 

metabolites (excluding metal chelators and enzymes) by some soil bacteria. These compounds 

can inhibit or slow fungal growth and have been implicated in disease suppression (Whipps, 

2001). Fluorescent Pseudomonads in particular have been found to produce many antifungal 

compounds that have a broad spectrum of activity against phytopathogens (Dwivedi & Johri, 

2003; Compant et al., 2005). The main classes of antibiosis-related compounds produced by 

Pseudomonads are: phloroglucinols including DAPG, phenazines, pyoluteorin, pyrrolnitrin, 

lipopeptides and hydrogen cyanide (HCN) (Haas & Keel, 2003). Bacillus, Streptomyces and 

Stenotrophomonas species are also key players in soil antibiosis, producing compounds such 

as kanosamine, oligomycin A, zwittermicin A and xanthobaccin (Compant et al., 2005). 
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Pseudomonads and other rhizosphere bacteria can produce HCN which inhibits the 

development of some root diseases (Schippers et al., 1990). For example, HCN produced by 

P. fluorescens CHAO can suppress black root rot of tobacco caused by the fungal pathogen 

Thielaviopsis basicola (Haas & Keel, 2003). Production of HCN however, depends largely on 

the amino acid composition of the substrate, e.g. root exudates. Glycine and proline are key 

stimulators of HCN production, but light intensity, soil water potential and the availability of 

ferric iron and inorganic phosphate are also important. HCN directly inhibits the activities of 

root pathogens but may also be involved in the induction of plant resistance responses 

(Schippers et al., 1990).  

1.2.6.3 Parasitism 
Some rhizosphere bacteria are able to parasitize plant pathogenic fungi (Whipps, 2001). 

Bacteria, especially actinomycetes, are capable of parasitizing and degrading fungal spores 

and some bacteria can disrupt the attachment of hyphae to plant root cells through to the 

complete lysis and degradation of the fungal hyphae. A range of enzymes, including cell-wall 

degrading hydrolytic enzymes may be responsible, including cellulases, glucanases (β-1,3  

β-1,4 and β-1,6), chitinases, laminarinases, pectinases and proteases (Whipps, 2001; Krechel  

et al., 2002). 

1.2.6.4 Induced resistance 
Some microorganisms, particularly non-pathogenic rhizosphere bacteria, may also be able to 

induce systemic plant resistance (ISR). ISR is a state of heightened defence-related 

preparedness in plants, which can be expressed locally or systemically and provides 

protection against a broad spectrum of phytopathogens including fungi, bacteria and viruses. 

It has been reported in plant species including Arabidopsis, bean, carnation, cucumber, radish, 

tomato and tobacco (van Loon et al., 1998). The rhizosphere bacteria most commonly 

involved in ISR are Pseudomonas species (Bloemberg & Lugtenberg, 2001). Rhizosphere 

bacteria could induce ISR via membrane lipopolysaccharides, siderophores, volatile 

compounds, salicylic acid and/or flagellation factors. Some of these elements can enhance the 

production of plant defence chemicals when the plant is challenged by biotic or abiotic 

stresses (Compant et al., 2005). 

Plant roots displaying ISR may show strengthening of epidermal and cortical cell walls,  

deposition of barriers made from compounds such as lignin and phenolics, elevated enzyme 

levels (e.g. chitinases, peroxidase, polyphenol oxidase and or chalcone synthase) (Compant  

et al., 2005), enhanced phytoalexin production and increased expression of stress-associated 

genes (Whipps, 2001). Defence related genes may also be activated, including those 
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responsible for the production of jasmonate, peroxidase and the synthesis of phytoalexins 

(Sturz & Christie, 2003). Throughout the process the inducing rhizosphere bacteria and the 

challenging pathogen remain spatially separated. For example, a strain of Pseudomonas 

fluorescens and F. oxysporum f.sp. dianthi were applied to different parts of a carnation plant; 

the roots were treated with Pseudomonas fluorescens, and the fungal pathogen was introduced 

a week later via a stem wound. ISR caused the Fusarium wilt to be suppressed (van Loon  

et al., 1998). 

1.2.6.5 Plant growth promotion 
Plant growth-promoting rhizobacteria (PGPR) often have flagella, and may be directed to root 

surfaces by chemical attractants in the root exudates (Compant et al., 2005). Their growth-

promoting activity may minimise the negative effects of minor pathogens (Whipps, 2001; 

Dwivedi & Johri, 2003). These rhizosphere bacteria stimulate plant growth through the 

secretion of phytohormones like auxins, cytokinins and gibberellins (Bloemberg & 

Lugtenberg, 2001), for example, many produce indole-3-acetic acid (IAA). Others promote 

plant growth by making nutrients more readily available, for example, by solubilising 

inorganic phosphate or by N2 fixation (Frey-Klett et al., 2005; Morgan et al., 2005). Still 

others may regulate ethylene production in roots, decrease heavy metal toxicity (Whipps, 

2001) or stimulate the growth of beneficial ectomycorrhizal fungi. These mycorrhizal 

associations can enhance plant resistance to soil-borne pathogens by producing antibiotic 

substances or, due to their hyphal mantle surrounding the plant roots mechanically exclude 

the pathogens from the plant roots (Frey-Klett et al., 2005).  

1.2.7 Abiotic factors influencing rhizosphere microorganisms 
Many physical factors influence the survival and activity of microorganisms in the soil. These 

include temperature, pH, nutrient availability, light intensity, soil moisture content, carbon 

dioxide concentration and oxygen availability. The physical structure of the soil, root growth, 

water dynamics and microbial dynamics all interact, and changes in soil structure directly 

affect moisture levels and gas diffusion to the microbial components of the rhizosphere 

(Young, 1998). Soil structure and water potential also influence the spatial exploration of the 

rhizosphere by root pathogens (Hinsinger et al., 2005).  

1.2.8 Methods used to study rhizosphere bacteria 
The spatial and temporal dimensions of the rhizosphere change when different processes are 

taken into account, and as such, its definition is not exact. For example, when only 

microorganism populations and immobile nutrients (including carboxylates and extracellular 
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enzymes) are considered, the width of the rhizosphere could be less than a millimetre. 

However, its width could be tens of millimetres with respect to mobile nutrients and water, 

and its width could be much larger still with respect to volatile compounds and gases (e.g. 

carbon dioxide). Therefore, it seems that the spatial extent of the rhizosphere is dependent on 

the mobility of the rhizodeposits which makes distinguishing the boundary between the 

rhizosphere and bulk soil virtually impossible. The rhizosphere is not a small cylinder of soil 

around the roots with a set radius. The architecture of the rhizosphere is closely tied to that of 

the root system, and as such will vary between plant species, plant genotype and in response 

to the environment (Hinsinger et al., 2005). 

Gregory (2006) stated that for much of a growing season, most of the upper 0.1 m of the soil 

profile can be considered as rhizosphere due to the presence of covering plants, while Bertin 

et al (2003) defined the rhizosphere as the zone of soil 0 – 2 mm away from the root surface, 

being influenced by the living roots. In many field and pot trials, rhizosphere soil has been 

considered to be the soil left firmly adhering to the roots after shaking (Gregory & Hinsinger, 

1999; Jaillard et al., 2002; Kowalchuk et al., 2002; Sharma et al., 2005) and this will be used 

to define the rhizosphere soil used in this project, “soil both loosely adhering to the roots as 

well as soil that could be brushed or scraped off the root surface” (Kowalchuk et al., 2002). 

A range of culture-dependent and culture-independent methods can be used to determine the 

abundance and diversity of rhizosphere bacteria. Some rhizosphere studies have used only 

culture-dependent methods, but this would have underestimated soil microbial diversity since 

only 1-10 % of all soil microorganisms are culturable (Torsvik et al., 1998). To improve 

estimates of the numbers and diversity of soil bacteria, culture-independent methods can be 

used in conjunction with culture-dependent methods (Garbeva et al., 2008). Dilution plating 

can determine the size of culturable bacteria populations associated with plant roots, 

providing insights into reasons for differences in susceptibilities between plant cultivars (Neal 

et al., 1973; Gilbert et al., 1994). Groups commonly cultured include the fluorescent 

Pseudomonads, which have high nutrient demands and can grow rapidly in this environment 

(Marilley & Aragno, 1999). These bacteria often have biocontrol capabilities, and have been 

implicated in the suppression of several soil-borne diseases (Weller, 1988). For example, Berg 

et al (2006) reported that Pseudomonas spp. was the most dominant (77%) antagonistic genus 

against V. dahliae. Pseudomonas fluorescens has been shown to be a potential antagonist of 

root-rot pathogens (including F. oxysporum, Macrophomina phaseolina and Rhizoctonia 

solani) isolated from the grapevine rhizosphere, reducing disease severity and incidence as 
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well as reducing root colonisation by the pathogens (Ziedan et al., 2005; Ziedan &  

El-Mohamedy, 2008).  

Culturable Bacillus species have also been found to be dominant within the rhizosphere 

populations of several plants including chrysanthemum, barley and grassland species 

including Lolium perenne (Felske et al., 1998; Smalla et al., 2001). These and other spore 

forming bacteria have also been implicated in the biological control of plant pathogens (Jeon 

et al., 2003; J. Yang et al., 2004). For example, Yang et al (2004) observed that cucumber 

seedling blight and root rot caused by Pythium species can potentially be controlled by a 

strain of Paenibacillus polymyxa (PKB1) which reduced disease severity and increased plant 

yield. Spore forming genera include: Bacillus, Clostridium, Sporolactobacillus, 

Desulfotomaculum, Sporosarcina (Stolp, 1988) and Paenibacillus (Bent & Chanway, 2002). 

These spore forming bacteria can form endospores which are resistant to heat and dry 

conditions, which makes them an easy group to differentiate from other bacteria at the 

isolation stage.  

Appropriate culture-independent methods for studying the rhizosphere bacterial populations 

include community level physiological profiling (CLPP), phospholipid fatty acid analysis 

(PLFA), terminal restriction fragment polymorphism (T-RFLP), denaturing gradient gel 

electrophoresis (DGGE) and single strand conformation polymorphism (SSCP). As these 

methods rely on discriminating between DNA sequences directly amplified from soil they are 

not influenced by whether the organism can be cultured. SSCP and DGGE have the advantage 

of allowing the identification of the soil microorganism species by DNA sequencing of bands 

excised from the gels. They can be used to characterise bacterial communities from 

rhizosphere soil samples, allowing identification of dominant bacteria to the genus or species 

level (Kerr & Curran, 1996). SSCP is the simpler of the two techniques and can be done 

without specialised equipment. It is deemed to be a simple, sensitive, time efficient and 

inexpensive tool (Hayashi, 1991; Sunnucks et al., 2000). Another possible advantage of SSCP 

over DGGE is that it does not appear to be affected by heteroduplex induced ‘pseudobands’, 

which occur in DGGE (Ferris & Ward, 1997), and requires little or no specialised equipment 

(Liu et al., 1999; Sunnucks et al., 2000). Other researchers have shown that when 

investigating bacterial communities, by amplifying their V3-4 region of 16S rDNA, SSCP 

gels produced sharper, more easily differentiated bands, detecting more subtle differences 

than DGGE gels. Resolution was also comparable or greater in SSCP gels than in DGGE gels 

(Hori et al., 2006).  
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1.3 EXPERIMENTAL OBJECTIVES 
This project aims to investigate some characteristics of grapevine rootstock rhizospheres, in 

which bacteria are usually the dominant flora (Anderson & Domsch, 1978).  It will investigate 

the diversity of rhizosphere bacteria associated with selected rootstock varieties which 

reportedly have different levels of resistance to C. destructans. By assessing the biocontrol 

activity, of the rhizosphere bacteria isolated from the rhizospheres of the different rootstocks, 

in vitro, it will try to elucidate some of the mechanisms behind the differing susceptibilities of 

grapevine rootstock varieties. The experimental objectives are to determine: 

1.  Whether the grapevine rootstock varieties with different levels of greenhouse 

resistance to C. destructans develop different populations of rhizosphere bacteria 

when grown in soil, using both isolation and molecular techniques for assessment. 

2.  Whether bacterial isolates, representative of the rhizosphere bacterial populations of 

the different grapevine rootstock varieties, have physiological attributes commonly 

associated with biocontrol of fungal pathogens. 

3.  The resistance of these same grapevine rootstock varieties (grown in soil) to C. 

destructans and F. oxysporum infection, and assessing the importance of the latter as a 

pathogen of rootstocks commonly grown in New Zealand.  

4.  Whether partial defoliation, by leaf trimming, affects the resistance of grapevines to C. 

destructans and/or alters rhizosphere bacterial community structure.  
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CHAPTER 2  
DIVERSITY AND FUNCTIONALITY OF GRAPEVINE 

RHIZOSPHERE BACTERIA 

2.1 INTRODUCTION 
Plant species or cultivar specific differences in rhizosphere bacterial populations are 

frequently attributed to differences in root exudates (Haichar et al., 2008), particularly the 

quantity and quality of the exudates (Jaeger et al., 1999; Marschner et al., 2004; Badri & 

Vivanco, 2009). The variation in exudation patterns between genotypes or cultivars of the 

same plant species were concluded to cause differences in the extent of bacterial root 

colonisation (Miller et al., 1998; Rengel, 1997; Grayston et al., 1998; Rengel et al., 1998; 

Badri & Vivanco, 2009). For example, wheat genotypes more tolerant of Zn deficiency 

released larger amounts of phytosiderophore and 2’-deoxymugineic acid than the more 

susceptible wheat genotypes. In Zn deficient situations, these more tolerant wheat genotypes 

also showed greater rhizosphere populations of fluorescent Pseudomonads than the more 

susceptible wheat genotypes (Rengel, 1997). Similarly, Rengel et al (1998) reported that root 

populations of Pseudomonads differed between wheat genotypes. In addition, wheat 

genotypes that were efficient in Mn uptake had greater root colonisation by Pseudomonads 

than those that were less efficient in Mn uptake. They concluded “it remains to be elucidated 

whether these crop genotypes can modify the quantitative and/or the qualitative composition 

of their root exudates and secretions under nutrient deficiency conditions in order to stimulate 

beneficial interactions with microorganisms”. 

The ability of soil microorganisms, like bacteria, to colonise plant roots appears to be 

associated with their capacity to make use of plant root exudates (Parke, 1991; Lemanceau  

et al., 1995), which is why different root exudates can be differentially selective in their 

stimulation of rhizosphere microbial communities (Chiarini et al., 1998; Garbeva et al., 2004). 

However, it is important to acknowledge that environmental factors can also influence the 

composition of rhizosphere communities (Smalla et al., 2001), but that plant and soil type are 

the most significant determining factors (Garbeva et al., 2004; Berg & Smalla, 2009).   

The rhizosphere bacteria selected for by specific plant species may be able to suppress plant 

diseases caused by fungi or bacteria. However, Berg et al (2002) observed that different plant 

species have rhizosphere conditions that are not equally supportive of bacterial isolates 

capable of disease suppression. They determined that the abundance and diversity (phenotypic 

and genotypic) of bacterial isolates antagonistic to the soil-borne pathogen, Verticillium 
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dahliae, was plant species specific. Antagonists from the strawberry rhizosphere were 

predominantly Pseudomonas putida B (69%), while those from oilseed rape had a much 

greater diversity and included more Enterobacteriaceae (Serratia, Pantoea, Enterobacter and 

Weeksella species). Pseudomonas putida A and B, which displayed diversity at the subspecies 

level, had plant species specific clusters, indicating that they were being selected for by a 

particular rhizosphere. Additionally, Rengel (1997) observed that ratios of certain bacterial 

groups in the rhizosphere can influence the tolerance of wheat and barley plants to take-all 

disease caused by Gaeumannomyces graminis. Neal et al (1970; 1973) noted cultivar specific 

selection of bacterial species, whereby the rhizospheres of wheat lines more resistant to a root 

rot caused by Cochliobus sativus had smaller populations of bacteria than the susceptible lines 

(with fewer cellulolytic, pectinolytic and amylolytic bacteria in particular). However, there 

are not always obvious differences in the composition of bacterial communities between 

susceptible and more tolerant plants. For example, Chiarini et al (1998) found no effect of 

maize cultivar type on the rhizosphere microbial densities in relation to their susceptibilities to 

Fusarium species.  

Rhizosphere bacteria are able to suppress plant disease by a range of different mechanisms 

including: the production of anti-fungal metabolites, parasitism, niche exclusion, competition 

for nutrients, plant growth promotion and induced systemic resistance (ISR) (Bloemberg & 

Lugtenberg, 2001). The most well known bacterial antagonists of soil-borne plant pathogens 

are species of Pseudomonas, Burkholderia, Bacillus, Serratia and Actinomycetes 

(Thomashow, 1996; Garbeva et al., 2004). The rhizosphere is a rich source of pathogen 

antagonistic bacteria, as reported by Berg et al (2005); after comparing bacterial communities 

from the rhizosphere, phyllosphere, endorhiza and endosphere of field grown potatoes they 

concluded that the rhizosphere and endorhiza were the main sources of V. dahliae antagonists. 

As Chet et al (1990) aptly phrased it, “the rhizosphere is the first-line defence for roots against 

attack by pathogenic fungi”.  

In New Zealand, the most widely planted rootstock between 1997 and 2002 was 101-14, 

which accounted for 35% of vine plantings, however this decreased to 20% between 2003 and 

2006, with a current favourite being Schwarzmann (Hoskins, 2008). In these experiments, 

rootstock varieties Riparia Gloire (V. riparia x V. riparia), 5C (V. riparia x V. berlandieri), 

Schwarzmann and 101-14 (both V. riparia x V. rupestris) were used (Jackson & Schuster, 

2001). As hybrids of a range of Vitis species and different parent vines, they encompass a 

substantial proportion of the significant heterogeneity within the genus (May, 1994). 
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In this chapter, isolation and molecular techniques (SSCP) were used to determine whether 

four grapevine rootstock varieties (101-14, Riparia Gloire, 5C and Schwarzmann), with 

different levels of greenhouse resistance to C. destructans, select for different populations of 

rhizosphere bacteria when grown in soil. Harvey and Jaspers (2006) have reported that 

Riparia Gloire has low susceptibility to C. destructans, and 101-14 moderate to high 

susceptibility. The susceptibilities of 5C and Schwarzmann were more variable (Table 1.1). 

The ability of a random selection of bacterial strains isolated from the rhizospheres of the 

most and least C. destructans susceptible rootstocks (101-14 and Riparia Gloire, 

respectively), to produce specific hydrolytic enzymes (protease, β-glucanase), and 

siderophores was assessed. In addition, the ability of the bacterial isolates to inhibit  

C. destructans in dual plate culture was also assessed. 

2.2 METHODS 

2.2.1 Pot experiment with different grapevine rootstocks 
For this experiment, rootstock varieties Riparia Gloire, 5C, Schwarzmann, 3309 and 101-14 

were used. Ten rooted cuttings of each rootstock variety were grown in individual 2.5 L pots 

containing a 50/50 mix of soil (Wakanui silt loam classified as a mottled immature pallic 

soil), sourced from the Lincoln University vineyard, and potting mix [(80% horticultural bark 

(grade 2): 20% pumice (grade 3, 1-4 mm)]. The potting mix was amended with 5 kg of an 8-9 

month fertiliser, Osmocote Exact [(Scotts Australia Pty Ltd; (15:4.0:7.5) (N:P:K)], 1 kg 

agricultural lime and 1 kg Hydraflo (Scotts Australia Pty Ltd) per 1 m3. Ten control pots, 

consisting of the same 50/50 mix of soil and potting mix, but without a plant were also 

incorporated. All pots were laid out in a completely randomised design on a mesh table in the 

greenhouse. For the duration of the experiment, high pressure sodium lamps (Son-T 

Agro 400, Philips) were suspended above the table to ensure light levels were sufficient for 

good plant growth. Each day plants had light from 4 am to 12 pm then 4 pm to 8 pm, giving 

them a 16 h day. Temperatures ranged from 14ºC (minimum) to 30ºC (maximum) and plants 

were kept moist by daily watering. While in the greenhouse, weeds from all pots were 

removed by hand. 

Plants were grown for 3 months over autumn (March 2006–May 2006), but experienced a 

hypersensitive response to a light powdery mildew infection (on the underside of their leaves) 

at this time (pers. comm. I. Harvey, 2006). Efforts made to restore plant health included two 

sprays of each of Chlorotek (3-5 mL/L) and Sulphur (Super Six, 720 g/L, diluted at 

16.5 mL/10 L), and the application of Hoagland’s plant nutrient solutions (100 mL per pot) 
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(Hoagland & Arnon, 1950). Plant health did not improve; leaves became brittle and dry,  

and it was decided that dormancy should be induced. Lights were switched off and watering 

discontinued. After the leaves had fallen the plants were placed in a cold room (4ºC) for the 

remaining winter months (July 2006–August 2006). The plants were then pruned back to 

two buds and returned to the greenhouse. After bud break (end of August) the apparently 

healthy plants were grown for a further 6-7 weeks to allow rhizosphere bacterial populations 

to re-establish. No plants of 3309 recovered so this rootstock treatment was omitted from  

the experiment.  

2.2.2 Collection and assessment of rhizosphere soil 
Prior to harvest the plant and control pots were not watered for 24 h as high soil moisture 

levels would have interfered with the process of rhizosphere soil collection. From the ten 

replicate plants set up for each rootstock variety, six of the most uniform plants were selected 

for sampling. Six of the ten control (‘minus plant’) replicates were sampled at the start of the 

experiment in March 2006 (initial), and again when the plants were harvested in October 2006 

(final). Rhizosphere soil was collected by shaking loose soil from the roots and then 

collecting the soil that remained attached to the roots (Kowalchuk et al., 2002). To do this, 

plants were carefully lifted out of their pots, rolled ten times on a plastic sheet (to loosen the 

soil) and firmly shaken three times to dislodge non-rhizosphere soil. The soil remaining on 

the roots was shaken onto a tray where it was thoroughly mixed and then roots and large 

pumice pieces were picked out by hand. For the controls (‘minus plant’) an equivalent volume 

of soil was removed from the central core of each pot using a hand trowel. To prevent cross 

contamination between soil samples, new plastic sheets and gloves were used for separate 

samples and the trowel was wiped with cotton wool soaked in 70% ethanol. For each pot 

(control or plant) approximately 40 g of this rhizosphere soil was collected, of which about 

one third was set aside for bacterial isolation onto agar (soil dilutions), a third for the 

molecular characterisation of the bacterial populations [single-stranded conformation 

polymorphism (SSCP)], and the final third for drying so that the colony forming units (CFU) 

could be calculated per gram of dried soil. While soil samples to be used for the molecular 

characterisation of bacteria were immediately stored in plastic tubes at -80˚C until use, the 

remainder of each rhizosphere sample was stored in an individual snap-lock bag with the 

plant roots and refrigerated at 4˚C until they were processed the following day. 

The soil gravimetric water content (GWC) was calculated by taking 10 g replicates of fresh 

rhizosphere soil from each of six rootstock plants or control treatment. The weight of these 

was recorded before and after they were oven dried at 105˚C for 24 h.  
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The GWC was calculated using the following formula: m = (mw-mod)/mod. Where m is the 

gravimetric water content, mw is the weight of fresh soil and mod is the weight of oven dried 

soil (Klute, 1986). 

         

Figure 2.1: Rhizosphere soil adhering to grapevine roots (A), rhizosphere soil collected for 
assessment (B) and grapevine roots with the rhizosphere soil removed (C). 

2.2.3 Isolation of culturable bacteria 

2.2.3.1 Dilution plating and agar types 
Soil solutions were made of the rhizosphere soil from each plant, or control (bulk soil), by 

placing 10 g of soil into individual 200 mL bottles containing 90 mL of sterile distilled water 

(SDW) and mixing with a wrist-action shaker for 10 min. After standing the solutions for 

10 min, a 1 mL supernatant sample (10-1) was used to produce serial dilutions in SDW of  

10-1 to 10-6/mL. For total bacterial counts, concentrations of 10-4, 10-5 and 10-6/mL were 

plated out in triplicate on each of the agars: Nutrient agar (NA, Oxoid) and King’s medium B 

(KB). KB plates (Appendix 1.1) were simultaneously used to determine the numbers of 

fluorescent Pseudomonads, which appeared as bright luminous green-yellow colonies when 

viewed under ultra violet (UV) light, and were easily distinguishable from the colour of the 

medium (King et al., 1954; Johnsen & Nielsen, 1999).  

To isolate only the spore forming bacteria, the above dilutions were heated to 80˚C in a water 

bath for 10 min to kill all but spore forming bacteria (Grasso et al., 1996). These heat- treated 

samples were cooled to room temperature before being plated out in triplicate on NA. 

Concentrations of 10-3, 10-4 and 10-5/mL were plated out since the assessment of the initial 

A B C
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controls (at the start of the experiment) showed that counts were too low at the 10-6 

concentration (Table 2.5-1, Appendix 2.5). 

The NA plates were incubated for 3 d, while the KB plates were incubated for 6 d (King et al., 

1954), both at 20˚C in the dark. After incubation, individual colonies were counted using a 

SUNTEX Colony Counter 570. To calculate the CFUs per gram of oven dried soil, plate 

count data (from plates that yielded 30-300 colonies per plate) were used in conjunction with 

the GWC values. Values were obtained for each individual plate, averaged over the replicates 

and then the mean value for each plant log transformed. For the total NA and total KB counts 

the 10-4 dilution plates were used, and for the spore former counts the 10-3 dilution plates  

were used. 

2.2.3.2 Storage of bacterial isolates  
From each of the total (NA and KB) and spore forming counts, per rootstock variety and 

control treatment, 20 bacteria were selected, resulting in a sample size of 60 bacterial isolates 

per treatment. The selection of the bacterial colonies reflected the range of types on the 

dilution plates which were uniformly considered for selection. After selection, each isolate 

was streaked onto NA and then subcultured (twice) to ensure pure culture. These plates were 

incubated for 2-3 days (5 for slower growing isolates) at 20°C in the dark. Single bacterial 

colonies were transferred to sterile 1.5 mL plastic microtubes containing a 30% (v/v) glycerol: 

water solution, gently vortexed and then stored at -80°C for later testing. Two tubes were 

made for each bacterial isolate.  

2.2.3.3 Functionality testing  
Stored bacterial isolates from the rhizospheres of the most (101-14) and least (Riparia Gloire) 

susceptible rootstock varieties, as well as those from the final controls, underwent 

functionality testing. Of the 60 bacteria available per treatment, 40 were randomly selected 

using the Excel (Microsoft Corporation, USA) random number generator, cultured from the 

-80°C stocks onto NA and incubated at 20˚C in the dark for 3-4 days. For each bacterial 

isolate, three single colonies were each inoculated into 10 mL of sterile nutrient broth (NB, 

Oxoid). The universal tubes containing the  broth cultures were incubated at 20˚C for 24 h on 

an orbital shaker (133 r.p.m) in the dark before being used to inoculate all the indicator agar 

plates (Sections 2.2.3.3.2-2.2.3.3.5) and the dual plates. For the indicator agar plates, control 

bacterial isolates EJ28 and EJ50 were used as their response to these assays was previously 

established. These bacteria had been isolated from the rhizosphere of Pinus radiata seedlings 

(grown in forest soil) by B. Pottinger in 2005. 
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2.2.3.3.1 Dual plating to test for biocontrol activity 
A dual plating assay was used to detect any inhibition of a C. destructans isolate by adjacent 

bacterial colonies. The C. destructans strain used was isolated from a diseased grapevine from 

Marlborough region by C. Bleach in 2005. The isolate was stored on Spezieller-

Nährstoffarmer agar (SNA, Appendix 1.1) slopes at 4°C and routinely cultured onto PDA 

prior to this test. For each bacterial isolate, six PDA (Oxoid) plates were set up (two plates for 

each of the three replicate overnight broth cultures). Each plate was inoculated centrally with 

a mycelium plug (6 mm diameter) cut from the leading edge of a C. destructans culture grown 

on PDA at 20°C with 12 h light: 12 h dark for a period of 5 d. This plug was surrounded by 

four 10 µL drops of bacterial broth placed equidistantly around and 1 cm from the perimeter 

of the agar plate. Control plates were set up in the same way except that SDW rather than 

broth cultures were placed around each fungal plug. After incubation at 20°C for 7-10 days in 

the dark, the inhibitory effect of the bacteria was assessed by the size, if any, of the inhibition 

zones (Berg et al., 2002; 2005; Frey-Klett et al., 2005) according to the criteria in 

Appendix 2.3 (Table 2.3-1).  

2.2.3.3.2 Glucanase activity 
Production of β -glucanase by the rhizosphere bacteria was detected using 

carboxymethylcellulose (CMC) agar amended with the chromogenic 4-methylumbelliferyl 

(MUF)-β-D-lactoside substrate (Sigma-Aldrich, Germany). Agar preparation is detailed in 

Appendix 2.1. This medium is relatively expensive and so multiwell square Petri dishes 

(10 cm x 10 cm, divided into 25 wells; Bibby Sterilin Ltd, U.K.) were used instead of 

standard agar plates. Six individual wells were used per bacterial isolate (two wells for each 

of three replicate overnight NB broth cultures). Each well was centrally inoculated with 10 µL 

of an overnight NB culture, before plates were incubated at 21˚C for 8 days in the dark. 

During incubation, plates were viewed daily on a UV light-box (366 nm) where colonies were 

assessed according to the criteria in Appendix 2.3 (Table 2.3-2). β-glucanase production could 

be seen as fluorescence of and around bacterial colonies (Miller et al., 1998). To ensure 

detection was consistent EJ50 and EJ28, bacteria known to be positive or negative for 

β-glucanase production, respectively, were used. 

2.2.3.3.3 Protease activity 
The production of protease by bacteria was detected using skimmed milk agar (SMA) (Opelt 

& Berg, 2004), the preparation of which is detailed in Appendix 2.1. As with the above assay, 

six plates per bacterial isolate were set up, two plates per overnight NB broth culture. The 

SMA plates were centrally inoculated with 10 µL of an overnight NB culture of each 
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bacterium and incubated at 20˚C for 3 days in the dark. At this time, any visible casein 

degradation (clearing) was noted and graded according to the criteria in Appendix 2.3 

(Table 2.3-3). To ensure detection was consistent EJ28 and EJ50, bacteria known to be 

positive or negative for protease production, respectively, were used. 

2.2.3.3.4 Siderophore production 
The chrome azural S (CAS) method (modified) was used to test for the production and 

secretion of siderophores by rhizosphere bacteria. Agar preparation is detailed in 

Appendix 2.1. As with the above assays, six plates per bacterial isolate were set up, two plates 

per overnight NB broth culture. These indicator plates were centrally inoculated with 10 µL 

of an overnight NB culture of the bacteria. Plates were assessed according to the criteria in 

Appendix 2.3 (Table 2.3-4), after incubation at 25˚C for 3 days in the dark. Siderophore 

production on this medium results in orange halos around bacterial colonies, due to the 

transfer of iron (Fe) from the Fe-CAS dye complex (blue) to the siderophores (Alexander & 

Zuberer, 1991; Neilands, 1995; Frey-Klett et al., 2005). To ensure detection was consistent 

EJ50 and EJ28, bacteria known to be positive or negative for siderophore production, 

respectively, were used. 

2.2.3.3.5 Chitinase activity 
An attempt was made to test for chitinase production by bacteria using CM-Chitin-RBV 

(remazol brilliant violet-linked chitin) solution (Loewe Biochemica GmbH, Germany), a 

chromogenic chitin substrate, within a basal medium that contains no carbon compounds. 

Agar preparation is detailed in Appendix 2.1. Six wells on a multiwell Petri dish were used 

per bacterial isolate (two wells for each of the three replicate overnight NB broth cultures). 

Each well was inoculated centrally with 10 µL of an overnight NB culture of the specific 

bacterium, before plates were incubated at 23˚C for 14 days in the dark. During this time 

plates were checked every day for chitinase activity (Wakelin, 2001). Any degradation of 

chitin would be seen as a clearing zone around the colonies due to the release of the violet dye 

from the chitin substrate (manufacturer’s instructions). A Serratia entomophila isolate from 

the Agricultural and Life Sciences Division (Lincoln University) was used as a positive 

control, since this bacterium is known to produce chitinases (Upadhyaya et al., 1992). Some 

difficulties were experienced while undertaking the assay and no satisfactory data could be 

obtained. The chitin solution experienced accidental freezing while being stored in the 4˚C 

fridge, something the manufacturers warned should be prevented due to it causing 

precipitation. However, several attempts were made to improve experimental design and the 

trouble shooting is outlined in Appendix 2.2.  
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2.2.4 Molecular assessment    
Single-strand conformation polymorphism (SSCP) was used to detect differences in the 

diversity of bacterial communities present in the soil samples of the different control (initial 

and final) and rootstock variety treatments: Riparia Gloire, 5C, Schwarzmann and 101-14. 

2.2.4.1 DNA extraction 
From the six randomly selected replicates for each of the six treatments, 0.25 g subsamples 

were used for DNA extraction using the PowerSoil™ DNA Kit (MO BIO Laboratories, Inc, 

CA, USA) as per the manufacturer’s instructions. The quality of the DNA was confirmed by 

separating 5 μL of the extracted DNA by electrophoresis at 10V/cm for 45 min in a 1% 

agarose gel (Progen Biosciences, Brisbane, Australia). Gels were stained with ethidium 

bromide [0.5 μg per mL 1xTAE (Appendix 1.1)] for 30 min, rinsed in sterile distilled water 

(SDW) for 10 min and then photographed under UV light using the VersaDoc™ Imaging 

System (Model 3000, Bio-Rad, CA, USA). DNA was stored at -20 °C.  

2.2.4.2 PCR 
Each 25 μL PCR reaction contained 1 U Taq DNA polymerase, 2 mM MgCl2, 0.2 mM of 

each of dATP, dCTP, dGTP, dTTP (Master Mix, Fermentas, Vilnius, Lithuania) and 5 pmole 

of each of the universal bacterial primers (Invitrogen, Auckland, New Zealand; Life 

Technologies Corporation, California, USA) B342If (5’- CTACGGGIGGCIGCAGT - 3’ and 

U806Ir-Ph (5’- GGACTACCIGGGTITCTAA – 3’) (Hori et al., 2006). To each tube, 1 μL of 

the extracted DNA was added. A negative control was included which contained all 

ingredients except the DNA. The tubes containing the reaction mix were placed in a thermal 

cycler (iCycler, Bio-Rad, Auckland, New Zealand; California, USA) and amplified using the 

following protocol: 94°C for 2 min (denaturation), then 32 cycles of: 1 min at 94°C 

(denaturation), 1 min at 55°C (annealing) and 1 min at 72°C (elongation), and a final cycle of 

5 min at 72°C. The resulting products were frozen at -20°C.  

To determine if a PCR fragment of the correct size (464 bp) had been produced, 5 μL of each 

amplification product was mixed with 2 μL of 6x loading dye (0.025% bromophenol blue, 

0.025% xylene cyanol, 40% w/v sucrose) and separated by electrophoresis in a 1% agarose 

gel (Progen Biosciences) at 10 V/cm for 45 min. The gel was stained and photographed as 

described previously. Samples were stored at -20°C until SSCP analyses. 

2.2.4.3 SSCP 

All PCR products were analysed by SSCP using polyacrylamide gels. Each polyacrylamide 

gel contained 10% acrylamide (37.5:1, Bio-Rad Laboratories, CA, USA) and 10% Urea (w/v) 
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in 1xTBE (445 mM Tris Base, 445 mM Borate, 10 mM EDTA) buffer (Appendix 1.1). The 

catalysts, N,N,N’,N’-tetra-methyl-ethylenediamine (30 μL) (Bio-Rad Laboratories, CA, USA) 

and 10% w/v ammonium persulfate (280 μL) (Bio-Rad Laboratories, CA, USA), were added 

to this mixture immediately prior to pouring into the assembled Protean ® II xi cell (Bio-Rad 

Laboratories, CA, USA) casting apparatus. The acrylamide was left to polymerize for 2 h. 

Prior to loading onto the polyacrylamide gel, 2 μL of PCR product was mixed with 30 μL 

loading dye (95% formamide, 0.05% bromophenol blue, 0.05% xylene cyanol, 10 mM 

NaOH, 0.8 mM EDTA pH 8). These samples were then heat denatured for 7 min at 99°C, 

plunged into wet ice and loaded into wells on the gel within 5-10 min. The gel was run at 

15°C for 19-20 h at 250 V in a Protean ® II xi cell (Bio-Rad Laboratories) in 1x TBE buffer. 

A cooling system (Grant LVF6, Grant Instruments Ltd, Cambridge, England) was used to 

keep the temperature constant.  

Gels were silver stained by placing in a glass tray of fixer (10% ethanol, 0.5% acetic acid) for 

3 min, then stained (10% ethanol, 0.5% acetic acid, 0.2% AgNO3) for 5 min. They were then 

rinsed briefly in SDW and washed in SDW for 2 min, prior to placing in a developer (3.0% 

NaOH, and 0.1% formaldehyde) for 40 min and rinsed again in SDW (Bassam et al., 1991; 

Benbouza et al., 2006). Polyacrylamide gels were dried for storage on filter paper on a gel 

dryer (SGD210D Speed Gel™ System, Thermo Savant, NY, USA) at 65°C for 2 h. 

After staining, the gels were placed between acetate sheets and scanned on a Canon iR2270 

photocopier/scanner. Bands were excised from each of the gels using a scalpel (cleaned and 

sterilized between bands by wiping with fresh cotton wool soaked in 70% ethanol). A 

fragment of each excised band (~2 mm2) was crushed using a sterile new pipette tip and 

added to a PCR reaction mix, and then reamplified as described previously except that the 

number of cycles was increased to 35. Reamplified DNA was separated in a 1% agarose gel 

as described previously.  

2.2.4.4 Sequence 
A selection of PCR products, generated from excised bands, were sequenced using primer 

U806Ir-Ph at the Lincoln University Sequencing Facility. Sequences were manually checked 

and trimmed of any ambiguous sequence on either end. For most products, a clear sequence of 

at least 250 bp was obtained. The GenBank (http://www.ncbi.nlm.nih.gov/) nucleotide 

BLAST tool (Altschul et al., 1990) was used to find the closest match for each sequence 

based on the maximum identity and E values returned. 
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2.2.4.5 Sequence Editing 
Several sequences contained small regions of ambiguity and this was likely due to parallel 

sequencing of very similar products. Thus, each sequence was proof read and edited to ensure 

that the correct base had been assigned. Chromas Lite (Technelysium Pty Ltd, Helensvale, 

Australia) was used to view the electropherograms and DNAMAN version 4 (Lynnon 

Corporation, Quebec, Canada) was used to edit the sequences. In regions where the sequence 

differed from the returned GenBank match and two bases were apparent in the returned 

sequence, the base that corresponded with the GenBank match was used. Edited sequences 

were re-submitted into GenBank and analysed by BLAST.  

2.2.4.6 Confirmation 
To confirm that they were the desired product, PCR products derived from excised bands 

were run on an SSCP gel alongside the original sample from which they were excised. 

2.2.5 Statistical methodology  
Dilution plating data (CFUs) were log10 transformed and analysed using a general analysis of 

variance (ANOVA). To cope with the large number of zero counts recorded for fluorescent 

Pseudomonads, the value of one was added to all counts before the data was logged. When 

the overall effect was significant (P<0.05) according to the ANOVAs, pairwise comparisons 

were carried out with Fisher’s protected least significant difference test (LSD). Data were 

analysed using the statistical software GenStat® version 9.0 (USN International Ltd.). 

Non parametric tests were used to analyse the functionality assay data (raw data counts). The 

Kruskal-Wallis test was used to determine overall significance. If this was significant 

(P<0.05), then pairwise comparisons, by way of the Mann-Whitney test, could proceed. 

Analysis done on the number of plates (6 per isolate, 40 isolates) placed within each grade of 

each functionality assay allowed comparison across rootstock variety and control treatments. 

The analysis was then repeated using presence (1) and absence (0) variables for the different 

assays. Here, data were regrouped and analysed by Chi-Square tests, with significance 

determined by Pearson’s Chi-Square (P<0.05). Data were analysed using SPSS® for 

Windows® V13.0 (SPSS Inc., Chicago, IL, USA, 2007).  
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2.3 RESULTS 

2.3.1 Dilution plating 
The dilution plating gave CFUs of total culturable (NB and KB) and groups of certain bacteria 

(spore forming and fluorescent Pseudomonad) in the bulk control soil and in the rhizospheres 

of the grapevine rootstocks tested.  

2.3.1.1 Total bacteria (NA) 
The rhizospheres of the rootstock varieties tested and the control treatment soil (final) differed 

in the mean number of total bacteria they supported on NA (P=0.012) (ANOVA Table 2.4-1 

in Appendix 2.4). As shown in Table 2.1, the rhizospheres of rootstock varieties 5C 

(7.48x105 CFU/g dry soil) and Schwarzmann (5.39x105 CFU/g dry soil) supported more 

culturable bacteria than the control soil (1.97x105 CFU/g dry soil), but 101-14 (3.46x105 

CFU/g dry soil) and Riparia Gloire (2.96x105 CFU/g dry soil) did not. Rootstock variety 

5C had significantly greater total bacterial counts than either 101-14 or Riparia Gloire, but did 

not differ significantly from Schwarzmann, which had similar numbers to 101-14 and  

Riparia Gloire (P>0.05).  

Table 2.1: CFU counts log10 per gram of oven dried (OD) soil for the rhizospheres of different 
grapevine rootstocks and a control treatment. Means for total culturable bacteria (NA and KB), spore 
forming bacteria and fluorescent Pseudomonads are given. Values within the same column followed 
by different letters were significantly different at P=0.05 according to Fisher’s Protected LSD test  

 Log10 CFU/g OD soil 

Rootstock Total (NA) Total (KB) Spore formers Fluorescent Pseudomonads 

Control  5.295  c 4.826  c 4.789 N/A 

5C 5.874  a 5.738  a 4.703 4.40  a 

101-14 5.539  bc 5.113  bc 4.630 3.03  ab 

Riparia Gloire 5.472  bc 5.223  bc 4.738 1.20  b 

Schwarzmann 5.732  ab 5.598  ab 4.618 3.79  a 

LSD 0.3297 0.4865 0.1659 2.194 

P value 0.012  * 0.005  * 0.201 0.035  * 
* Denotes significance P≤0.05 
N/A = not applicable. 

2.3.1.2 Total bacteria (KB) 
As with total bacterial counts on NA, the rhizospheres of the rootstock varieties tested and 

control treatment soil differed in the mean number of total bacteria they supported on KB 

(P=0.005) (ANOVA Table 2.4-2, Appendix 2.4). Pairwise comparisons showed that rootstock 

varieties 5C (5.47x105 CFU/g dry soil) and Schwarzmann (3.96x105 CFU/g dry soil) 
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supported significantly more culturable bacteria than the control soil (6.7x104 CFU/g dry 

soil). The total bacterial counts for 101-14 (1.29x105 CFU/g dry soil) and Riparia Gloire 

(1.67x105 CFU/g dry soil) did not differ significantly from the control. Rootstock variety 5C 

had a significantly larger population of bacteria than Riparia Gloire and 101-14, but did not 

differ significantly from Schwarzmann. Rootstock variety Schwarzmann was similar to 

Riparia Gloire and 101-14 (P>0.05) (Table 2.1).  

2.3.1.3 Spore forming bacteria  
The rootstock varieties tested did not differ from each other or the control treatment in the 

mean number of culturable spore forming bacteria they supported in their rhizospheres 

(P=0.201). Pairwise testing could not proceed (ANOVA Table 2.4-4, Appendix 2.4). The log 

values are shown in Table 2.1. 

2.3.1.4 Fluorescent Pseudomonads 
The rhizospheres of the rootstock varieties tested and the control treatment soil differed in the 

mean number of culturable fluorescent Pseudomonads they supported (P=0.035) (ANOVA 

Table 2.4-3, Appendix 2.4). Pairwise comparisons showed that rootstock 5C (2.51x104 CFU/g 

dry soil) had a significantly larger population of fluorescent Pseudomonads than Riparia 

Gloire (1.58x101 CFU/g dry soil). Rootstocks 5C, 101-14 (1.07x103 CFU/g dry soil) and 

Schwarzmann (6.16x103 CFU/g dry soil) all supported very similar numbers of fluorescent 

Pseudomonads (Table 2.1). No fluorescent Pseudomonads were isolated from the soil controls 

and so this treatment was omitted from the analysis. 

2.3.2 Bacterial functionality testing 
A list of all the bacterial isolates selected and stored for functionality testing can be found in 

Appendix 2.6. For all 40 isolates, there was a high level of consistency for the six replicate 

plates, except that with the glucanase assay, some bacteria did not grow (two from 101-14, 

three from the control and four from Riparia Gloire). To compensate for this, results for each 

response category are presented as a percentage of the total number of plates in each 

treatment. However, the analysis (numbers of plates per grade) did take this into account. 

Overall, between treatments, fewer differences were found in the spectrum of bacterial 

functionality when dual plating and protease assays were considered than when glucanase and 

siderophore assays were considered.  
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2.3.2.1 Dual plating to test for biocontrol activity 
The range of inhibitory responses are shown in Figure 2.2. The bacterial isolates from Riparia 

Gloire, 101-14 and the control treatment did not differ in presence or absence variables of 

inhibition (P=0.545) or their degree of inhibition towards C. destructans in dual culture 

(P=0.104) and so pairwise comparisons could not be made. The similarities in dual plating 

responses can be seen in Figure 2.3. For the control, 101-14 and Riparia Gloire there was no 

fungal inhibition (-) for 57.5%, 52.5% and 55.0% of isolates and only slight fungal inhibition 

(+/-) for 40%, 32.5% and 35% of isolates, respectively. Moderate fungal inhibition (+) was 

shown by a few isolates from 101-14 (12.5%) and Riparia Gloire (10%), while strong fungal 

inhibition (++) was shown for only one isolate from 101-14 and the control soil (2.5%). 

Overall, it seemed that rhizosphere soils had more antagonistic isolates that the control soils.  

 

A B 

C D 

 

Figure 2.2: Representatives of the different C. destructans inhibition classes: A) – no fungal 
inhibition, B) +/- slight fungal inhibition, C) + moderate fungal inhibition and D) ++ strong fungal 
inhibition. 
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Figure 2.3: The percentage of isolates from each treatment that corresponded to a particular grade of 
C. destructans inhibition (++, +, +/- and -) on dual plate assays, by bacteria isolated from the 
rhizospheres of grapevine rootstocks 101-14 and Riparia Gloire, and from control soils. The same 
letters above the treatment bars indicates a similar response at P=0.05 (according to the Mann-
Whitney test). 

2.3.2.2 Glucanase activity  
The glucanase activity responses observed were graded and are shown in Figure 2.4.  

Riparia Gloire, 101-14 and the control treatment differed by the number of isolates in the 

degrees of glucanase activity on CMC agar (P=0.000). Pairwise comparisons showed that the 

bacterial isolates from 101-14 were significantly different from those of Riparia Gloire 

(P=0.003) and the control (P=0.000), which also differed from each other (P=0.022). The 

following trends were observed. Compared to 101-14 (55.3%), a greater number of bacterial 

isolates from Riparia Gloire (75.0%) and the control (81.1%) had no glucanase activity (–) 

(Figure 2.5). However, more bacterial isolates from 101-14 had the +/- response (15.8%) than 

from either Riparia Gloire (2.8%) or the control treatment (5.4%). Bacterial isolates from the 

control (13.5%) and 101-14 (21%) had more + responses than Riparia Gloire (5.6%). 

However, more isolates from Riparia Gloire had ++ responses (16.6%) than those of 101-14 

(7.9%) and the control (0%). When the data was analysed using presence and absence 

variables, there was a treatment difference (P=0.000). Pairwise comparisons showed that  

101-14 (44.7%) had more glucanase active isolates that either the control or Riparia Gloire 

(P=0.000), and that Riparia Gloire isolates (25.0%) did not differ significantly from the 

control (18.9%, P=0.124). 
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Figure 2.4: A glucanase assay plate viewed on a light box (366 nm) showing the differing degrees of 
fluorescence (left). Representatives of the different glucanase production classes: A) + moderate 
fluorescence, B) – no fluorescence, C) ++ high fluorescence and D) +/- slight fluorescence (right). 
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Figure 2.5: The percentage of isolates from each treatment that corresponded to a grade of glucanase 
activity (++, +, +/- and -) on CMC agar. Bacteria isolated from the rhizospheres of grapevine 
rootstocks 101-14 and Riparia Gloire, and control soils. Different lettering above treatment bars 
indicates significantly different glucanase activity responses at P=0.05 (according to the Mann-
Whitney test). 
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2.3.2.3 Protease activity 
The protease production responses observed were graded and are shown in Figure 2.6. Riparia 

Gloire, 101-14 and the control treatment differed by the number of isolates in each degree of 

protease production (P=0.001) (Figure 2.7). Pairwise comparisons showed that the bacterial 

isolates from the 101-14 treatment were significantly different from those of the control 

(P=0.001) and Riparia Gloire (P=0.001). The response of the Riparia Gloire isolates was not 

significantly different from the control (P=0.703). The following trends were observed. Fewer 

isolates from rootstock variety 101-14 (20.0%) had no protease activity (-) than those from 

Riparia Gloire (32.5%) and the control (37.5%) treatment. Additionally, while 101-14 had 

fewer + (5%) and +++ (2.5%) responses than Riparia Gloire (12.5% and 5%, respectively) or 

the control (10 and 12.5%, respectively), it did have more ++ (55%) responses than either. 

Riparia Gloire had 35% of its isolates in this category, and the control treatment, 25%. All 

treatments had very similar numbers of +/- responses being 15%, 17.5% and 15% for the 

bacterial isolates from the control, 101-14 and Riparia Gloire, respectively (Figure 2.4). When 

the data was analysed using presence and absence variables, there was a treatment difference 

(P=0.000). Pairwise comparisons showed that 101-14 (80.0%) had more protease producing 

bacterial isolates than the control (P=0.000) or Riparia Gloire (P=0.002), and that Riparia 

Gloire (67.5%) did not differ from the control (62.5%) in its proportion of protease production 

(P=0.251).  
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A B 

C D 

E 

 

Figure 2.6: Representatives of the different protease activity classes: A) – no protease activity, B) +- 
inconclusive protease activity, C) + a halo of <5 mm, D) ++ a halo of 5-10 mm and E) +++ indicating 
the most protease activity with a halo of ≥ 1 cm. 
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Figure 2.7: The percentage of isolates from each treatment that corresponded to a particular grade of 
protease activity (+++, ++, +, +/- and -) on skim milk agar by bacteria isolated from the rhizospheres 
of grapevine rootstocks 101-14 and Riparia Gloire and from control soils. Different lettering above 
treatment bars indicates significantly different protease activity responses at P=0.05 (according to the 
Mann-Whitney test). 

2.3.2.4 Siderophore production 
The siderophore production responses observed were graded and are shown in Figure 2.8. 

Riparia Gloire, 101-14 and the control treatment differed by the number of isolates in the 

degrees of siderophore activity on CAS agar (P=0.000). Pairwise comparisons showed that 

the bacterial isolates in the control treatment were significantly different from those of 101-14 

(P=0.000) and Riparia Gloire (P=0.000), which also differed in their degree of siderophore 

activity (P=0.000). The following trends were observed. The control isolates yielded only 

- - (97.5%) and +/- (2.5%) responses, indicating that most control bacteria would not grow on 

the CAS agar and the few that did, did not produce siderophores. Bacterial isolates from  

101-14 (25%) produced more siderophores by the +/- and ++ criteria (25% and 35%, 

respectively) than those from the Riparia Gloire (5% and 10%, respectively). However, in 

terms of the greatest level of siderophore production (+++), more isolates from Riparia Gloire 

(17.5%) than from 101-14 (12.5%), were found (Figure 2.9).  

When the data was analysed using presence and absence variables, there was a treatment 

difference (P=0.000). Pairwise comparisons showed that compared to the control (0%), and 

Riparia Gloire treatments (27.5%), 101-14 had the most siderophore active isolates (47.5%) 

(P=0.000 and P=0.001, respectively). 



 41

 

A B 

C D 

 

Figure 2.8: Representatives of the different siderophore activity classes. A) - - no bacterial growth and 
no siderophore activity, B) +/- bacterial growth but no siderophore activity, C) ++ bacterial growth 
with some siderophore activity (orange halo of <1 cm) and D) +++ bacterial growth with strong 
siderophore activity (orange halo of >1 cm). 
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Figure 2.9: The percentage of isolates from each treatment that corresponded to a grade of 
siderophore activity (+++, ++, +/- and - -) on CAS agar. Bacteria isolated from the rhizospheres of 
grapevine rootstocks 101-14 and Riparia Gloire, and control soils. Different lettering above treatment 
bars indicates significantly different siderophore activity responses at P=0.05 (according to the Mann-
Whitney test). 
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2.3.3 Molecular analysis of bacterial rhizosphere populations 

2.3.3.1 SSCP banding patterns 
Six replicates of soil were assessed for the rhizospheres of each grapevine rootstock variety 

and the control treatment (initial and final). The SSCP analysis produced gels whose banding 

patterns were very consistent (Figure 2.10) within each control treatment, indicating that the 

sampling system used provided good consistency. The gels showed clear differences in the 

banding patterns between initial and final controls (minus plant), with noticeably more bands 

in the initial soil controls than in the final soil controls. For example, there were several more 

bands in the initial control gels between bands 12 and 14 than in the final control gels. The 

presence of more bands reflects greater species and/or strain diversity in the initial controls.  

In addition, intensity of bands was typically more intense in the initial controls than in the 

final controls. For example, bands 8, 9, 11 and 12 were noticeably darker in the initial 

controls than in the final controls. However, band 1 was stronger in the final controls than in 

the initial controls. Although not quantitative it is possible that any shift in the relative 

intensity of a band between rootstock varieties or control treatments may reflect changes in 

the abundance of that bacterial species in the grapevine rhizosphere. Bands 7 and 13 did not 

differ significantly in intensity between control treatments. 

 

Figure 2.10: SSCP banding patterns for bacteria from bulk soil, showing six replicates (1-6) for the 
initial (i) and final (f) control treatments (‘minus plant’). Numbers and arrows identify bands that were 
successfully reamplified and their excise position. Those followed by an asterisk were successfully 
sequenced. 
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The numbers of bands in the gels (Figures 2.11 and 2.12) indicated that the rootstock variety 

that had the most variability in its rhizosphere bacterial populations was 5C. For 5C there was 

wide variation in banding patterns between replicate plants, particularly in lanes 2 and 3 

which seemed to have greater species diversity than lanes 1 and 4 to 6. Within the 

rhizospheres of 101-14 replicate plants, banding patterns were quite consistent, but there was 

some variation, particularly in lanes 1 and 6. The rootstock varieties that had the least 

variation between replicate plants were Riparia Gloire and Schwarzmann (Figure 2.11 and 

Figure 2.12).  

 

Figure 2.11: SSCP banding pattern for bacteria from grapevine rhizosphere soil, showing six 
replicates (1-6) for the 5C and Schwarzmann rootstock treatments. Also shown on the gel is a typical 
initial (Ci) and final (Cf) control replicate. Numbers and arrows identify bands that were successfully 
reamplified and their excise position. Those followed by an asterisk were successfully sequenced. 

When the banding patterns of the rootstock varieties are compared to those of the controls  

(as seen in the Ci and Cf lanes on each treatment gel), they do not differ greatly. There were 

more bands in the gels of the initial controls than in most of the rootstock treatments, and 

rootstock banding patterns were most similar to those of the final controls. All bands 

successfully sequenced (1, 7, 8, 11, 12, 14) that were found in the rootstock samples were also 

present in the final controls.  
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Figure 2.12: SSCP banding pattern for bacteria from grapevine rhizosphere soil, showing six 
replicates (1-6) for the 101-14 and Riparia Gloire rootstock treatments. Also shown on the gel is a 
typical initial (Ci) and final (Cf) control replicate. Numbers and arrows identify bands that were 
successfully reamplified and their excise position. Those followed by an asterisk were successfully 
sequenced. 

2.3.3.2 Sequenced bands  
A sample of eleven distinct bands were excised from the SSCP gels and reamplified for 

sequencing. However, only six of these ultimately produced readable sequences (Table 2.2). 

Several other bands were excised and successfully reamplified from the gel matrix but 

sequence quality was not adequate for similarity matching. For example, although a sequence 

was obtained for band 13, the BLAST search was unsuccessful. DNA sequences used for 

similarity matching within the GenBank database ranged in size from 265 bp to 304 bp. For 

each sequence, the closest BLAST matches were to uncultured bacteria whose bands were 

from denaturing gradient gel electrophoresis (DGGE) gels, to which they had greater than 

90% similarity and 95-100% sequence coverage. It was not always possible to get a bacterial 

group or species level identification from the BLAST, and so the closest match and a match 

that contained a genus name were included in the table. All matches were to bacteria that had 

been isolated from soil and sediments. Three of the sequences appeared to be from 

γ-Proteobacteria (bands 8, 12 and 14), which include the Chromatiales (Imhoff, 2005), while 

two sequences were likely to be from α-Proteobacteria (bands 1 and 7) including a 

Rhodopseudomonas sp., and one band (band 11) was likely to be from a δ-Proteobacteria 

(www. ncbi.nlm.nih.gov/). 
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Due to the similarity in GenBank matches between some of the bands, DNAMAN 4 (Lynnon 

Corporation, Canada) for Windows® was used to run sequence alignments. Flanking regions 

of sequence that were present in one sample, but for which there were no corresponding 

regions in the other sequences were removed. It was determined that sequences for bands 7 

and 8 were 94% similar to each other. The sequence for band 1 was 91% similar to both bands 

7 and 8. Additionally, the sequences for bands 12 and 14 were 96% similar to each other. The 

sequence for band 1 was 91% similar to both bands 12 and 14.  

2.3.3.3 Sequence gels 
SSCP gels that were run to confirm the correct bands had been excised showed very weak 

bands for the re-amplified PCR products compared to the original source lanes (Figure 2.13). 

Due to the difficulty in discretely excising a single band from the original SSCP gels, 

sometimes more than one band was seen in a gel lane for such a product. Bands 1, 11 and 12 

were relatively distinct from those clustered at the base of the gel and easily excised. 

However, these still produced patterns similar to those of bands 7, 8 and 14. This may have 

also been due to a single band having more than one stable conformation. 

 

Figure 2.13: An SSCP gel of the sequenced bands (B1, B7, B8, B11, B12, B14) together with the 
original source samples from Riparia Gloire (R4) and 5C (5C3, 5C4). 
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       Table 2.2: Sequenced bands excised from SSCP gel of amplified grapevine rhizosphere bacteria (16S DNA) with their highest matches from GenBank. 

Band Name Source Highest Accession  # Coverage Max ident Size 

1 Uncultured bacterium DGGE band  
Rhodopseudomonas sp.  
 

heavy metal and PAH-contaminated soil 
environmental sample 

AY649345.1 
D14426.2 

99% 
100% 

93% 
90% 

265 bp 

7 Uncultured bacterium isolate DGGE band 
Uncultured alpha Proteobacterium clone  
 

endophytic and rhizoplane  
alpine tundra soil 

EU635967.1 
FJ569895.1 

100% 
100% 

93% 
91% 

280 bp 

8 Uncultured bacterium clone  
Uncultured Chromatiales bacterium  
 

marine sediment 
lagoon sediment 

AY171368.1 
AM501811.1 

100% 
100% 

93% 
93% 

270 bp 

11 Uncultured bacterium DGGE band  
Uncultured delta Proteobacterium clone  
 

heavy metal and PAH-contaminated soil 
marsh sediment 

AY649340.1 
AY374777.1 

65% 
65% 

92% 
88% 

290 bp 

12 Uncultured bacterium DGGE band  
Uncultured Chromatiales bacterium  
 

heavy metal and PAH-contaminated soil 
lagoon sediment 

AY649345.1 
AM501645.1 

97% 
98% 

94% 
91% 

272 bp 

14 Uncultured bacterium DGGE band  
Uncultured gamma Proteobacterium clone 
 

heavy metal and PAH-contaminated soil 
alpine tundra soils 

AY649345.1 
FJ568431.1 

95% 
99% 

93% 
90% 

304 bp 
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2.4 DISCUSSION 
The rhizosphere bacterial populations of grapevine rootstock varieties 101-14, 5C, Riparia 

Gloire and Schwarzmann were studied to identify potential mechanisms for their different 

susceptibilities to black foot disease (as caused by the pathogen C. destructans). This was 

achieved through plate counts, functionality assays and molecular characterisation. These 

functionality assays were performed because the ability of rhizosphere bacteria to produce 

hydrolytic enzymes (like protease, chitinase and β-glucanase), secondary metabolites 

(including siderophores), or the ability to inhibit pathogen growth in dual culture are 

characteristics frequently associated with the suppression of soil borne plant diseases 

(Berg et al., 2005). Information obtained from the dilution plate counts and SSCP 

characterisation of bacterial populations did not directly correlate with the reported 

differences in susceptibilities. In contrast, the functionality assays indicated that although 

bacteria isolated from the rhizosphere of the most susceptible rootstock, 101-14, had more 

isolates with some biocontrol potential than those isolated from the rhizosphere of the least 

susceptible rootstock, Riparia Gloire, or the bulk soil, isolates from the rhizosphere of Riparia 

Gloire had more of the intense responses. These results, like those of Berg et al (2002), 

showed that different plant varieties have rhizosphere conditions that do not equally select for 

bacterial isolates with biocontrol capabilities and this may partially explain the differing 

susceptibilities to black foot.  

In this study, the grapevine rootstock varieties supported different total NA bacterial counts 

ranging between 3.0 - 7.5x105 CFU per gram of dry soil in the rhizosphere. Total KB bacterial 

counts also differed between varieties, ranging from 1.7 - 5.5x105 CFU per gram of dry soil, 

while fluorescent Pseudomonad counts ranged from 1.6x101 to 2.5x104 CFU per gram of dry 

soil. Spore forming bacterial counts, which did not differ significantly between treatments, 

ranged from 4.2 - 6.2x104 CFU per gram of dry soil. These findings are in accordance with 

what others have reported for grapevine soils (Song et al., 2004).  

Both Pseudomonad and spore forming bacteria are known for their potential as biological 

control agents. This study showed that total (NA and KB) and fluorescent Pseudomonad 

rhizosphere populations of the rootstock varieties tested did not correlate with their different 

susceptibilities to Cylindrocarpon black foot rot, as both the most (101-14) and least (Riparia 

Gloire) susceptible varieties supported similar rhizosphere populations, with similar counts 

recorded for the other rootstocks. However, no fluorescent Pseudomonads were isolated from 

the final control soil, suggesting that the plant roots supported this bacterial group. There were 

however, fluorescent Pseudomonads in the initial control soil (Appendix 2.5, Table 2.5-1), 
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with counts of 5.0x104 CFU per gram of dried soil (similar to those of 5C at the same 

dilution). This is probably due to the previous growth of weeds in this vineyard soil, further 

supporting the idea that plant roots and/or exudates support this bacterial group. The number 

of spore forming bacteria did not differ between rootstock varieties, or the control, making it 

unlikely that these bacteria were responsible for the differences in black foot susceptibility 

either. However, it is possible that while counts of these bacteria did not differ significantly 

between rootstocks, their functionality and bacterial species composition, or strains, within 

the groups might have differed.  

One possible explanation for the observed differences in the different bacterial plate counts 

is grapevine rootstock vigour. Plants of varieties 5C and Schwarzmann, which had the highest 

numbers of total bacteria and fluorescent Pseudomonads, typically have moderate vigour, 

while 101-14 is said to be of low-moderate vigour, but more vigorous than Riparia Gloire 

which has low vigour (Hoskins et al., 2003; pers. comm. G. Creasy, 2008). More vigorous 

grapevine rootstocks are likely to have greater root exudation than the less vigorous grapevine 

rootstocks since shoot development and root growth rate influence rhizodeposition 

(Kuzyakov, 2002). To confirm that the reported vigorousness of the rootstocks matched 

growth in this experiment, it would have been useful to record the root and shoot dry weights 

of the plants used in the experiment. However, since grapevine rootstock vigour is dependent 

on site (Kennison, 2008), what was apparent in the greenhouse may not apply to the vineyard 

environment. 

Given that the observed differences in the bacterial plate counts do not appear to correlate 

with grapevine rootstock susceptibility to black foot, it is possible that the bacterial groups 

assessed here were too broad for differences in rhizosphere populations of specific bacteria to 

be detected. It is also possible that other kinds of functionality tests could have been more 

appropriate. In their study looking at the effect of plant species on the abundance and 

diversity of V. dahliae antagonistic bacteria, Berg et al (2002) used phenotypic 

characterisation to determine the biological control potential of these bacterial isolates. Their 

diverse analysis included dual plating assays, as well as the detection of lytic enzymes 

(glucanases, chitinases, proteases), siderophores, cyanide (HCN), indole-3-acetic acid (IAA) 

and N-acylhomoserine lactones (AHLs), compounds involved in quorum sensing.  

Berg et al (2005) used these same functionality assays and employed a point system whereby 

bacterial isolates received points for antagonistic traits: 0-3 points for antagonism of 

V. dahliae and Rhizoctonia solani and 1 point for each other positive response (up to a total of 

13 points). A similar system could have been employed here to detect more subtle differences 
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in the biocontrol potential of bacteria from different rootstock rhizospheres. While Berg et al 

(2005) found that no particular assay was best at identifying bacterial isolates with high 

antagonistic potential, the 20 bacterial isolates that scored the highest with the point system 

had the following traits: 20 were antagonistic to R. solani, 17 to V. dahliae, 18 had  

proteolytic activity, 17 had cellulytic activity and siderophore production and just 3 had 

chitinolytic activity. From this, one might conclude that the most important functionality tests 

when looking for bacteria with biocontrol potential are the dual plate, protease, cellulase and 

siderophore assays, however this is probably dependent on the pathogen and 

microenvironment.  

The differences in susceptibility of the rootstocks might also be due to an unculturable 

bacterial component, or a non-bacterial component, of the grapevine rhizosphere. It has been 

established that mycorrhizal associations can be responsible for differences in plant disease 

resistance, with arbuscular mycorrhizae in particular having been shown to increase plant 

resistance to some soil-borne fungal and bacterial pathogens (Waschkies et al., 1994). For 

example, Glomus fasciculatus increased resistance of citrus plants to Phytophthora parasitica 

(Davis & Menge, 1980), Glomus mosseae increased resistance of tomato plants to Fusarium 

oxysporum (Dehne & Schonbeck, 1979) and a Glomus species increased resistance of 

cucumber plants to Pythium ultimatum (Rosendahl & Rosendahl, 1990). 

The SSCP gel for the soil controls showed that there were noticeably more bands for the 

initial controls than for the final controls, probably reflecting a loss in species diversity. The 

soil used in this study was sourced from a vineyard where it was supporting a range of weed 

and grass species. This meant that at the time of sampling, the bacterial populations in the 

initial control soil had been influenced by this prior plant growth and associated root 

exudates. It is well known that the density and functional diversity of culturable soil bacteria 

increases linearly with the number of plant species, which is typically attributed to the 

increased range and volume of rhizodeposits, or the development of more diverse soil 

microhabitats (Stephan et al., 2000). In contrast, the final control soil had not experienced the 

addition of any fresh root exudates over the course of the study, and showed a concomitant 

decrease in bacterial diversity. This correlates well with the literature as Berg et al (2002) 

reported that bacterial counts for fallow soils were typically lower than those from 

rhizosphere soils, due to root exudates being a major carbon source for soil bacteria. In this 

study, bacteria were still present in the final control soils, but populations were probably 

dominated by more tolerant, saprophytic or spore-forming bacterial species.  
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There were some correlations between the SSCP findings and those of the dilution plating, 

regarding rootstock plant variability. The SSCP gels showed more bacterial diversity in the 

rhizosphere soil of 101-14 than for Riparia Gloire. However, when considering the dilution 

plating data, 101-14 and Riparia Gloire had very similar CFU counts for the different bacterial 

groups. This would seem to indicate that while species differed between plant varieties, the 

total and broad groups of rhizosphere bacteria were very similar. Perhaps of interest, is that as 

with the dilution plating, the rootstock with the most obvious result was 5C. Variety 5C had 

both the greatest banding variability between rhizosphere samples with SSCP, and the highest 

bacterial plate counts. This is somewhat unexpected because it is often the most susceptible 

plant cultivars that have the largest bacterial populations (Gilbert et al., 1994). However, 5C 

and Schwarzmann are reportedly more vigorous that the other rootstocks, and so this, in 

relation to the greater root exudation, probably accounts for them having the largest 

rhizosphere bacterial populations. However, 5C and Schwarzmann differed in the diversity of 

their rhizosphere bacteria since bacteria from the rhizosphere of Schwarzmann were not found 

to be highly diverse by SSCP.  

The SSCP results were qualitative but not quantitative. So, while species diversity (as 

indicated by the banding patterns) was very similar for most plants (including those from the 

most and least susceptible rootstock varieties), the abundance or activity of these dominant 

species could have varied. It is possible that the very broad amplification of a relatively 

conserved ribosomal region missed potential species differences in rootstock rhizosphere 

composition. There might also have been less similarity in banding patterns between 

rootstock varieties if the plants had been left to grow for longer. For example, Smalla et al 

(2001) noted that the similarity between the rhizosphere DGGE patterns and those of the bulk 

soil decreased in the second year of an experiment. The plant dependent shifts in the relative 

abundance of bacterial populations between crops also became more distinct for strawberry, 

potato and oilseed rape. The primers used in this experiment, B342If and U806Ir, were also 

employed by Hori et al (2006) to investigate bacterial community structure and succession 

within a methanogenic bioreactor. B342If and U806Ir are universal bacterial primers which 

amplify the V3-4 region of 16S rDNA. The selection of the 16S rDNA region for 

amplification reflected an attempt to encompass the total soil bacterial community (Garbeva 

et al., 2008), although it is acknowledged that universal bacterial primers may not amplify all 

dominant members of the microbial community (Marschner et al., 2002). The primers may 

preferentially amplify some species over others, due to the secondary structure of the DNA 

flanking the priming site (Cullings et al., 2005). Further, DNA extraction efficiency varies for 

members of the microbial community (Marschner et al., 2002). Gel banding complexity could 



 51

have been reduced through the use of genus specific primers, however, this would have 

required prior choice of target genera. Such primers may have shown greater variation in the 

soil microbial community structure.  

It is also possible that the size of the amplimer used for SSCP was too large. However, the 

size of the fragments used for SSCP here (464 bp) were similar to those of Hori et al (2006) 

(450 bp). The sensitivity of SSCP tends to be inversely proportional to the size of the 

fragments used, and Zinger et al (2007) stated that a 150-250 bp fragment is ideal. Differences 

of 1 bp can be resolved 99% of the time for fragments of 100-300 bp (Sunnucks et al., 2000; 

Zinger et al., 2007), 80% of the time for fragments of 400 bp (Girman, 1996), and only 

adequate resolution can be achieved for fragments up to 775 bp (Orti et al., 1997). Primers 

yielding smaller products could be used if this experiment were to be repeated. However 

when the universal bacterial primers Com1 and Com2 (Schwieger & Tebbe, 2000), which 

produced a 407 bp fragment, were trialled in a preliminary study, they were not successful. 

DNA sequencing was used to identify the bacterial species that generated the SSCP banding 

patterns. Band excision was technically and spatially very difficult due to the closeness and 

high density of the bands, particularly in the lower regions of the gels. Using a longer gel 

might have reduced this by allowing the gels to run for longer, with greater separation on the 

lower portion of the gel, but such facilities were unavailable. This density of bands produced 

some ambiguity, with multiple products evident in several of the returned sequences, and 

some re-amplified bands producing multiple bands in the confirming SSCP gels. However, 

although some of this may have been due to imprecise excision it is also likely that some of 

the multiple bands were due to less favourable conformations of the same single stranded 

DNA sequence (Hayashi, 1991).  

All bands sequenced from the SSCP gels were found to match most closely to uncultured 

bacteria, typically from DGGE bands of soil or sediment samples. The findings are in 

agreement with those of Dohrmann and Tebbe (2005) who reported that the majority of their 

bacterial sequences from the rhizosphere of herbaceous plants were most similar to those of 

uncultured microorganisms from soil and sediment. In the current study, secondary GenBank 

matches included Rhodopseudomonas species, Chromatiales, α-Proteobacterium, 

δ-Proteobacterium and γ-Proteobacterium representatives. Rhodopseudomonas is a genus in 

the α-Proteobacteria that includes culturable species (Okubo & Hiraishi, 2007) so it is 

possible that the species excised from the SSCP gels were represented in the culture plates. 

The order Chromatiales also includes culturable members and belongs to the γ-Proteobacteria 

class (Lee et al., 2007). Given the large size of these three Proteobacteria classes, they are 
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likely to include both culturable and unculturable members. Another explanation for why the 

sequences were most closely matched to uncultured microorganisms could in part be due to 

the relatively small size (464 bp) of the products (smaller when trimmed; 265-304 bp). Opelt 

et al (2007) also found in their study that Burkholderia bacterial sequences (412 bp) were too 

short to be unambiguously identified to species level. Their sequences showed matches of 

88-100% to the NCBI database, which were similar to the 88-94% in our study. Alternatively, 

the lack of a genus or species match could indicate that novel groups of bacteria were present 

in the grapevine rhizosphere (Ahmad et al., 2009). It would have been useful to get sequences 

for the representative bacteria that were cultured (40-60 per rootstock variety), as well as for 

all the SSCP bands. This would have allowed correlations with functionality to be made. 

One of the obvious difficulties in interpreting the SSCP gels was due to the tightly clustered 

bands at the bases of the gels. Although several attempts were made to improve this 

distribution, the outcome was still not ideal. Two different acrylamide: bis-acrylamide ratios 

were tested, and the superior band resolution was achieved with 37.5:1 rather than 29:1. 

Varying the concentration of acrylamide was also explored. The 6% acrylamide gels which 

are commonly used (Hayashi, 1991) resulted in smear-like bands, but 10% (wt/vol) gels gave 

better resolution, and were similar to those used by Opelt et al (2007) who used 8% and 9% 

gels. Although complementary single strands of DNA tend to separate more efficiently in gels 

with a low cross linking ratio (Hayashi, 1991), bands can be sharpened by the use of higher 

concentrations of acrylamide and crosslinker (Yip et al., 1999). Results might have been 

improved through the use of the specialist gel matrix MDE® (FMC Bioproducts) which 

others have used to get clearer separation of DNA fragments (Schwieger & Tebbe, 2000; Hori 

et al., 2006). Several different running times (10 h, 14 h, 18 h, 20 h, 21 h and 24 h), voltages 

(250 V, 300 V and 350 V) and running temperatures (15°C, 18°C and 20°C) were trialled, and 

21 h at 250V and 15°C gave the best spread of bands without overheating the gel. 

Temperature choice is critical, as a particular temperature can either sharpen bands or reduce 

separation (Yip et al., 1999).  

During the initial optimisation studies, the SSCP bands were very faint. Sunnucks et al (2000) 

recommended optimising PCR conditions until strong, clear products could be seen on 

agarose gels, since the faint bands may have been due to a low concentration of the PCR 

product. An ammonium acetate DNA precipitation was carried out to concentrate the DNA as 

outlined by Sambrook and Russel (2001). However, this did not have the intended effect as 

bands appeared even fainter, with increased streaking along the sides of the lanes. Hongyo et 

al (1993) have reported that reducing the amount of PCR product used in SSCP is a way of 
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combating incomplete denaturation which causes such streaking (provided the product is 

sufficiently concentrated). However, highly concentrated PCR products appear to be not ideal 

either. 

Incomplete denaturation was thought to be the reason for the bands remaining incompletely 

resolved (with poor sharpness) and is frequently the reason behind unclear banding (Sunnucks 

et al., 2000). There is known to be a high rate of reannealing after denaturation (Selvakumar 

et al., 1997), and this can be a problem when high concentrations of DNA are used, as is 

typically the case in community analysis (Schwieger & Tebbe, 1998). In an attempt to 

overcome this, different gel additives were tested. The incorporation of 10% urea (a 

denaturant) gave significantly crisper bands than 5% urea, 5% glycerol, or combinations of 

both. Yip et al (1999) hypothesised that band smearing was the result of multiple 

conformations of single stranded DNA having very similar mobilities, but that these 

conformations could be made to move more uniformly by a denaturing environment. 

Alternatively, the strands can be in a transitional state between two or more conformations, or 

at equilibrium between two or more conformations (Hayashi, 1991). 

Loading dye was made fresh and performed best when less than a week old. Different 

additives were incorporated in the dye solution, both individually, and in combination. 

Additives included 0.1% SDS, 20 µM EDTA and 100 µM NaOH, but a combination of 

EDTA and NaOH yielded the clearest result.  The ratio of loading dye to PCR product was 

also varied in an attempt to increase denaturation, with 2 µL of PCR product to every 30 µL 

of loading dye giving the sharpest bands. Large volumes of denaturant and loading dye 

probably reduced the likelihood of complementary DNA strands reannealing. Other 

concentrations of loading dye to PCR product tested included: 17:5, 25:7, or 30 parts to 0.25, 

0.5, 1, 2, 3, 4, 5, 6, 7, or 8. The best ratio of loading dye to product (30:2) was used in 

conjunction with a longer (7 min) heat denaturation protocol than initially trialled (5 min), 

yielding crisper bands with less streaking.  

In an attempt to simplify the dense gel banding patterns, the primers B342If and U806Ir-(Ph) 

were used so that one of each of the complementary DNA strands might be phosphorylated. 

Lambda exonuclease (Fermentas, Vilnius, Lithuania) was used to digest the phosphorylated 

strand of each PCR generated DNA molecule, resulting in completely single stranded product. 

While this was used successfully by others including Schweiger and Tebbe (1998) and Hori  

et al (2006) to get a less complex gel, it was not successful in this instance, even when a 

purification kit (QIAGEN QiaQuick® spin columns, microcentrifuge and vacuum protocol, 

Germany) was used prior to or after the digestion.  
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After extensive optimisation, an attempt to decrease PCR product concentration revealed that 

reducing the number of PCR cycles from 32 to 30, significantly increased the resolution of the 

bands. There was not sufficient time to re-amplify all the samples, but if the experiment were 

repeated, it might be advisable to use fewer PCR cycles. Finally, different gel stains were 

tested in an attempt to gain clearer visualisation of the bands without excessive background 

staining. The silver stain with the NaOH buffer (Zhou et al., 2005) gave the strongest bands, 

although background staining was significant. Other stains tested include SYBR® Safe 

(Invitrogen), Syber Gold (Invitrogen), Ethidium Bromide and three modifications of the silver 

stain (Bassam & Gresshoff, 2007; Ji et al., 2007; Han et al., 2008). It is possible that the pale 

SSCP banding, despite strong PCR products (as seen on agarose gels), could be due to most 

of the sequences having very high mobility conformations, which were lost off the SSCP gels. 

However, this is normally only the case for some sequences (Sunnucks et al., 2000). A time 

staggered experiment could determine if the main bands were running off the gel. Overall, 

given that SSCP is meant to be simpler and require little optimisation (Sunnucks et al., 2000), 

and taking into account how much time was spent on optimisation, perhaps DGGE, although 

more involved, would have been a better choice. 

Ideally, given the findings of dilution plating and molecular characterisation, it would have 

been desirable to use rootstock 5C in the functionality assays, but experimental constraints did 

not allow for this. Instead, Riparia Gloire and 101-14, with their different susceptibilities to 

black foot were used, meaning that comparisons across all experiments could only be made 

for these rootstocks. More bacteria with potential biocontrol activity were isolated from the 

rhizosphere of 101-14 than Riparia Gloire or the control. However, perhaps differences in 

susceptibility are due to the activity of a few dominant and highly active rhizosphere bacteria 

(as seen with Riparia Gloire’s glucanase and siderophore activity), rather than the less intense 

activity of a larger number of bacterial isolates (as seen with 101-14). With the observed 

differences in the functionality profiles of the different treatments, it is apparent that the 

rootstocks are showing some degree of influence in terms of their rhizosphere bacterial 

community. This is not unexpected given that different plant species and even cultivars of the 

same species have been shown to select different rhizosphere bacterial communities, probably 

due to differences in root exudation, as outlined previously.  
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The colony morphologies of the bacterial isolates used for functionality testing were very 

similar between treatments (Appendix 2.6). However, given the differences observed in 

rootstock activity, with bacteria isolated from the rhizosphere of 101-14 having the largest 

proportion of protease, glucanase and siderophore producing bacterial isolates, one might 

expect them to be from a more morphologically diverse selection. Isolates in this trial were 

selected based by their apparent frequency, and some may have been of the same bacterial 

species or strain. In other trials like those by Berg et al (Berg et al., 2002; 2005), selection of 

isolates was based on differences in colony morphology, thereby potentially increasing isolate 

diversity. Perhaps this is part of the reason why they found a higher number of functionally 

active isolates. Furthermore, Berg et al (2002) used the nutrient poor medium, R2A for 

dilution plating, sometimes in combination with high molecular weight substrate enrichment 

plates. They noted that the enrichment plates favoured the fast growing γ-Proteobacteria. 

Perhaps the nutrient rich NA used here also favoured the faster growing groups at the expense 

of the slower growing ones, resulting in a bias in the bacteria selected as representatives for 

the different rootstock varieties, and this could have a follow on effect for the functionality 

assays. However, since the Proteobacteria were common in the molecular characterisation of 

the grapevine rhizosphere, this does not appear to have been a major concern here. 

Dual cultures with C. destructans were used to test for antagonistic activity. Bacterial isolates 

from the rhizospheres of Riparia Gloire and 101-14 as well as the bulk soil of the control 

treatment did not differ in their degree of antagonism towards C. destructans in dual culture. 

Thus, there was not a correlation between the dual plating results and the increased number of 

bacteria that produced high levels (degree) of metabolites (although at times a lower 

percentage of active isolates), associated with biocontrol activity, from the rhizosphere of 

Riparia Gloire. Although the bacteria from the rhizosphere of grapevine plants were not 

antagonistic towards C. destructans in dual culture, it does not mean that they were incapable 

of doing this in vivo. For the dual plating assays, the nutrient rich fungal medium, PDA was 

used, rather than the Waksman agar used by Berg et al (Berg et al., 2002; 2005). As PDA is a 

general fungal growth media it may not be conducive for antibiotic production and may have 

limited bacterial growth. False negatives were possible since the dual plating environment is 

artificial compared to the soil environment, and antibiotic synthesis is known to be reliant on 

the metabolic status of the cell, nutrient availability and environmental stimuli (Thomashow, 

1996). Plant development also influences antibiotic production, something not replicated in 

the dual plate assay. For example, DAPG production is induced by the root exudation of older 

plants, but not those of young plants (Picard et al., 2000). Barka et al (2002) also reported that 

dual plates are not always an accurate measure of bacterial antagonism of fungi.  
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The percentage of rhizosphere bacterial isolates antagonistic to fungal pathogens in other dual 

plating trials was similar to that found here. For example, Berg et al (2002) reported that the 

proportion of bacteria isolated from the soil that were antagonistic varied between the 

rhizospheres of strawberry (9.5%), oil seed rape (6.3%), potato (3.7%) and bulk soil (3.3%). 

Berg et al (ref 2005) observed that 3-13% of rhizosphere isolates were antagonistic to the soil-

borne pathogens V. dahliae and Rhizoctonia solani. In another study, Berg et al (2006) found 

that the proportion of antagonistic bacterial isolates was 9.6% in rhizospheres, and that there 

were a higher proportion of antagonists from the strawberry rhizosphere (10.2%) than from 

the rhizosphere of oilseed rape (8.9%). Here, few isolates from the rhizosphere of 101-14 

(12.5%) and Riparia Gloire (10%) showed moderate inhibition of C. destructans, and just one  

from both the control and 101-14 treatments showed strong inhibition (2.5%). 

Considering the functionality assays performed, it is possible that false negatives occurred as 

a function of the bacterial concentration in the nutrient broths used to inoculate the plates. 

Certain numbers of bacteria may be required before they can produce certain secondary 

metabolites or extracellular hydrolytic enzymes. Berg et al (2002) noted that for a large 

number of fungal antagonistic bacteria, the genes involved in disease suppression are 

regulated in response to bacterial population densities, a phenomenon known as quorum 

sensing (Pierson et al., 1994; 1998; Eberl, 1999). If time had been sufficient, it would have 

been useful to have determined the number of CFUs used to inoculate the assay plates. For 

the purpose of this experiment, this issue was dealt with by consistently using one bacterial 

colony to inoculate broths which were grown for similar periods and conditions. 

While large differences between grapevine rootstocks susceptible to and more tolerant of 

black foot were not detected, rhizosphere bacteria may still be responsible for such 

differences in susceptibility to black foot. The rhizosphere bacteria of Riparia Gloire may not 

directly antagonise C. destructans through the production of secondary metabolites or 

hydrolytic enzymes, but they may have an indirect effect in the complex grapevine 

rhizosphere system. For example, plant growth promoting bacteria have been implicated in 

the biological control of plant pathogens through competition for ecological niches (root 

surface and rhizosphere), thereby possibly reducing infection by colonising infection sites, 

producing inhibitory secondary metabolites or by inducing systemic resistance in the plant. 

Competition for nutrients may also play a part (Compant et al., 2005). 
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In conclusion, the role of grapevine rhizosphere bacteria in influencing grapevine rootstock 

susceptibility to black foot is inconclusive. Dilution plating showed that total (NA and KB) 

and fluorescent Pseudomonad rhizosphere populations of the rootstock varieties tested did not 

correlate with their different susceptibilities to Cylindrocarpon black foot rot. SSCP 

reinforced this, showing genus/species diversity to be very similar for most rootstocks. 

However, the functionality tests indicated that Riparia Gloire, the least susceptible rootstock 

to Cylindrocarpon black foot rot, had more rhizosphere bacteria with strong responses than 

did the more susceptible 101-14. These rhizosphere bacteria with the increased ability to 

produce hydrolytic enzymes or siderophores may play a role in suppressing Cylindrocarpon 

black foot disease.  
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CHAPTER 3  
CYLINDROCARPON DESTRUCTANS AND FUSARIUM 

OXYSPORUM PATHOGENICITY TRIAL 

3.1 INTRODUCTION 
Cylindrocarpon destructans and Fusarium oxysporum are two root rot pathogens of 

grapevines. Cylindrocarpon destructans is a causal agent of black foot, a disease that is a 

serious threat to grapevines around the world (Halleen et al., 2006a). Fusarium oxysporum 

has been isolated from the rotting roots of declining grapevines (Grasso, 1984) but has not 

always been regarded as a causal agent of the rot. Granett et al (1998) reported that it was 

rarely invasive unless roots were damaged or phylloxera-galled. However, in glasshouse 

trials, Highet and Nair (1995) confirmed the potential of F. oxysporum as a grapevine 

pathogen. Further, F. oxysporum f.sp. herbemontis was considered by de Andrade (1993) to 

be the most important pathogen of grapevine cultivars in Brazil, where it causes significant 

plant death.  

As established earlier (Table 1.1), grapevine rootstocks differ in their susceptibility to black 

foot disease, as demonstrated by Harvey and Jaspers (2006) and Jaspers et al (2007). 

However, little is known about the significance of F. oxysporum in New Zealand vineyards 

since the susceptibilities of commonly used New Zealand rootstocks to this pathogen are 

unknown. Differences in susceptibility have been investigated in Brazil, where de Andrade  

et al (1995) reported that the resistance of rootstock varieties to F. oxysporum f.sp. 

herbemontis was variable. In Australia, Edwards et al (2007) observed that the extent of root 

necrosis caused by F. oxysporum was influenced by plant vigour, with low vigour vines 

having greater disease severity than more vigorous vines.  

The research trial reported here investigated the resistance of grapevine rootstock varieties 

Riparia Gloire, 5C, Schwarzmann and 101-14 to C. destructans and F. oxysporum. It also 

aimed to confirm the previously recorded susceptibilities of grapevine rootstocks to  

C. destructans. With soil being used as the growth medium, the trial could make some 

comparisons between previous glasshouse trials done in potting mix (Harvey & Jaspers, 

2006), and field trials in vineyards (Bleach, 2007). 
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3.2 METHODS 

3.2.1 Plant preparation 
For this experiment, four ungrafted rootstock varieties were used. They were: 101-14, 

Schwarzmann, 5C and Riparia Gloire. Callused cuttings of 5C and 101-14 were obtained 

from a commercial nursery, Corbans Viticulture (Auckland, New Zealand). Cuttings of 

Schwarzmann and Riparia Gloire were obtained from the Lincoln University vineyard and 

callused in pots of vermiculite set on heat pads at 25°C for two months (April and May 2006). 

The cuttings of all four rootstock varieties were grown in 2.5 L pots containing a 50/50 mix of 

soil (Wakanui silt loam classified as a mottled immature pallic soil), which was sourced from 

the Lincoln University vineyard, and a potting mix [(80% horticultural bark (grade 2): 20% 

pumice (grade 3, 1-4 mm)]. The potting mix was amended with 2 kg of a 3-4 month fertilizer, 

Osmocote Exact [(Scotts Australia Pty Ltd; (16:5:9.2) (N:P:K)], 1 kg agricultural lime and 

1 kg Hydraflo (Scotts Australia Pty Ltd) per 1 m3. Soil was introduced into the potting mix in 

order to ensure that key soil fungi and bacteria were available for the development of the 

complex interactions typical of a natural soil environment, and to more closely reflect natural 

infection of grapevines in a vineyard. After three months growth, the plants were repotted into 

4 L pots of the same soil/potting mix amended with 5 kg of an 8-9 month fertilizer, Osmocote 

Exact [(Scotts Australia Pty Ltd; (15:4.0:7.5) (N:P:K)], 1 kg agricultural lime and 1 kg 

Hydraflo (Scotts Australia Pty Ltd) per 1 m3. Any dead vines were replaced with rooted, 

callused cuttings (September 2006) from the same source which had been grown to the same 

developmental stage in potting mix (for numbers of replacements, see Table 3.6-1 in 

Appendix 3.6). These were also grown in 4 L pots. 

Pots were laid out in a completely randomised design on corrugated metal tables for 1 month, 

and on mesh tables for the remaining period. Vines were kept moist by daily watering and 

grown in a greenhouse for a total of 11 months spanning winter (June 2006) – winter (May 

2007). During this time, temperatures ranged from 14ºC (minimum) to 30ºC (maximum). 

Vines were placed under high pressure sodium lamps (Son-T Agro 400, Philips) from the start 

of autumn (March 2007) until harvest (May 2007) to ensure light levels were sufficient for 

good growth. All weeds were removed by hand.  

3.2.2 Pathogen inoculation 
Plants of each rootstock variety were inoculated with C. destructans, F. oxysporum, or SDW 

(controls), in spring (November 2006). The C. destructans inoculum was a mixture of three 

isolates that had been isolated from vineyards and were reported as pathogenic to grapevines 
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in other trials, being Col c (Central Otago), Mar 13a (Marlborough), WPA 1a (Waipara)  

(pers. comm. C. Probst, 2006) and B1N3P4 (Lincoln) (pers. comm. C. Bleach, 2006). 

Cultures of these isolates were grown on PDA for 7-14 d at 20ºC. 

The F. oxysporum isolates used were originally isolated from grapevine material, 

morphologically identified by Ian Harvey (Plantwise, Lincoln) and made available as several 

mixed culture plates. From these, six isolates (80B, 81B, 105A, 39A, 127B and 24B) were 

selected, grown in pure culture and their identities confirmed by sequencing. The ribosomal 

DNA (rDNA) was amplified from fungal mycelia using REDExtract-N-Amp™ (Sigma-

Aldrich, USA) as per the manufacturer’s instructions. Fragments of the internal transcribed 

spacer (ITS) regions of fungal rDNA were amplified using primers ITS4 and ITS5  

(5′-TCCTCCGCTTATTGATATGC-3′ and 5′-GGAAGTAAAAGTCGTAACAAGG-3′, 

respectively) using the following protocol: 94°C for 2 min (denaturation), then 35 cycles of: 

30 s at 94°C (denaturation), 30 s at 55°C (annealing) and 1 min at 72°C (elongation), with a 

final cycle of 7 min at 72°C.  

Sequencing of PCR products was done in one direction at the Lincoln University Sequencing 

Facility using primer ITS5. Sequences of about 520 bp were obtained and analysed using the 

GenBank (http://www.ncbi.nlm.nih.gov/) BLAST (Altschul et al., 1990) function, confirming 

all isolates were F. oxysporum (99% maximum identity and 100% coverage) (Table 3.2-1, 

Appendix 3.2). For this trial, F. oxysporum isolates that differed in colour and colony 

morphology were selected in an effort to maximise the genetic diversity of the isolates used to 

inoculate plants (Figure 3.3-2, Appendix 3.3). However, a sequence comparison using 

DNAMAN version 4 (Lynnon Corporation, Quebec, Canada) revealed isolates did not 

significantly differ from each other and shared great sequence homology (Table 3.2-2, 

Appendix 3.2). Cultures of these six isolates were grown on oatmeal agar (30 g oatmeal,  

20 g agar per 1L SDW), with plates left unwrapped and exposed to natural light so as to 

increase sporulation (Yamoah, 2007) for 14 d at 18-20ºC.  

Cultures of C. destructans and F. oxysporum were washed with SDW containing 0.001% 

Tween 80 (polyoxyethylene 20 sorbitan mono-oleate; BDH Chemicals Ltd), and gently 

stroked with sterile glass slides to loosen conidia. These suspensions were sieved (150 μm 

pore size) to exclude any bulk mycelium. A haemocytometer was used to count conidia and 

concentrations adjusted to 106/mL with SDW and Tween 80 (0.001%). For each pathogen, 

inoculum was prepared by mixing equal volumes of conidial suspensions from all isolates.  

A diluted sample (100 μL of 103/mL) of this mixed-isolate suspension was plated on PDA, 

http://www.ncbi.nlm.nih.gov/
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incubated at 20ºC for 2 d and colony forming units (CFU) counted. An average of 97 colonies 

grew on each of the three replicate plates, indicating 97% conidial viability.  

On the day of inoculation, immediately prior to the addition of the conidial suspensions, the 

root systems of all the vines were wounded using an asparagus knife (which had a sharp, 

square tip) that was driven vertically down into the soil at four equidistant locations 

approximately 8 cm from the trunk. All plants were inoculated with 50 mL (per plant) of the 

appropriate mixed 106 conidial suspension, or 50 mL SDW (controls). The conidial 

suspension was gently poured over the soil surface close to the wounding sites. All pots were 

given a further 50 mL of tap water to help carry conidia into the soil, and then left undisturbed 

for 24 h. After inoculation, the plants were grown for a further 6 months to allow symptoms 

to develop. Fifteen replicates were set up per treatment to allow for loss of plants. Subsequent 

assessment of pathogen infection was conducted on all living replicates, 8-10 plants per 

treatment. The different treatments are summarised in Table 3.1. 

Table 3.1: The 12 treatment combinations in this experiment, showing rootstock variety, inoculum 
type and the number of replicates assessed. 

Rootstock Treatment Description Replicates

O not inoculated 10 

F inoculated with F. oxysporum 9 

101-14 

C inoculated with C. destructans 10 

O not  inoculated 10 

F inoculated with F. oxysporum 9 

5C 

C inoculated with C. destructans 8 

O not inoculated 10 

F inoculated with F. oxysporum 8 

Schwarzmann 

C inoculated with C. destructans 9 

O not inoculated 10 

F inoculated with F. oxysporum 10 

Riparia Gloire 

C inoculated with C. destructans 8 
 

3.2.3 Plant assessment 

3.2.3.1 Root and shoot dry weights 
After 11 months growth, grapevine plants were uprooted, washed to remove all soil, air dried 

for 2 h at room temperature and the roots cut off at the trunk base. Roots from each plant were 

placed in a separate brown paper bag which was closed with a single staple. The shoots of 

each plant, minus the trunk, leaves and petioles, were placed in a brown paper bag and closed 
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with a single staple. The bags of roots and shoots were dried in a 50˚C oven to constant 

weight at the Field Service Centre, Lincoln University, and after 14 d were weighed (Scheck 

et al., 1998b). At this time the recorded dry weights were found to be stable, since weights of 

random samples did not differ between two consecutive days. Due to the dark colour of the 

roots it was not possible to examine them for the presence of disease related necrosis. 

3.2.3.2 Infection status 

3.2.3.2.1 Surface sterilisation 
The vine trunks were sterilised in batches of the same treatment. They were washed 

thoroughly with tap water, air dried and the lower 20 cm cut off to enable this section to be 

completely submerged in the tanks of sterilising solutions. These trunks were soaked in 70% 

ethanol for 30 s, in a 0.35% sodium hypochlorite solution for 5 min and in 70% ethanol for 

30 s. Each trunk was then wrapped in a new paper towel to absorb the excess ethanol, then 

placed in a new plastic bag, and stored at 4ºC until tissue isolation (which was done within 

24 h of surface sterilisation). 

3.2.3.2.2 Tissue isolation 
The root crown, comprising the lowest 1-2 cm of the trunk base was discarded. A 1-2 mm 

slice of the basal end of the trunk (0 cm) was then cut into four uniform tissue pieces 

(~3 mm2) and placed equidistantly near the outer edge of a PDA plate amended with the 

antibiotic chloramphenicol (Sigma; 0.25 g/L). Another sliver of trunk tissue was taken 5 cm 

above the basal section and placed in the centre of the same PDA plate (Figure 3.1). Plates 

were incubated at 20˚C with 12 h of dark and 12 h of light, for a period of 7 d, after which the 

tissue sections that gave rise to characteristic C. destructans and F. oxysporum colonies were 

counted (Figures 3.2 and 3.3). 
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Figure 3.1: The orientation on PDA plates of tissue fragments, four taken from the basal end (0 cm) 
and one taken 5 cm from the basal end (5 cm), of a grapevine trunk. 

 

Figure 3.2: Examples of stem pieces infected with Cylindrocarpon destructans isolates after 
incubation on agar. 

 

Figure 3.3: Examples of stem pieces infected with Fusarium oxysporum isolates after incubation on 
agar. 

5 cm 

0 cm 
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3.2.3.2.3 Identification 
Fungal isolates from the experimental plants were identified as C. destructans and F. 

oxysporum by comparison with culture plates and conidia of the pathogens used for 

inoculation. All isolates were identified by colony morphology first, and at least 30% of all 

suspected positives (for both pathogens) were randomly selected for subculture. From these 

subcultures, slide mounts of conidia were made and examined by light microscope. The 

criteria used in the identification of C. destructans and F. oxysporum isolates are described in 

Appendix 3.3 and Appendix 4.4. Accuracy of identification was calculated by dividing the 

number of correctly identified isolates from the tissue pieces (based on spore morphology) by 

the number of isolates subcultured, and multiplying by 100. 

3.2.4 Statistical analysis 
Experimental data was analysed by Univariate Analysis of Variance (ANOVA) using SPSS® 

for Windows® V13.0 (SPSS Inc., Chicago, IL, USA, 2007). The normality of the data set was 

confirmed through visual assessment of the residual plots and considered adequate. ANOVA 

was considered the most appropriate analysis as it allowed for the experimental design. Non-

parametric tests would not have accurately represented the data (pers. comm. C. Frampton, 

2008). When ANOVA indicated overall significance for disease severity data (proportion of 

infected tissue pieces), and dry weight data, multiple comparison tests (pair-wise) were 

conducted with Fisher’s Protected Least Significant Difference (LSD) tests. ANOVA was 

also used to determine the effect of overall (plant) C. destructans and F. oxysporum disease 

incidence on root and shoot dry weights (Tables 3.5-9 and 3.5-10, Appendix 3.5). Logistic 

regression was conducted on disease incidence data, (proportion of infected plants) to account 

for experimental design, and then treatments compared using Chi-square and Pearson  

Chi-square, to determine significance of the differences. Overall incidence was determined 

from samples taken at 0 cm and 5 cm from the stem base. The mean values given in the text 

are those predicted by the ANOVA (raw data means shown in Appendix 3.5). As there was no 

indication of variation between them, replacement and original plants were analysed together. 

3.3 RESULTS 

3.3.1 Infection status: tissue isolation 

3.3.1.1 Identification of isolates 
Accuracy of identification from colonies grown on PDA was deemed to be approximately 

70% for C. destructans and 90% for F. oxysporum. Isolates of F. oxysporum and C. 

destructans cultured from the experimental plants had spore and colony morphologies that 
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matched those of the isolates used to inoculate the plants. It was considered acceptable to 

include the other similar Cylindrocarpon or Fusarium species in the assessment because they 

reflected the natural situation being investigated in this experiment. The original isolation 

plates contained other fungi, mainly Fusarium sp., Alternaria sp., Botryosphaeria sp., 

Pythium sp., Penicillium sp. and Paecilomyces sp. (Table 3.1-1, Appendix 3.1).  

3.3.1.2 Disease severity (0 cm) and incidence (5 cm) 
The significances and sources of variation for disease severity at 0 cm differed for  

F. oxysporum and C. destructans. Inoculation with F. oxysporum or C. destructans increased 

disease severity, P=0.018 and P=0.056, respectively (Table 3.2). Non-inoculated controls had 

the lowest disease severity for both pathogens, but C. destructans (10.0%) background 

infection was slightly lower than that of F. oxysporum (13.1%). Background infection was 

present because the soil provided inoculum. The effect of rootstock variety on disease severity 

by the two pathogens at 0 cm was large (P=0.000) for C. destructans and (P=0.090) for  

F. oxysporum. There was an interaction between inoculation treatment and rootstock variety 

for F. oxysporum (P=0.062) but not C. destructans (P=0.300).  

Analysis of both F. oxysporum and C. destructans disease incidence at 5 cm revealed that 

neither inoculation treatment (P=0.165 and P=0.116, respectively) nor the interaction between 

rootstock variety and inoculation treatment was significant (P=0.904 and P=0.894, 

respectively). Cylindrocarpon destructans disease incidence was influenced by rootstock 

variety (P=0.002), mimicking the significance at 0 cm. However, F. oxysporum disease 

incidence at 5 cm was not influenced by rootstock variety (P=0.385). 

Table 3.2: The effect of inoculation treatment (C. destructans, F. oxysporum or none) on F. 
oxysporum and C. destructans disease severity (% infected wood pieces) at 0 cm (P=0.018). Within a 
column, values followed by different letters were significantly different at P=0.05 according to 
Fisher’s Protected LSD. 

Inoculation treatment F. oxysporum disease severity 
(%) 

C. destructans disease severity 
(%) 

C (C. destructans) 26.9  ab 23.0  a 

F (F. oxysporum) 34.1  a 9.45  b 

O (control, none, SDW) 13.1  b 10.0  b 
 

3.3.1.2.1 Fusarium oxysporum disease severity 
Analysis of F. oxysporum disease severity data at 0 cm from the stem base (ANOVA 

Table 3.4-3, Appendix 3.4) revealed significant differences in severity, depending on whether 

a plant was inoculated with F. oxysporum, C. destructans or left non-inoculated (P=0.018) 



 66

(Table 3.2). There was greater disease severity in the F. oxysporum inoculated plants than in 

the non-inoculated controls (P=0.005) but it was not greater than in the C. destructans 

inoculated plants (P=0.340). The difference between plants inoculated with C. destructans or 

left non-inoculated was almost significant, with a trend for greater disease severity in the  

C. destructans inoculated plants than in the non-inoculated controls (P=0.065). Rootstock 

variety alone caused some effect on F. oxysporum disease severity (P=0.090) at 0 cm. Riparia 

Gloire (32.7%) had the greatest F. oxysporum disease severity, while 101-14 (26.8%) and 

Schwarzmann (27.4%) had similar, moderate F. oxysporum disease severity, and 5C (11.8%) 

had the least (Figure 3.4).  

There was some interaction between grapevine rootstock variety and inoculation treatment 

(P=0.062) which affected F. oxysporum disease severity at 0 cm. The susceptibilities of the 

rootstocks were not consistent for the different inoculation treatments. Figure 3.4 shows the 

effect of F. oxysporum inoculation on the disease severity of both F. oxysporum and C. 

destructans. Inoculation with F. oxysporum resulted in 101-14 having the greatest F. 

oxysporum disease severity (52.9%), Riparia Gloire (32.5%) and Schwarzmann (36.9%) 

having moderate F. oxysporum disease severity, and 5C having the lowest F. oxysporum 

disease severity (14.0%). Inoculation with F. oxysporum did not increase C. destructans 

disease severity at 0 cm. For F. oxysporum inoculated and non-inoculated plants C. 

destructans disease severity was 22.2% and 25.0% (101-14), 16.6% and 15.0% (5C), 0% and 

0% (Riparia Gloire) and 1.0% and 0% (Schwarzmann), respectively.  
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Figure 3.4: The effect of F. oxysporum inoculation (+F) compared to no inoculation (O) on both F. 
oxysporum (F) and C. destructans (C) disease severity for the different grapevine rootstocks, at 0 cm 
from stem base. Error bars are SE of the means and show overall differences between treatment 
combinations. 

3.3.1.2.2 Fusarium oxysporum disease incidence 
Analysis of F. oxysporum disease incidence at 5 cm from the stem bases (ANOVA 

Table 3.4-4, Appendix 3.4) showed that it was not affected by F. oxysporum inoculation 

(P=0.165), by rootstock variety (P=0.385), or by the interaction between rootstock variety and 

inoculation treatment (P=0.904). When overall F. oxysporum disease incidence was 

considered, taking into account infection at both 0 cm and 5 cm, the effect of rootstock variety 

was not significant (P=0.123), and pairwise comparisons could not be undertaken. Overall  

F. oxysporum disease incidence for the rootstock varieties was 55.6% (Schwarzmann), 48.3% 

(101-14), 42.9% (Riparia Gloire) and 25.0% (5C). 

3.3.1.2.3 Cylindrocarpon destructans disease severity  
Inoculation treatment influenced C. destructans disease severity at 0 cm (P=0.056). As 

expected, there was greater C. destructans disease severity when plants were inoculated  

with C. destructans (23.0%), than when they were inoculated with F. oxysporum (9.5%) or 

left non-inoculated (10.0%). Pairwise comparisons showed that plants inoculated with  

C. destructans had greater C. destructans disease severity than those inoculated with  
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F. oxysporum (P=0.034) or non-inoculated (P=0.039), the latter being similar (P=0.931) 

(Table 3.2). 

Analysis of C. destructans disease severity data at 0 cm from the stem base, (ANOVA 

Table 3.4-1, Appendix 3.4) revealed significant differences in severity depending on the 

grapevine rootstock variety involved (P=0.000). Rootstock varieties 101-14 and 5C did not 

differ in their disease severities (P=0.988) (28.2% and 28.1%, respectively), and both had 

significantly higher disease severity than either Riparia Gloire (0.3%, P=0.000) or 

Schwarzmann (0.6%, P=0.000). The latter two were similar in their disease severities 

(P=0.900) (Table 3.3). 

Table 3.3: Cylindrocarpon destructans disease incidence data (5 cm and overall per plant) and disease 
severity data (% infected wood pieces at 0 cm) for different grapevine rootstock varieties. Within a 
column, values followed by different letters were significantly different at P=0.05 (according to 
Fisher’s Protected LSD). 

Rootstock variety C. destructans disease incidence (%) C. destructans disease severity (%)

 5 cm Overall*  

101-14 33.9  a 44.8  a 28.2  a 

5C 16.7  ab 50.0  a 28.1  a 

Riparia Gloire 4.1    b 3.6    b 0.3    b 

Schwarzmann 3.1    b 7.4    b 0.6    b 

P value 0.002 0.000 0.000 
* Overall disease incidence being the combined plant mean for 0 cm and 5 cm incidence data.  

The interaction between rootstock variety and inoculation treatment on C. destructans disease 

severity was not significant (P=0.300). Figure 3.5 shows the effect of C. destructans 

inoculation on the disease severity of both F. oxysporum and C. destructans. Inoculation with 

C. destructans resulted in 5C (52.7%) having the greatest C. destructans disease severity, 

followed closely by 101-14 (37.5%), while Riparia Gloire (1.0%) and Schwarzmann (2.7%) 

had low C. destructans disease severity. 

The effect of C. destructans inoculation on F. oxysporum disease severity differed between 

rootstocks (P=0.062). There was no significant increase caused in 101-14 (10%) and 5C 

(14%) (Figure 3.5), however, in Riparia Gloire, C. destructans inoculation caused a 

significant (P<0.05) increase in F. oxysporum disease severity (55.7%) compared to non-

inoculated (10%) and F. oxysporum inoculated (32.5%). For Schwarzmann, the F. oxysporum 

disease severities for these treatments were 27.9%, 17.5% and 36.9%, respectively. For 

Riparia Gloire and Schwarzmann, inoculation with C. destructans increased F. oxysporum 

disease severity at 0 cm. 
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Figure 3.5: The effect of C. destructans inoculation (+C) compared to no inoculation (O) on both C. 
destructans (C) and F. oxysporum (F) disease severity for the different grapevine rootstocks, at 0 cm 
from stem base. Error bars are SE of the means and show overall differences between treatment 
combinations. 

3.3.1.2.4 Cylindrocarpon destructans disease incidence 
Overall, C. destructans disease incidence at 5 cm from the stem base (ANOVA Table 3.4-2, 

Appendix 3.4) was not affected by C. destructans inoculation (P=0.116), nor was it affected 

by the interaction between rootstock variety and inoculation treatment (P=0.894). Only 

rootstock variety significantly influenced C. destructans disease incidence (P=0.002). Plants 

of 101-14 had greater C. destructans disease incidence than all other varieties (P≤0.05) which 

were similar (P≥0.05) (Table 3.3). Similar trends in disease incidence were observed at 0 and 

5 cm. When overall C. destructans disease incidence was considered, taking into account both 

0 cm and 5 cm infection, there was a significant effect of rootstock variety (P=0.000). 

Pairwise comparisons revealed that 101-14 and 5C did not differ significantly in the level of 

disease incidence (P=0.696) and both had greater disease incidence than Riparia Gloire 

(P=0.000) and Schwarzmann (P=0.002) which were similar (P=0.531) (Table 3.3). 

3.3.1.3 Root Dry Weights 
ANOVA analysis (ANOVA Table 3.4-5, Appendix 3.4) showed that root dry weight was not 

significantly influenced by inoculation treatment (P=0.628) or the interaction between 

rootstock variety and inoculation treatment (P=0.586). However, rootstock variety alone did 
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influence root dry weight (P=0.000). Plants of 5C had greater mean root dry weights than all 

other varieties (P≤0.002) which were similar (Table 3.4). 

Table 3.4: Mean root dry weights (g) of grapevine rootstocks when data for non-inoculated and 
inoculated plants were combined. Values followed by different letters were significantly different at 
P=0.05 (according to Fisher’s Protected LSD). 

Rootstock variety Root dry weight (g)

101-14 26.9  a 

5C 34.7  b 

Riparia Gloire 24.7  a 

Schwarzmann 24.3  a 
 

ANOVA analysis (ANOVA Tables 3.4-7–3.4-14, Appendix 3.4) of individual rootstock 

varieties showed that overall disease incidence of C. destructans and F. oxysporum affected 

the root dry weight of some varieties (P=0.023 and P=0.019, respectively). There was no 

correlation between F. oxysporum incidences and the root dry weights of 101-14 (P=0.127), 

Riparia Gloire (P=0.590) or Schwarzmann plants (P=0.127), but there was for 5C whose root 

dry weights were significantly lower in plants infected with F. oxysporum than those that 

were not (P=0.019) (Figure 3.6). The incidence of C. destructans had no effect on the root dry 

weights of Riparia Gloire (P=0.929) or Schwarzmann plants (P=0.498). However, plants of 

101-14 had significantly higher root dry weights when infected with C. destructans, than 

when not (P=0.023), a trend also reflected by 5C (P=0.051) (Figure 3.7). 
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Figure 3.6: Mean root dry weights (g) of different grapevine rootstock varieties infected with F. 
oxysporum (1) or not infected (0). Error bars are SE of the means and show differences in mean root 
dry weights between infected and uninfected plants for a particular rootstock. 
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Figure 3.7: Mean root dry weights (g) of different grapevine rootstock varieties infected with C. 
destructans (1) or not infected (0). Error bars are SE of the means and show differences in mean root 
dry weights between infected and uninfected plants for a particular rootstock (* indicates data from 
one plant only for Riparia Gloire and two plants for Schwarzmann). 

3.3.1.4 Shoot Dry Weights 
ANOVA analysis (ANOVA Table 3.4-6, Appendix 3.4) showed that shoot dry weight was not 

significantly influenced by inoculation treatment (P=0.198) or the interaction between 

rootstock variety and inoculation treatment (P=0.313). However, rootstock variety alone did 
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influence shoot dry weight (P=0.000). Plants of rootstock 5C had a mean shoot dry weight 

that was greater than all other varieties (P≤ 0.05) which were similar (Table 3.5). 

Table 3.5: Mean shoot dry weights (g) of grapevine rootstocks when data for non-inoculated and 
inoculated plants were combined. Values followed by different letters were significantly different at 
P=0.05 (according to Fisher’s Protected LSD). 

Rootstock variety Shoot dry weight (g)

101-14 5.3  a 

5C 9.0  b 

Riparia Gloire 4.2  a 

Schwarzmann 5.5  a 
 

ANOVA analysis (ANOVA Tables 3.4-7–3.4-14, Appendix 3.4) of individual rootstock 

varieties showed that F. oxysporum overall disease incidence affected shoot dry weight of 

some varieties (P=0.006). There was no correlation between F. oxysporum incidences and the 

shoot dry weights of 101-14 (P=0.276), Riparia Gloire (P=0.390) or Schwarzmann plants 

(P=0.317), but there was for 5C, which had significantly lower shoot weights in plants 

infected with F. oxysporum than those that were not (P=0.006) (Figure 3.8). The incidence of 

C. destructans had no effect on the shoot dry weight of 101-14 (P=0.276), 5C (P=0.560), 

Riparia Gloire (P=0.929) or Schwarzmann (P=0.498) (Figure 3.9). 
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Figure 3.8: Mean shoot dry weights (g) of different grapevine rootstock varieties infected with F. 
oxysporum (1) or not infected (0). Error bars are SE of the means and show differences in mean shoot 
dry weights between infected and uninfected plants for a particular rootstock. 
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Figure 3.9: Mean shoot dry weights (g) of different grapevine rootstock varieties infected with C. 
destructans (1) or not infected (0). Error bars are SE of the means and show differences in mean shoot 
dry weights between infected and uninfected plants for a particular rootstock (* indicates data from 
one plant only). 

3.3.1.5 Dual infection 
The number of plants infected concurrently by both C. destructans and F. oxysporum were 

too small to analyse and so raw data are presented. Overall, only six out of 112 vines had both 

C. destructans and F. oxysporum incidence. Of these, two belonged to 101-14, two to 5C and 

one to each of Riparia Gloire and Schwarzmann. Four had been inoculated with F. oxysporum 

and two had been inoculated with C. destructans. No dual infections occurred in the controls. 

This level of dual infection was low considering that the severity data (Figures 3.4 and 3.5 

and Table 3.6) and the incidence data (Table 3.7) indicated the potential for dual infection in 

C. destructans inoculated plants.  

Table 3.6: Fusarium oxysporum and C. destructans disease severity (% pieced of wood infected) for 
control plants (O), plants inoculated with C. destructans (C) or those inoculated with F. oxysporum 
(F). 

Inoculation treatment F. oxysporum disease severity (%) C. destructans disease severity (%)

O 13.1 10.0 

C 25.7 25.0 

F 34.0 9.7 
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Table 3.7: Overall F. oxysporum and C. destructans disease incidence (% plants infected) for control 

plants (O), plants inoculated with C. destructans (C) or those inoculated with F. oxysporum (F). 

Inoculation 
treatment 

Overall F. oxysporum disease 
incidence (%) 

Overall C destructans disease 
incidence (%) 

O 22.5 15.0 

C 44.4 41.7 

F 63.9 25.0 
 

3.4 DISCUSSION 
This greenhouse experiment was designed to test the susceptibilities of four of the most 

commonly grown New Zealand grapevine rootstocks (5C, 101-14, Schwarzmann and Riparia 

Gloire) to two common root pathogens, F. oxysporum and C. destructans. Assessments 

included the disease severities and disease incidences of both pathogens as well as the root 

and shoot dry weights. Both C. destructans and F. oxysporum were able to infect grapevine 

roots when inoculated into the soil, the high levels of natural infection was unexpected since 

the vineyard from which the soil was taken had not been reported to have a problem with 

black foot. Results indicated that F. oxysporum was more pathogenic than C. destructans. 

Fusarium oxysporum severity was high when plants were inoculated with either F. oxysporum 

or C. destructans, while C. destructans severity was only high when plants were inoculated 

with C. destructans. The rootstock varieties also displayed different susceptibilities to the 

pathogens F. oxysporum and C. destructans. Results showed that 101-14 and 5C were most 

susceptible to C. destructans, whereas susceptibility to F. oxysporum was greatest in 101-14 

and moderate in Riparia Gloire and Schwarzmann (Figures 3.4 and 3.5).  

Rootstock varieties differed in their mean levels of F. oxysporum disease severity, and in the 

interaction between rootstock variety and inoculation treatment. Differences in F. oxysporum 

disease severity between F. oxysporum inoculated and non-inoculated treatments were not 

significant for any varieties except 101-14 which had the highest F. oxysporum disease 

severity (Figure 3.4). The rootstock varieties also differed in their mean levels of C. 

destructans disease severity since inoculation increased C. destructans infection in variety 5C 

and 101-14 only (Figure 3.5). Inoculation with C. destructans increased F. oxysporum 

infection in Riparia Gloire (significant) and Schwarzmann (not significant) and inoculation 

with F. oxysporum resulted in slightly increased C. destructans infection only in 5C. The 

infections not due to inoculation were caused by the low natural populations and partially 

reflected the susceptibility of the rootstocks to the two pathogens.  



 75

The absence of dual infections in individual plants seems to indicate that these two pathogens 

compete with each other in infection sites. If both fungi occupied the same niche within the 

plant or rhizosphere one might out-compete the other. Since most of the “F. oxysporum 

susceptible” rootstock varieties were not infected with C. destructans, but many of the tissue 

fragments for the “most F. oxysporum resistant” rootstock varieties were infected with  

C. destructans, this indicated that F. oxysporum could out-compete C. destructans.  

Tables 3.6 and 3.7 clearly show that C. destructans inoculation treatments had approximately 

equal incidence and severity of the two pathogens, while the F. oxysporum inoculation caused 

high incidence and severity of F. oxysporum infection, but C. destructans infection was low. 

Given the results, one would have expected more dual infections. 

It is possible that C. destructans moved ahead of F. oxysporum in the plant to an extent where 

the section sampled was no longer dominated by C. destructans, but by F. oxysporum. 

Alternatively, growth of one pathogen on the agar may have prevented the growth of the 

other. Sequential analysis of trunks, with more pieces than just at 0 cm and 5 cm and smaller 

isolation fragments could determine if this was occurring. A better understanding of dual 

infection would also require a trial with a C. destructans treatment, a F. oxysporum treatment, 

a combined (C. destructans and F. oxysporum) treatment, and a non-inoculated control. 

Accurate conclusions cannot be drawn here because no plants in this trial were inoculated 

with both pathogens. Another example of infection by one root pathogen preventing infection 

by another was reported by Macia-Vicente et al (2008) who observed that barley roots 

colonised by a number of endophytic fungi, in the rhizosphere and sometimes the root cortex, 

reduced symptoms caused by the root pathogen Gaeumannomyces graminis var. tritici. These 

endophytic fungi included Aspergillus, Phoma, Acremonium and Fusarium species as well as 

C. destructans. 

The finding that grapevine rootstocks differ in their susceptibilities to C. destructans and  

F. oxysporum infection is not unexpected since this has been demonstrated previously. de 

Andrade et al (1995) used potted cuttings (rooted) grown in methyl bromide treated soil 

inoculated with fragments of woody shoots infected with F. oxysporum f.sp. herbemontis. 

Results showed that hybrids of Vitis riparia x Vitis berlandieri (including 5C) and Vitis 

riparia x Vitis rupestris (including 101-14 and Schwarzmann) were the most susceptible, and 

hybrids of Vitis berlandieri x Vitis rupestris (including 420 A and Paulsen 1103) had 

moderate resistance (Table 1.2). There is some similarity between their findings and those 

here, for example, F. oxysporum disease severity was greatest in 101-14 and Schwarzmann in 
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both. However, the isolates used were quite different and so the results cannot be expected to 

be the same.  

In contrast to de Andrade et al (1995), Omer et al (1999), reported that a F. oxysporum isolate 

from rotten grapevine roots was unable to cause infection in certain rootstocks including 5C, 

when their roots were wounded and inoculated with a conidial suspension of 106 conidia per 

mL. This study correlates with the finding here that 5C is not particularly susceptible to  

F. oxysporum. The fact that rootstock varieties differ in their susceptibility to this pathogen is 

not unexpected as infection rate, damage severity, and spread of F. oxysporum within the 

plants is determined at least in part by their genetic and physiological characteristics  

(Granett et al., 1998). 

Here, the rootstock susceptibilities to C. destructans were in general agreement with the 

results Harvey and Jaspers (2006) reported for their pot trials (Table 1.1). However, they 

found that the susceptibility of grapevine rootstock varieties to C. destructans was variable 

between seasons, with results differing for the two trials. In agreement with the findings here, 

Riparia Gloire was consistently reported to have low susceptibility to C. destructans, and 

101-14 moderate to high susceptibility, however the reported susceptibilities of 5C and 

Schwarzmann were inconsistent, with 5C being a lot more resistant in their trials than this 

one. These differences might be due to the different inoculation methods used as they soaked 

the plant roots in a conidial suspension (1x106), rather than inoculating the soil as was done 

here. Their plants were also grown in a semi sterile peat and pumice mix, rather than the  

blend of potting mix and soil used here. Due to the presence of soil and associated 

microorganisms, the C. destructans in this trial could have been influenced by potentially 

pathogen-antagonistic or plant beneficial bacteria. For example, Schwarzmann, which was 

one of the most susceptible rootstocks tested in their trial, was one of the least susceptible in 

this experiment.  

Differences in the susceptibility of rootstock varieties to C. destructans and F. oxysporum 

infection could in part be due to differences in rootstock vigour, root exudates and other 

factors discussed in Chapter 2. For example, the most vigorous rootstocks (101-14 and 5C) 

were found to be the most susceptible to C. destructans. It is possible that their higher rate of 

root tip advancement and root exudation are in part responsible. Different plant species, or 

even cultivars of the same species are able to exude different quantities and qualities of 

organic compounds from their roots (Lynch & Whipps, 1990), altering the diversity and 

structure of rhizosphere microbial populations (Grayston et al., 1998; Garbeva et al., 2008). 

Information on the composition of grapevine root exudates from different rootstock varieties 
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is lacking. However, in a study looking at the sugar composition of grapevine rootstock 

cuttings (stem and root zone), Reed et al (2004) proposed that varietal differences might be 

the reason for discrepancies between their work and that of others. Additionally, while the 

grapevine rootstocks tested by Nikolaou et al (2000) were not the same as those used here, 

differences in cytokinin content of the xylem exudates, and the volume of exudates were 

detected between rootstock varieties.  

Variation in root exudation between susceptible and more resistant rootstocks has been 

demonstrated in other systems. For example, apple rootstocks, M.26 and M.7, which are 

susceptible to apple replant disease (ARD) support greater numbers of culturable fungi and 

bacteria in their rhizosphere than some of the more tolerant rootstocks, G.16, G.30 and 

CG.6210. It was suggested that the reason for this might be that the susceptible rootstocks 

were releasing more root exudates, but this was not quantified (Rumberger et al., 2007).  

It was also postulated that rhizosphere Pseudomonads were responsible for the greater 

susceptibility since Yao et al (2006) found lower numbers and different species of 

Pseudomonas in the rhizospheres of the ARD-susceptible rootstocks than the ARD-tolerant 

rootstocks.  

Competition from the naturally occurring non-pathogenic strains of C. destructans and  

F. oxysporum with the pathogenic strains, for nutrients and colonisation sites may also  

reduce the success of pathogenic strains. For example, non pathogenic strains of  

F. oxysporum reduced stem colonisation by pathogenic strains in carnation, reducing disease 

severity (Postma & Luttikholt, 1996). It is likely that rhizosphere F. oxysporum populations 

differ between grapevine rootstock varieties since plant cultivar has been shown to influence 

Fusarium populations in other plants (Fravel et al., 2003). For example, differences in root 

exudates of the watermelon cultivar ‘Crimson Sweet’, which also had increased populations 

of beneficial F. oxysporum in its rhizosphere, were considered to be the cause of its reduced 

susceptibility to Fusarium wilt compared to other cultivars (Larkin et al., 1993b).  

Another possible explanation for the differences in rootstock susceptibility to C. destructans 

and F. oxysporum could be related the ability of each rootstock’s rhizosphere bacterial 

populations to colonise root wounds. Both C. destructans and F. oxysporum are wound 

pathogens, and so if beneficial rhizosphere bacteria were able to reach and colonise grapevine 

root wounds before these pathogens, this could affect their susceptibility. Roots colonised by 

beneficial bacteria would be less likely to become infected (as discussed in Chapter 1). This is 

something that was not looked at in these experiments, but it is recommended that future work 

consider the implications of this aspect of rhizosphere bacteria. 
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Identification of the isolates as C. destructans and F. oxysporum in the assessment reported 

here was not 100% accurate. However, identification was considered satisfactory as 10-15 % 

of all isolates considered to be positive for a given pathogen were subcultured onto PDA and 

grown to view both colony and spore morphologies. Accuracy was deemed to be 

approximately 70% for C. destructans (total 30 subcultured) and, approximately 90% for  

F. oxysporum (total 30 subcultured). The number of C. destructans isolates may have been 

underestimated, since the diverse and overlapping morphology of the isolates from 

Cylindrocarpon species was not fully appreciated. However, this was acknowledged and 

assessment criteria were adjusted for the experiment reported in Chapter 4. While  

F. oxysporum identification appeared to be more accurate, the presence of “microconidia 

borne in false heads on short monophialides” was not determined. This character was used to 

distinguish F. oxysporum from other closely related species by Burgess et al (1989). 

Consequently, molecular identification of all suspected positive isolates, for both fungi, would 

have been beneficial. Alternatively, the use of selective agars might have been useful as they 

allow fungi recovered at a low rate on PDA (due to poor growth) to be more successfully 

recovered (Bandyopadhyay et al., 2006). For a trial like this, these could have included 

Cylindrocarpon selective agar (CSA) (Sweetingham, 1983), and selective Fusarium agar 

(SFA) (Leslie & Summerell, 2006), although the selectiveness of CSA has not proven to be 

sufficient in other work (pers. comm. C. Probst, 2008). 

Root dry weight was not influenced by inoculation treatment, or associated interactions, but 

was influenced by rootstock variety. Varieties 5C and Schwarzmann were reported to have 

greater, similar vigour but only 5C had a higher mean root dry weight than the other 

rootstocks, which were comparable. It therefore seems likely that the higher root dry weight 

of variety 5C was caused by another factor, possibly the presence of root galls which were 

found on many of its plants (Figure 3.6-1, Appendix 3.6). These galls might have been the 

result of crown gall caused by Agrobacterium tumefaciens (Kawaguchi et al., 2007), 

especially since 5C is known to be particularly sensitive to this disease (Goodman et al., 

1993). In hindsight, it would have been useful to weigh these galls and deduct their weight 

from the root weights. 

Overall disease incidence (i.e. from both sampling points) affected root dry weight only in 5C, 

which had significantly lower root dry weights in plants infected with F. oxysporum than 

uninfected plants. A very different response was observed for overall C. destructans incidence 

which increased the root dry weight of 101-14 and 5C. These different effects could be 

attributed to the different responses of the rootstock varieties to F. oxysporum and  
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C. destructans. Highet and Nair (1995) also observed that artificially infecting grapevines 

with F. oxysporum severely stunted the root systems. Conversely, the loss of roots in black 

foot disease is sometimes compensated for by the development of a second crown of 

horizontally growing roots close to and parallel to the soil surface (Halleen et al., 2007).  

The development of another root axis was not observed, possibly because they were confined 

in a pot, but the tendency to grow more roots might have accounted for the increase in the root 

dry weight of 5C and 101-14, the rootstocks most susceptible to C. destructans. In addition, 

the roots of C. destructans infected plants could have taken longer to die and fall off than 

those of F. oxysporum infected plants, which were therefore not included in the weighing. 

Like root dry weights, shoot dry weights were not influenced by inoculation or associated 

interactions, but were affected by rootstock variety.  Rootstock variety 5C had the greatest 

mean shoot dry weight, reflecting the root dry weight findings, which was not unexpected as 

there is a well established relationship between above ground and below ground growth (May, 

1994). The higher vigour of 5C than Schwarzmann found in this experiment could be due to 

the higher greenhouse temperatures favouring its growth more than in the vineyard. Support 

for this can be found in vigour ratings of the different rootstocks in the warmer grape-growing 

regions of Australia (Nicholas, 1996), where S04 (sometimes wrongly identified as 5C in 

New Zealand) was considered a moderate to high vigour rootstock, whereas Schwarzmann 

was only reported to have moderate vigour. Vigour ratings also tend to refer to the vigour the 

rootstock induces in the scion, but the plants here were not grafted. Some rootstocks that are 

very vigorous on their own roots actually seem to inhibit vigour on the scion grafted to it, for 

example, Riparia Gloire (Vitis riparia) (pers. comm. G. Creasy, 2008).  

Overall, F. oxysporum disease incidence significantly reduced mean shoot dry weight in 5C. 

This was not unexpected as Highet and Nair (1995) found F. oxysporum infected vines to 

experience delayed, weak shoot growth. However, there was no effect of overall C. 

destructans incidence on shoot dry weight. This is surprising given that black foot affected 

vines often experience reduced vigour, sparse foliage and smaller leaves (Halleen et al., 

2006a). In this experiment, the omission of leaf weight from the shoot dry weights was due to 

variable leaf fall at the time of harvest; inclusion of leaf weight might have detected such 

effects.  

In this trial the presence of the F. oxysporum in the stem was not correlated with any 

symptoms. The work of de Andrade et al (1995) evaluated F. oxysporum disease severity 

based on observations of internal symptoms such as the vascular discolouration of roots 5 and 

10 cm from the shoot base, and this would have been useful additional data for the current 
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experiment. However, given that F. oxysporum was isolated from above the roots, and non 

pathogenic strains are usually restricted to the roots (Fravel et al., 2003), F. oxysporum cannot 

be discounted as a pathogen of grapevines, even if it is only present when roots are wounded. 

In the nursery and vineyard environments it is unlikely that grapevine roots are ever without 

injury. For example, Halleen et al (2003) noted that the basal ends of nursery cuttings are 

semi or fully exposed and that callus roots can break when vines are planted out. Both of 

these, and potentially the feeding of grass grub larvae (Mundy et al., 2005), create wounds 

that leave the grapevines open to infection.  

Highet and Nair (1995) confirmed the pathogenicity, or at least the potential of F. oxysporum 

to be a pathogen of grapevines in Australia in a glasshouse trial where grapevines were 

infected with F. oxysporum obtained from roots of declining field grown vines. They tested 

two types of inoculum; a suspension of conidia (2 x 106 conidia per mL) of which 10 mL was 

poured over the upper 4 cm of exposed root system, and pieces of grapevine roots infected 

with F. oxysporum, placed 5 mm from the exposed roots. Plants were assessed after only eight 

weeks, much less time than was allowed here. However, they still observed obvious 

symptoms. Surface sterilised roots, rather than the stems used here, were plated on PDA. 

Ultra thin sections of root tissue were also studied with a light microscope and a transmission 

electron microscope (TEM) which revealed F. oxysporum hyphae growing within and 

between cells of the root cortex. Cortical cells were partly degraded and infected cells had lost 

their contents. However, the endodermis was not perforated. Similar studies could be 

performed for an experiment such as this one.  

In this trial, 101-14 and 5C cuttings were sourced from a commercial nursery, whereas 

Schwarzmann and Riparia Gloire were from the Lincoln University vineyard. This was 

unavoidable as no one source could supply plant material of the four varieties. However, all 

callused cuttings were introduced to the potting mix and soil blend at the same time and 

grown in the same way. Although results showed greater incidence of C. destructans in 

101-14 and 5C than Schwarzmann and Riparia Gloire, this reflected previous trends in 

susceptibility. It therefore seemed unlikely that the plant sources had affected the outcomes of 

the experiment.  

The vines that died three months after planting were all from 101-14 and 5C but since they 

were replaced with vines of the same batch and treatment, this potential source of variation 

was considered to be minor and so the plants were assessed together. Removing them from 

the trial or analysing them separately would have reduced the sample size, compromising the 

analysis. In hindsight, it could have been beneficial to assess some plants from the 
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replacement batch to determine if either C. destructans or F. oxysporum was present. 

However, it seemed likely that the more susceptible 5C and 101-14 had succumbed to 

pathogens present in the field soil. The natural levels of infection in the soil was evident since 

C. destructans and F. oxysporum were both detected in the control plants, to similar levels, 

being 10.0% for C. destructans and 13.1% for F. oxysporum. The similar trends for the 

control treatments are seen in Figures 3.4 and 3.5.  

Contamination of control soils could also have occurred via the splash dispersal of spores, 

during watering, as plants were laid out in a completely randomised design. The potential for 

splash dispersal of spores in drainage water was recognised but only a corrugated metal table 

was initially available in the greenhouse; the pots were moved onto a mesh table as soon as 

one was available, within a month, so as to reduce the likelihood of contamination. Although 

disease incidence varied between control pots, the vineyard soil was considered the most 

likely source of external C. destructans inoculum, especially since other researchers have 

subsequently found similar C. destructans incidence while using the same soil (pers. comm. 

C. Probst, 2008) It is unlikely that the plants were the source of natural inoculum since natural 

infection by F. oxysporum and/or C. destructans occurred in all rootstock varieties, even those 

where canes (rooted in pumice and not exposed to pathogens prior to planting) and not 

grafted/rooted vines were used.  

Natural contamination by Cylindrocarpon and Fusarium species could have been avoided by 

using gamma sterilised soil, with the necessary rhizosphere bacteria introduced as a mixed 

bacterial filtrate. Shishido and Chanway (1998) used a forest soil suspension (in sterile 

phosphate buffer) and sterile (oven dried and autoclaved) sand microcosms to study the effect 

of plant-growth-promoting bacteria on spruce seedlings and the composition of soil microbial 

communities. A short-coming of that experiment was that the soil communities in the 

microcosms came from a small 0.5 g soil sample (per 37 g microcosm), thereby introducing 

too few microorganisms to adequately represent the normal numbers and diversity of the soil 

microbial community. However in this trial, a much larger volume of soil was used, perhaps 

better representing the microbial community.  

Although they differed in colour and colony morphology, the F. oxysporum isolates used to 

inoculate the grapevines were shown to share great sequence homology. This indicated a large 

degree of morphological plasticity within F. oxysporum. Alternatively, the primers used here 

(ITS4, ITS5) might have been partly responsible for this apparent similarity, as reported by 

O’Donnell and Cigelnik (1997) who concluded that while ITS regions are effective for 

distinguishing many fungal species, they are not the best suited to Fusarium species due to 
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homology in the ITS region. Sequences of the translation elongation factor EF-1α and the 

mitochondrial small subunit ribosomal RNA genes have proven more useful (Fravel et al., 

2003). 

In conclusion, this greenhouse trial showed that both C. destructans and F. oxysporum were 

able to infect grapevine rootstocks commonly grown in New Zealand (101-14, 5C, 

Schwarzmann and Riparia Gloire), but that F. oxysporum appeared to be a more aggressive 

pathogen than C. destructans. Disease incidence by F. oxysporum was significantly related to 

reduced mean shoot and root dry weight of rootstock 5C, while C. destructans incidence 

increased the root dry weight of 101-14 and 5C. While reinforcing that grapevine rootstocks 

differ in their susceptibilities to C. destructans, this trial also showed that rootstock varieties 

differ in their susceptibilities to F. oxysporum. Rootstocks 101-14 and 5C were most 

susceptible to C. destructans, whereas 101-14, Riparia Gloire and Schwarzmann were more 

susceptible to F. oxysporum. These findings need to be confirmed with field trial data, but 

would seem to suggest that grape growers in New Zealand should consider F. oxysporum a 

considerable threat.  
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CHAPTER 4  
THE EFFECT OF CARBOHYDRATE STRESS ON 

GRAPEVINE RHIZOSPHERE BACTERIAL POPULATIONS 
AND CYLINDROCARPON DESTRUCTANS DISEASE 

SEVERITY AND INCIDENCE 

4.1 INTRODUCTION 
Plant carbohydrates provide energy for plant metabolism and growth (Shoresh & Harman, 

2008). In grapevines, this is reflected by the extent of canopy growth and the level of 

carbohydrate reserves accumulated, which is in part determined by the grapevine variety and 

climate (Bennett et al., 2005). Environmental factors and host stress have been shown to play 

a role in the development of Cylindrocarpon black foot disease. Host stresses include 

malnutrition, poor soil drainage or compaction, heavy crop loads on young vines, poorly 

prepared soil and poor planting technique (Fourie & Halleen, 2001). The loss of leaf 

photosynthetic area through defoliation also has the potential to cause carbohydrate stress to 

grapevines (Kliewer & Fuller, 1973). 

A standard practice in cool climate viticultural regions is for leaves to be removed from 

around fruit clusters and/or by shoot trimming several times over the growing season 

(Chanishvili et al., 2005). Canopy thinning allows for better exposure of the fruit to sunlight, 

while also increasing the photosynthetic activity in the older leaves. Additionally, the practice 

alters canopy structure and microclimate, making foliar pest and disease control easier 

(Hunter et al., 1994). Vineyard canopy thinning protocols are believed to have no adverse 

effects on grapevines, as they have been shown to leave sugar and organic acid levels 

unchanged (Hunter et al., 1995). However, defoliation is known to stress plants by decreasing 

the availability and concentrations of photosynthate, compromising their resistance to other 

biotic and abiotic stresses (Marcais & Breda, 2006). Multiple or severe defoliation events 

lower root storage carbohydrate levels and eventually result in carbohydrate starvation 

(Horsley et al., 2000). Early and harsh defoliation in one season was also reported to result in 

the premature mobilization of carbohydrate stored in the roots, trunks and canes, decreasing 

the next season’s bud fertility and thereby having an undesirable flow through effect on yield 

(Hunter et al., 1995).  

Stress factors play a part in predisposing woody plants to pathogen infection, increasing both 

disease incidence and severity (Schoeneweiss, 1981). It is thought that stress factors, working 

individually or together, aid pathogen invasion by compromising host resistance (Rayachhetry 
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et al., 1996), however, the stress intensity needs to reach a minimum threshold to predispose a 

plant to disease. This predisposition can be reversible, unless defoliation is prolonged 

(Schoeneweiss, 1981).  In woody plants, stem and crown cankers and dieback diseases 

typically increase in prevalence when plants are stressed, and high intensity defoliation can 

make plants more susceptible to root rots (Schoeneweiss, 1981). 

Defoliation alters both the quantity and quality of carbon flow from plant roots (Guitian & 

Bardgett, 2000). However, the reported effects of defoliation on plant root exudation differ; it 

may be increased (Paterson & Sim, 2000), decreased (Miller & Rose, 1992), or left 

unchanged (Bazot et al., 2005). Root exudation can also be altered by a plant’s response to 

biotic and abiotic stresses and by plant species or even cultivars (Grayston et al., 1998). The 

carbon substrates deposited in the rhizosphere by plant roots are of great importance to the 

soil microbial community (Paterson, 2003), as a carbon and energy source for rhizosphere 

bacteria and fungi (Lynch & Whipps, 1990), determining microbial activity, biomass and 

community structure (Grayston et al., 1995). Consequently, any such changes in exudation 

could increase the growth of some soil microorganisms (Albareda et al., 2006), which may be 

pathogenic or competitive to pathogens (Mazzola, 2002). Bertin et al (2003) concluded that 

root exudation typically increases when plants are stressed. However, Guitian and Bardgett 

(2000) found that microbial activity was typically at its highest in non-defoliated plants. Since 

these changes in soil microbial communities, due to defoliation events, are independent of 

changes in root biomass, it seemed likely that such community changes resulted from 

modified root exudation (Guitian & Bardgett, 2000).  

The aim of this experiment was to determine the effect of partial defoliation, a common 

practice in viticulture, on the species and populations of rhizosphere bacteria, and on the 

susceptibility of grafted grapevines to infection by Cylindrocarpon destructans. Two 

rootstock varieties were used, both being commonly grown in New Zealand vineyards 

(Hoskins, 2008) where Cylindrocarpon species have caused high losses due to black foot 

disease (Bleach et al., 2006). Both rootstocks used in this experiment are hybrids of the same 

American Vitis species: Vitis riparia x Vitis rupestris (Jackson & Schuster, 2001), making 

them genetically quite similar, however, Schwarzmann was shown to be less susceptible to 

black foot than 101-14 in a recent trial, with susceptibility rankings of 5 and 12, respectively, 

in a 14 variety trial (Harvey & Jaspers, 2006).  
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4.2 METHODS 

4.2.1 Plant preparation 
For this experiment, plants of Sauvignon Blanc scion wood grafted to two rootstock varieties, 

101-14 or Schwarzmann, were used. The one year old dormant grafted plants were grown in 

2.5 L pots containing a 50/50 mix of soil (Wakanui silt loam classified as a mottled immature 

pallic soil), which was sourced from the Lincoln University vineyard, and a potting mix 

[(80% horticultural bark (grade 2): 20% pumice (grade 3, 1-4 mm)]. The potting mix was 

amended with 5 kg of an 8-9 month fertiliser, Osmocote Exact [(Scotts Australia Pty Ltd; 

(15:4.0:7.5) (N:P:K)], 1 kg agricultural lime and 1 kg Hydraflo (Scotts Australia Pty Ltd)  

per 1 m3. The ‘soil only’ controls, included in the randomised design, were kept with the other 

pots and consisted of the same 50/50 mix of soil and potting mix in 2.5 L pots, but did not 

contain vine plants.  

Vines were kept moist by daily watering and grown in a greenhouse for a total of 10 months 

spanning spring (September 2006) – winter (July 2007). During this time, temperatures 

ranged from 15ºC (minimum) to 30ºC (maximum). Vines were placed under high pressure 

sodium lamps (Son-T Agro 400, Philips) from the start of autumn (March 2007) until harvest 

(July 2007), to ensure light levels were sufficient for good growth. All weeds were removed 

by hand to prevent the root exudates of weeds altering the rhizosphere communities in the 

pots. All flower buds were removed when visible on the vines as flower development could 

also reduce carbohydrate stores within the vines. 

4.2.2 Carbohydrate stress 
In summer (November 2006, 2 months after planting), leaves were trimmed from all scion 

shoots above the fourth node to induce three different levels of carbohydrate stress, being 

none (level 0), moderate (level 1) and high (level 2). For stress level 0, none of the leaves 

were removed, for stress level 1 every third leaf was removed, and for stress level 2 every 

third leaf was left on the vine, the rest being removed (Bennett, 2002). Vines were then left 

undisturbed for a period of three weeks, after which the trimming treatment was repeated on 

the new sections of the shoots. This was done a total of three times at three weeks apart.  

4.2.3 Pathogen inoculation 
The C. destructans isolates used were the same isolates listed in Section 3.2, with mixed 

conidial suspensions (106/mL) prepared in the same way. Conidial viability of this mixed 

suspension was checked after plating onto PDA, with the average germination rate being 

98%. Three weeks after the third trimming treatment, the root systems of all the vines were 
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wounded and inoculated as in Section 3.2.2 with 50 mL of conidial suspension. The non-

inoculated plants (‘Cyl –’ treatments) were inoculated with 50 mL SDW, and the ‘soil only’ 

controls had inoculated and non-inoculated treatments, with either 50 mL of SDW or C. 

destructans conidial suspension. All pots were given a further 50 mL of tap water to help 

carry conidia into the soil, and then left undisturbed for 24 h. The different treatments are 

summarised in Table 4.1. 

Table 4.1: The eight treatments in this experiment based on C. destructans (Cyl) inoculation status 
and stress (trimming) level. 

Treatment 
abbreviation 

Inoculation 
status 

Trimming level Description 

Cyl + N/A* Inoculated ‘soil only’ control 

Cyl + 0 0: unstressed Inoculated, un-trimmed 

Cyl + 1 1: moderate stress Inoculated, 1/3 leaves removed 

Cyl + 2 

 
Inoculated 
 

2: high stress Inoculated, 2/3 leaves removed 

Cyl - N/A Non-inoculated ‘soil only’ control 

Cyl – 0 0: unstressed Non-inoculated, un-trimmed 

Cyl – 1 1: moderate stress Non-inoculated, 1/3 leaves removed 

Cyl – 2 

 
Not 
inoculated 
 

2: high stress Non-inoculated, 2/3 leaves removed 
* N/A = not applicable 

After inoculation, all pots in this 10 replicate (per treatment) trial were laid out in a 

completely randomised block design, and the plants grown for a further 6 months in a 

greenhouse to allow symptoms to develop. Assessment of pathogen infection was conducted 

on seven of the most consistent looking replicates of each treatment, except for Schwarzmann 

‘Cyl – 1’, for which only six live plants were available.  

4.2.4 Plant assessment 

4.2.4.1 Collection of rhizosphere soil 
The rhizosphere soil for each plant was dislodged and mixed on a tray as described in 

Section 2.2 and one 15 g sample collected per plant (or pot in the case of the ‘soil only’ 

controls). There were 96 samples in total, six replicates per treatment per variety. The six 

replicates chosen from the seven plants selected for infection assessment were the plants 

numbered 1-6 in the design. Soil samples were placed in sterile plastic vials and stored at 

-80˚C until they were needed for molecular characterisation of the bacterial communities.  
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4.2.4.2 Root and shoot dry weights 
The root and shoot dry weights of the grapevine plants was determined as described in 

Section 3.2.3.1. 

4.2.4.3 Infection status 
Surface sterilisation, isolation and identification of trunk isolates was carried out as described 

in Section 3.2.3.2. The slide mounts were examined under the microscope and isolates 

identified according to the criteria stated in Appendix 4.4.  

4.2.5 Molecular assessment 
Single-strand conformation polymorphism (SSCP) was used to detect differences in the 

diversity of bacterial communities present in the soil samples of the different treatments. 

Three randomly selected replicates for each of the eight treatments (per rootstock variety) 

were assessed. DNA extraction, amplification, SSCP and sequencing were performed as 

described in Chapter 2.  

4.2.6 Statistical analysis 
Experimental data for C. destructans disease severity and incidence, as well as plant root and 

shoot dry weight, were analysed as described in Section 3.2.4. The mean values given in the 

text are those predicted by the ANOVA (raw data means shown in Appendix 4.2).  

4.3 RESULTS 

4.3.1 Infection status: tissue isolation 

4.3.1.1 Identification of isolates  
Isolates of C. destructans cultured from the experimental plants displayed some intra-specific 

variation (Figure 4.1) that corresponded with the morphology of the isolates used to inoculate 

the plants. All Cylindrocarpon isolates were identified as C. destructans and the few 

filamentous fungi or yeasts that contaminated the plates were identified as Fusarium 

oxysporum, Fusarium sp., Alternaria sp., Botryosphaeria sp., Pythium sp., Penicillium sp., 

Phomopsis sp. and Paecilomyces sp. (Table 4.3-1, Appendix 4.3).  
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Figure 4.1: Examples of the colony morphology variation seen in the re-isolated C. destructans 
isolates. 

4.3.1.2 Grapevine trunk base infection at 0 cm  
Overall, C. destructans disease severity data provided a more significant treatment effect 

(ANOVA Tables 4.1-1 and 4.1-2, Appendix 4.1) than disease incidence data. When disease 

severity data (number of infected wood pieces) was analysed, carbohydrate stress, rootstock 

variety, and the interactions were not significant. However, there was a trend for greater 

disease severity in 101-14 than in Schwarzmann, with the average number of C. destructans 

infected wood pieces being 14.9% and 8.4%, respectively. Although stress was not a 

significant factor (P=0.138) when the stress treatments were analysed as three separate 

treatments, there was a trend for increasing disease severity with severity of trimming (for 

both rootstock varieties combined) (Table 4.2). Highly stressed plants had notably greater 

disease severity than both unstressed and moderately stressed plant, while the disease severity 

levels of unstressed and moderately stressed plants were similar. Only inoculation affected 

disease severity (P=0.031). Plants inoculated with C. destructans had 17.9% infected wood 

pieces while non-inoculated plants had 5.4%. 

Analysis of overall (0 cm and 5 cm) disease incidence data showed little significance. 

Cylindrocarpon destructans inoculation was the only significant factor affecting disease 

incidence (P=0.037), with 40.5% disease incidence observed in inoculated plants and 19.5% 

in non-inoculated plants. There was also a trend, although not significant, for slightly greater 

disease incidence in 101-14 plants (31.0%) than in Schwarzmann plants (29.3%) (P=0.867). 

When combining inoculated and non-inoculated treatments and rootstock varieties, there was 

a non-significant trend, for greater C. destructans incidence in highly stressed plants (32.1%) 

and moderately stressed plants (40.7%) than in unstressed plants (17.9%) (P=0.174). 
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When data of disease severity in unstressed and moderately stressed treatments were 

combined in a single treatment (being not significantly different from each other) and the 

analysis repeated with only two stress treatments, carbohydrate stress was found to 

significantly influence disease severity (P=0.043), with highly stressed plants having the 

greatest disease severity (Table 4.2). In this second analysis, inoculation also influenced 

disease severity (P=0.009) with inoculated plants having a disease severity of 21.4% and  

non-inoculated plants 5.8%. Replicate, rootstock variety and all interactions remained  

non-significant.  

Table 4.2: Effects of three carbohydrate stress treatments, alone and after combining the two lower 
(similar) stress categories, on C. destructans disease severity (% infected wood pieces) of grapevine 
rootstocks at 0 cm from stem base. Data are combined averages for inoculated and non-inoculated 
plants. Values followed by different letters were significantly different at P=0.05 (according to 
Fisher’s Protected LSD). 

Stress Level Infected wood pieces (%) Stress Level Infected wood pieces (%) 

0: unstressed 7.15 

1: moderate 8.15 

0 + 1 7.60   a 

2: high 19.65 2 19.65  b 

P value 0.138  0.043 
 

4.3.1.3 Grapevine trunk infection at 5 cm  
Analysis of the three stress treatments showed that neither stress, inoculation, nor variety 

treatments, nor interactions between them, significantly influenced C. destructans disease 

incidence at 5 cm (ANOVA Table 4.1-3, Appendix 4.1). When pruning treatments 0 and 1 

were combined as a single treatment and the analysis repeated as before, effects remained 

non-significant. However, in this second analysis, there was a non-significant trend, for the 

plants exposed to the highest stress to have a greater C. destructans incidence (17.9%) than 

those of the combined (unstressed and moderately stressed) group (12.6%) (P=0.551) 

(ANOVA Table 4.1-4, Appendix 4.1).  

4.3.2 Root dry weights 
ANOVA analysis conducted with the three stress treatments showed that plant root dry 

weight was significantly influenced by rootstock variety (P=0.003), carbohydrate stress 

(P=0.000) and the interaction between inoculation and carbohydrate stress (P=0.031). 

Inoculation and other interactions were not significant. Fisher’s Protected LSD tests showed 

that the mean root dry weights of unstressed plants were not significantly different from 

moderately stressed plants (P=0.162). However, the root dry weight of highly stressed plants 
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was significantly lower than both unstressed (P=0.003) and moderately stressed plants 

(P=0.000) (Table 4.3).  

Table 4.3: Root dry weights (g) of grapevine rootstocks under different carbohydrate stress. Data for 
non-inoculated and inoculated plants and rootstock variety were combined. Values followed by 
different letters were significantly different at P=0.05 (according to Fisher’s Protected LSD). 

Stress Level Root dry weight (g) 

0: unstressed 18.5  a 

1: moderate 19.9  a 

2: high 15.6  b 
 

101-14 plants had significantly higher root dry weights than Schwarzmann plants, with the 

raw data means being 19.2 g and 16.8 g, respectively (P=0.001). Inoculation did not have a 

significant effect (P=0.986) on root dry weight, with both non-inoculated and inoculated 

plants having a mean dry weight of 18.0 g. However there was a significant interaction 

between inoculation and stress as shown in Figure 4.2. Inoculation caused reductions in root 

weights of the two stressed treatments, but an increase (P=0.031) in the unstressed treatment 

with mean weights of 20.1 g for inoculated plants and 17.0 g for non-inoculated plants. In the 

non-inoculated treatments, the moderately stressed plants had higher root dry weights than in 

the other two stress treatments, which were similar. In the inoculated treatments, the highly 

stressed plants had lower root dry weights than the unstressed and moderately stressed plants 

which had similar root dry weights. 
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Figure 4.2: Root dry weight (g) of Cylindrocarpon destructans inoculated and non-inoculated  
(Cyl +/-) grapevine plants under different carbohydrate stress (0=unstressed, 1=moderate, 2=high 
stress) treatments. Error bars are SE of the means and show overall differences between treatment 
combinations. Capital and lower case lettering denotes a significant difference between inoculated and 
non-inoculated pairs, while an asterisk indicates the treatment is significantly different from the C. 
destructans inoculated unstressed (Cyl + 0) control. 

When ANOVA analysis was conducted with root dry weight data of only two stress 

treatments (treatments 0 and 1 combined), rootstock variety (P=0.001) and carbohydrate 

stress (P=0.000) remained significant factors. Although differences were seen in the response 

of the two rootstocks to stress, with the root dry weight of Schwarzmann being more affected 

by carbohydrate stress than 101-14, the interaction between variety and stress was not 

significant (P=0.062) (Figure 4.3). As expected, highly stressed plants had a significantly 

lower mean root dry weight than did the combined unstressed and moderately stressed plants, 

being 15.6 g and 19.2 g, respectively.  
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Figure 4.3: Mean root dry weight of Schwarzmann (Schw) and 101-14 grapevine rootstocks under 
high (2) or no/moderate (0/1) carbohydrate stress. Error bars are SE of the means and show differences 
(P=0.062) in the means. 

4.3.3 Shoot dry weights 
The shoot dry weight of plants was significantly influenced by rootstock variety (P=0.000), 

with 101-14 having a higher mean shoot dry weight (4.3 g) than Schwarzmann (2.4 g). 

Inoculation, carbohydrate stress, and all related interactions were not significant. When the 

analysis used the combined stress treatments (treatments 0 and 1) in comparison with stress 

treatment 2, the overall outcome was similar to when shoot dry weights were analysed using 

the three separate stress treatments. Again only rootstock variety was a significant factor 

(P=0.000). 

ANOVA analysis revealed no significant effect of C. destructans incidence on root (P=0.892) 

or shoot (P=0.467) dry weights. For Schwarzmann, the P-values were 0.693 and 0.140, 

respectively. For 101-14, the P-values were 0.467 and 0.985, respectively. 
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4.3.4 Molecular assessment of grapevine rhizosphere bacterial 
communities 

4.3.4.1 SSCP banding patterns 
The SSCP analysis produced a gel that had bands tightly clustered at the base. The three 

replicates used showed that the results were generally consistent, so no further replicates were 

assessed (Figure 4.5-1, Appendix 4.5). In analysis of band patterns, only bands that appeared 

consistently for all the replicates were considered. Across the different treatments, the specific 

bands were often consistently present but at different intensities (Table 4.5-1, Appendix 4.5).  

 

           c       a        a        b       b       a        b      c 

Figure 4.4: SSCP banding pattern for bacterial rhizosphere soil representing one replicate for all 
treatments with the 101-14 rootstock, inoculated (+) or not inoculated (-) with C. destructans and 
exposed to no (0), moderate (1) or high stress (2). Numbers and arrows identify bands and their excise 
position. The +C abbreviation denotes a soil only control (no plant) that was inoculated with C. 
destructans, while –C indicates a soil only control that was not inoculated. Lettering along the bottom 
of the figure (a, b, c) denotes similarity. 

For grafted plants with 101-14 rootstock, there was a noticeable difference in the pattern of 

bands between the different treatments (Figure 4.4). In the inoculated plants (+), those that 

were unstressed (+0) or slightly stressed (+1) gave a different result to those that were highly 

stressed (+2). The pattern of four distinct clear bands (21, 22, 23 and 65) in the former was 

replaced by several closely grouped bands in the +2 treatment, which was similar to non-

inoculated -C, -0, -2 and +C treatments. In the non-inoculated plants (-) the unstressed (-0) 

and highly stressed (-2) plants were more similar to each other than to the moderately stressed 

(-1) plants. The intensity of bands 21, 22 and 23 changed substantially in the inoculated 
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101-14 treatments where band 21 became less intense as the stress increases and band 22 

faded as a new band was observed immediately above it. 

 

Figure 4.5: SSCP banding pattern for bacterial rhizosphere soil representing one replicate for all 
treatments with the Schwarzmann rootstock, inoculated (+) or not inoculated (-) with C. destructans 
and exposed to no (0), moderate (1) or high stress (2). Numbers and arrows identify bands and their 
excise positions. The +C abbreviation denotes a plant only control that was inoculated with C. 
destructans, while –C indicates a plant only control that was not inoculated. 

In general, changes in band patterns due to the treatments were less obvious in Schwarzmann 

than in 101-14. For grafted plants with Schwarzmann rootstock, there was also a minor but 

noticeable change in the pattern of bands when plants were subjected to different treatments 

(Figure 4.5). Several bands from the non-inoculated plants (-) showed different intensities 

across the stress treatments. Bands 21 and 65 were sharper and more distinct in the unstressed 

(-0) or moderately stressed (-1) treatment than the highly stressed (-2) treatment. The band 

pattern for this treatment (-2) was indistinct and more similar to the inoculated treatments (+) 

and the controls. Thus, the Schwarzmann bacterial rhizosphere communities (as shown by 

band patterns) were most similar in all inoculated plants and those with high carbohydrate 

stress. Overall, in Schwarzmann these bands were more consistent and less changeable than 

those of 101-14.  

4.3.4.2 Sequenced bands  
Several bands were excised from the SSCP gels and sequenced (Table 4.4). A broad range of 

DNA sequence quality was obtained from these PCR products. Useful DNA sequences for 

similarity matching ranged in size from 220 to 331 bp. Most BLAST matches were to 
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uncultured bacterial bands isolated from DGGE gels and had greater than 90% similarity. 

Band 18 was common to all treatments and rootstock varieties, with only minor changes in 

relative intensity. In Schwarzmann, band 18 was stronger in the C. destructans inoculated 

treatments (+0, +1, +2) than in the non-inoculated treatments (-0, -1, -2), but the same did not 

hold true for 101-14. This band had 91% similarity to an uncultured Verrucomicrobia isolate 

from agricultural soil (http://www.ncbi.nlm.nih.gov/). Bands 21, 22 and 23 were also 

common to all treatments and rootstock varieties. Band 38 was found in most samples and 

there were no obvious trends in the distribution and intensity of this band. Bands 25 and 62 

were typically paired, faint and intermittent in all treatments and replicates. Several other 

bands with inconsistent intensities, namely 50, 54, 55, 64 and 65 were also excised, 

reamplified and sequenced.  

4.3.4.3 Sequence gels 
SSCP gels that were run to confirm the correct bands had been excised showed very weak 

bands for the re-amplified PCR products (Figure 4.5-2, Appendix 4.5). Sometimes more than 

one band was seen in a lane for such a product (Figure 4.6). 

 

Figure 4.6: An example of band excision: column 54 and column 55. Both bands were originally 
excised from a 101-14 ‘Cyl + 2’ sample. 



 

96

                  Table 4.4: Sequenced bands excised from SSCP gel of amplified grapevine rhizosphere bacteria (16S DNA) with their highest matches  
                  from GenBank. 

 Band Name Source Accession  # Coverage Max ident Size 

18 Uncultured Verrucomicrobia bacterium   agricultural soil EU297643.1 94% 91% 290 bp

21 Uncultured bacterium arctic tundra soil AM945475.1 97% 91% 220 bp

 Uncultured Verrucomicrobia bacterium  agricultural soil EU297643.1 97% 91%  

22 Uncultured Acidobacteria bacterium  agricultural soil EF662429.1 91% 94% 270 bp

23 Uncultured bacterium rice field AM909906.1 95% 92% 280 bp

 Uncultured gamma Proteobacterium environmental sample AY580826.1 97% 90%  

25 Uncultured bacterium isolate DGGE band alpine soil DQ525812.1 85% 95% 282 bp

 Delta subdivision Proteobacterium Fjord L40767.1 96% 89%  

38 Uncultured bacterium DGGE band  phytoremediation site AY649351.1 88% 93% 331 bp

 Prosthecomicrobium pneumaticum  Prosthecomicrobium pneumaticum AB017203.1 89% 90%  

50 Uncultured bacterium  anaerobic sludge AB267019.1 98% 92% 270 bp

 Desulforegula conservatrix  freshwater sediments AF243334.1 97% 91%  

54 Rhodovulum sp.  deep sea sediments AY214344.1 95% 88% 260 bp

55 Uncultured Acidobacteria bacterium  agricultural soil EF662429.1 99% 91% 281 bp

62 Uncultured Proteobacterium  Soil EF018977.1 96% 91% 280 bp

64 Uncultured bacterium  prairie soil EU135421.1 100% 92% 280 bp

 Uncultured Firmicutes bacterium  agricultural soil EU299385.1 100% 89%  

65 Uncultured bacterium  prairie soil EU133286.1 97% 91% 286 bp

 Uncultured Verrucomicrobia bacterium  agricultural soil EU299074.1 94% 91%  
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4.4 DISCUSSION  
This greenhouse trial investigated the effect of carbohydrate stress, as induced by leaf 

trimming, on the disease severity and disease incidence of Cylindrocarpon black foot disease 

in Sauvignon Blanc scion wood grafted to grapevine rootstocks 101-14 and Schwarzmann. 

Disease severity was significantly higher in highly carbohydrate stressed plants than in the 

unstressed or moderately stressed plant group. There was also a trend for increasing disease 

incidence with severity of trimming, with highly and moderately stressed plants having the 

greatest disease incidence. These findings were reinforced by the mean root dry weight data 

which was lower in highly stressed plants than unstressed and moderately stressed plants. 

Inoculation also reduced the root dry weights of the stressed treatments, with Schwarzmann 

seemingly more affected by carbohydrate stress than 101-14. 

Problems with natural infection and death of some replicates contributed to confounding the 

statistical analysis, and it is possible that potential significance of data for some treatments 

was obscured by these factors. Although the ANOVA estimated means were not significant, 

the raw data shows promising trends for differences in incidence and severity as well as shoot 

dry weights for the stress treatments (Appendix 4.2). Since other research reported 

significantly greater susceptibility for 101-14 than Schwarzmann, the lack of strong 

significance in this study was probably caused by low replication, natural infection from the 

soil and the low levels of infection achieved through inoculation. In this pot trial, about 40% 

infection was achieved, while others have had as much as 50% in the field or 70% incidence 

with C. destructans inoculation in similar pot trials, and up to 100% with C. liriodendri 

(pers comm. C. Probst & C. Bleach, 2008). If the experiment was repeated, with more 

replicates and these confounding factors removed, then the trends presented and discussed 

could have been significant. 

Only C. destructans inoculum was used in this trial, and identified in isolations, although 

other Cylindrocarpon species may have been present in the soil. Although colony 

morphology and even conidium morphology are not sufficient for the correct identification of 

isolates to species level, (Petit & Gubler, 2005) all species have been implicated in causing 

black foot (Probst et al., 2007) so even if there had been any misidentification, black foot 

disease incidence and severity was still able to be analysed. If there had been sufficient time 

and resources, the identity of isolates could have been confirmed using PCR with species 

specific primers (pers. comm. C. Probst, 2007). Although some native C. destructans isolates 

present in the soil may have caused infection, the introduced isolates were considered more 
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abundant as seen in the infection data with disease incidence being 19.5% in non-inoculated 

plants and 40.5% in C. destructans inoculated plants.  

The trend found here for increasing disease severity with increasing severity of trimming 

agrees with other reports of stress causing increased disease severity and incidence. For 

example, Schoeneweiss (1981) concluded from a review of his and others’ investigations that 

environmental stresses, including drought and freezing, greatly influence the incidence and 

severity of plant diseases. In this study, the significantly greater disease severity found in 

plants with the greatest carbohydrate deficiency (highly stressed plants) versus unstressed or 

moderately stressed plants indicates that C. destructans is better able to exploit stressed plants 

than unstressed plants. Halleen et al (2007) also considered that abiotic stresses such as 

malnutrition, inadequate drainage, improper planting and soil compaction play a role in the 

development of black foot disease. A relationship between defoliation (carbohydrate stress) 

and disease development was also shown with cottonwood seedlings which developed stem 

cankers after inoculation with Cytospora species, only when manually defoliated 

(Schoeneweiss, 1981). In Eucalyptus species, drought and defoliation increased their 

susceptibility to stem cankers caused by Endothia gyrosa and Botryosphaeria ribis. In 

unstressed trees, cankers were limited in extent and often healed, while stressed trees had 

much longer lesions and more canker development (Old et al., 1990). The authors concluded 

that the greater symptom development was due to poorer compartmentalisation responses and 

callus formation which were inhibited by the low carbohydrate levels in the stems of the 

stressed trees. 

Wargo (1996) concluded that plants can be predisposed to infection when severely stressed, 

possibly because of the reduced energy available for defence. Under conditions of 

carbohydrate stress, the available carbohydrates could be preferentially allocated to maintain 

metabolism rather than for use in creating physical and chemical barriers around wounds 

(Rayachhetry et al., 1996). The quantity and quality of plant sugars play a crucial part in 

disease resistance (Daniele et al., 2003) with higher sugar levels in leaf tissues conferring 

increased resistance to some plant pathogens (Daniele et al., 2003; Murillo et al., 2003). This 

is not unexpected given that soluble sugars are involved in signalling and the regulation of 

gene expression (Shoresh & Harman, 2008). Carbohydrate stress in trees can also result in 

modification of amino acids and phenolic defensive compounds including phytoalexins and 

lignin (Wargo & Houston, 1974; Horsley et al., 2000), which use plant carbohydrates in their 

synthesis (Vidhyasekaran, 1974; Daniele et al., 2003). Measuring the quantity and 

composition of carbohydrates in the roots and shoots of the different stress treatments, before 
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and after the infection period, would have added an interesting dimension to this study, as was 

reported for oak trees, in which defoliation significantly decreased starch and sucrose levels in 

the bark and outer wood of their roots. However, in that example, defoliation increased the 

levels of reducing sugars, such as glucose and fructose, which can stimulate the growth of 

some pathogens (Wargo, 1996). 

Defoliation may also negatively affect the activity of the naturally occurring glucanase and 

chitinase enzymes in the bark and wood of some plants. Since these enzymes disrupt fungal 

growth, this provides another mechanism for increasing plant susceptibility (Wargo, 1996). 

Fungal cell walls typically contain significant levels of chitins and glucans and these are 

hydrolysed by the glucanase and chitinase enzymes produced by the plant (Collinge et al., 

1993) in response to wounding and pathogen attack (Giannakis et al., 1998). In grapevines, 

varieties that have genes for endochitinases and glucanases have been shown to have greater 

tolerance or resistance to the grapevine dieback fungus, Eutypa lata (pers. comm. S. Delrot, 

2008). Giannakis et al (1998) also reported a positive correlation between resistance to 

powdery mildew, caused by Uncinula necator, and the activity of chitinase and 

β-1,3-glucanase in different grapevine genotypes. Their studies used agars containing leaf 

extracts with these enzymes, which inhibited fungal growth and resulted in hyphal tip rupture. 

The plants’ responses to C. destructans infection and different defoliation treatments should 

also be investigated in relation to pathogenesis related proteins in the roots or stems of 

different grapevine rootstocks. This may be worthwhile since stimulation of chitinase and 

glucanase activity has been reported in grapevine tissues, including roots (Derckel et al., 

1996), in response to abiotic stress such as cold stress and drought (de los Reyes et al., 2001;  

Castro et al., 2008). 

The differences in rootstock susceptibility to C. destructans could be due to differences in the 

carbohydrate concentrations of 101-14 and Schwarzmann roots. Higher tissue carbohydrate 

concentrations, often associated with more resistant hybrids of some crops, can sometimes 

inhibit pathogen growth, as shown for resistant and susceptible potato hybrids by Daniele et al 

(2003). The same could be true for grapevine rootstocks, since grape variety is known to 

influence carbohydrate reserves (J. Bennett et al., 2005). 

Disease incidence data for infection at 5 cm up the stem was not significant for stress, variety, 

or even inoculation treatments. There was a trend for highly carbohydrate stressed plants to 

have higher disease incidence (19.65%) than the combined unstressed and moderately 

stressed group (7.60%), further confirming that carbohydrate stress could increase black foot 

development. For most treatments, incidence at 5 cm (16.1% with inoculation) was less than 
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at 0 cm (21.4% with inoculation) but reflected it. The most likely reason for the lower 

incidence at 5 cm was that the progression of the disease was too slow for the infections to 

reach the 5 cm region by the time of assessment. However, the time allowed for infection to 

develop (10 months) should have been sufficient as others have had up to 35% death rate due 

to Cylindrocarpon black foot in grapevines after inoculation with the same concentration of a 

C. destructans isolate, when only 4.5 months was allowed before destructive assessment. 

Their different method of root inoculation, by dipping them in the inoculum rather than 

inoculating the soil, could have accelerated infection (Halleen et al., 2004). In addition, their 

pots did not contain soil and so lacked competition by soil microorganisms. Inoculation of 

field soil caused a similar trend, with more infection at 0 cm than at 5 cm, when 8 months was 

allowed for disease development (pers. comm. C. Bleach, 2009).  

Perhaps disease incidence was not significantly influenced by carbohydrate stress because the 

plants were left to grow for a significant period of time. The infection might have occurred 

earlier in 101-14 than Schwarzmann, resulting in higher disease severity because the infection 

had longer to infect the trunk. If the plants had been assessed earlier, a similar incidence at 

0 cm might have been observed. Alternatively, perhaps the rootstocks had equal susceptibility 

to C. destructans infection (incidence), but the rate of disease progression within the rootstock 

tissues differed. If 101-14 had a greater degree of tissue invasion or break-down, then this 

could account for its higher disease severity.   

In this study, root dry weights were reduced in relation to the level of carbohydrate stress. 

This is in line with other research which reported that roots were particularly sensitive to 

defoliation, as it reduced root starch concentrations dramatically (Bennett et al., 2005) and 

decreased root dry weight (Kliewer & Fuller, 1973). The defoliation treatments used in this 

trial could have been more frequent or intense if larger plants had been used, potentially 

causing even greater disease severity or incidence. However, Bennett (2002) used similar 

defoliation treatments as employed in this trial; with mature Chardonnay vines (>5 years old), 

he conducted the experiment in a vineyard and plucked new leaves according to the same 

ratio, but more frequently during the growing season.  

Kliewer (1970) and Kleiwer and Fuller (1973) used defoliation treatments on grapevines of 0, 

25, 50, 75 and 100% in rooted cutting pot trials similar to this one. They performed 

defoliations at different grapevine developmental stages, including fruit-set, veraison and fruit 

maturity. Defoliation at fruitset caused lower dry weights for canes, trunks and roots, at 

veraison it caused lower dry weights for trunks and roots, and at harvest it only reduced the 

root dry weights. In their study, the root dry weights of 50 and 75% defoliated vines were 
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significantly less than those of the 25 or 0% defoliated vines (P<0.05). For example, roots 

from 0% defoliated vines weighed 106.2 g, those from 25% defoliated vines weighed 97.2 g, 

those from 50% defoliated vines weighed 83.6 g, and those from 75% defoliated vines 

weighed 78.5 g, indicating a reduction of about 26% between the control and the most intense 

defoliation treatment. Kliewer and Fuller (1973) allowed a much longer timeframe for their 

study (2 years) than was available for this masters’ research program, which allowed them to 

carry out the defoliation treatments a total of six times, three times a year. In addition, the 

plants used here were smaller than theirs, and so fewer differences between treatments might 

have been observed because larger plants lose proportionally more leaves for any given 

percentage based trimming treatment, making a greater difference to their carbohydrate 

reserves. They also used rooted cuttings, not grafted vines, and Sultana vines rather than the 

wine varieties used here.  

The variety by stress interaction (P=0.062) was associated with the greater reduction in the 

root dry weight of Schwarzmann than 101-14, especially with the highly stressed plants. 

Schwarzmann was more affected by the carbohydrate stress than 101-14, probably due to 

101-14 being more vigorous and therefore having a greater ability to quickly regenerate the 

lost leaves and replenish carbohydrate stores. Despite its apparent better tolerance of 

carbohydrate stress, 101-14 was found to be more susceptible to Cylindrocarpon black foot 

than Schwarzmann, in this trial and in others (Harvey & Jaspers, 2006). Regardless, 101-14 is 

currently the most commonly used rootstock in New Zealand vineyards (Verstappen, 2008), 

possibly for its agronomic qualities. 

The significant interaction between inoculation and carbohydrate stress was evident with 

inoculated plants that had reduced root dry weight in moderate and high stress treatments, but 

increased root dry weight in unstressed treatments (when compared for the non-inoculated 

plants). Cylindrocarpon destructans infection was more likely when the plants were 

carbohydrate stressed, and the infected vines probably lost their necrotic diseased roots, and 

had poor root development from necrotic crowns. Halleen et al (2004) also reported that 

inoculation with Cylindrocarpon species, including C. destructans, significantly reduced both 

root and shoot mass in potted grapevines. The increased root mass seen in unstressed 

inoculated vines, which have the carbohydrate reserves, could perhaps be attributed to the loss 

of root material stimulating the plant to produce more roots, as was seen with citrus rootstock 

cultivars infected with Phytophthora nicotianae (Graham, 1995). 

In terms of the shoot dry weight data, only rootstock variety was a significant factor, with 

101-14 again having higher shoot dry weights than Schwarzmann, indicating that 101-14 was 
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more vigorous than Schwarzmann. Shoot dry weight was not influenced by carbohydrate 

stress, possibly because the study period and defoliation intensities used in this study were not 

sufficient for such changes to be detected. Kliewer and Fuller (1973) reported that defoliated 

plants typically experienced a decrease in shoot growth and internode length, a useful 

measurement that could have been taken in this study.  

Single stranded conformational polymorphism (SSCP), a culture independent methodology, 

was used to monitor changes in the bacterial populations of the rhizosphere, by using 

universal bacterial primers. Although the bands on the SSCP gels clustered at the bottom of 

the gel and this often made it difficult to clearly see individual bands, three main results were 

still apparent. Firstly, there were different banding patterns, indicating changes in the diversity 

of bacteria in the rhizosphere, caused by some of the treatments. Secondly, the banding 

patterns on gels were different between the two rootstock varieties, indicating that rootstock 

variety also affected bacterial rhizosphere communities. Thirdly, the observed changes in 

banding patterns were more often an alteration in band intensity rather than a complete 

change in presence or absence of bands. These differences were consistent between gel 

replicates. 

The greater vigour of 101-14 than Schwarzmann was shown by it producing higher root dry 

weight and greater shoot dry weight in the scion. Shoot development and root growth rate 

significantly influence rhizodeposition and therefore the size and composition of the soil 

microbial community (Kuzyakov, 2002). Due to its observed greater vigour, rootstock variety 

101-14 probably had greater root exudation, and supported a greater soil bacterial population 

than Schwarzmann, mechanisms already discussed in Chapter 2. Schwarzmann appeared to be 

more susceptible to defoliation induced carbohydrate stress than 101-14, with Schwarzmann’s 

root dry weights suffering a greater reduction when plants were highly stressed (compared to 

the unstressed and moderately stressed treatment) than those of 101-14 (Figure 4.3). It is 

possible that the differences between the stress treatments were caused by the effects on 

exudates released from the roots. Vestergard et al (2008) suggested that recently assimilated 

carbon was released to the rhizosphere more slowly in defoliated plants than in non defoliated 

plants. If less carbon was allocated to the rhizosphere in the highly stressed plant samples, this 

could have resulted in a loss of bacterial density from key taxonomic groups, which depend 

on the exudates as a carbon source, causing SSCP bands to fade.  

The changes in bacterial communities due to carbohydrate stress differed with grapevine 

rootstock variety. For rootstock 101-14 the banding patterns of the no stress and high stress 

treatments were more similar to each other than to the moderate stress treatment (Figure 4.4). 
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For rootstock Schwarzmann, the no stress and moderate stress banding patterns were more 

similar to each other than for the high stress treatment (Figure 4.5). These results reflect the 

trends in disease severity at 0 cm shown in the raw data (Appendix Table 4.2-1). They suggest 

that the bacterial rhizosphere communities associated with the rootstocks were affected by the 

amount of disease at the stem base. The exact identity of all of the bands in each pattern is 

unknown but a representative group was sequenced (Table 4.4). Rootstock variety differences 

in SSCP bands were also apparent when the differentially stressed plants had been inoculated 

with C. destructans. For rootstock 101-14, the banding pattern of the bacterial populations 

changed between the moderate and high stress in the inoculated treatments, unlike the 

banding patterns of rootstock Schwarzmann which remained relatively similar with only 

small shifts in band intensities due to defoliation treatments. This indicated that in 101-14, the 

combination of pathogen and defoliation was able to alter the bacterial rhizosphere population 

only when defoliation was severe. 

In this experiment, the trend was for 101-14 to have greater infection than Schwarzmann, so 

perhaps this difference in rootstock susceptibility was partially responsible for the differing 

response of bacterial communities to carbohydrate stress. Having higher vigour, 101-14 was 

able to tolerate moderate carbohydrate stress, but being more susceptible to C. destructans, 

when the carbohydrate stress passed a certain threshold (high intensity), disease severity 

increased. The different banding profile of 101-14 for the high stress treatment might be due 

to both decreased root exudation due to defoliation, and also infection causing the loss of 

necrotic root material, thereby reducing the root area available for exudation. This would 

mean a loss of habitat and nutrients for groups of bacteria on or in this root tissue. 

Schwarzmann bacterial populations not responding significantly differently when inoculated 

than when non-inoculated perhaps reflect the lack of susceptibility to the pathogen.  

Defoliation induced stress can increase the release of soluble organic compounds from the 

roots (Paterson & Sim, 2000), or compromise plant physical barriers (as discussed earlier). 

This combination might encourage pathogen growth and increase disease incidence, resulting 

in leakage of carbon and electrolytes from pathogen entry wounds. Naseby et al (2000) 

reported that inoculating pea plants with Pythium ultimum increased the root and rhizosphere 

bacterial (including fluorescent Pseudomonas species) and fungal populations. These 

population increases were attributed to Pythium causing root damage and or nutrient leakage 

from the roots. In this study, such leakage could also have stimulated microbial biomass and 

activity, including pathogen growth or the growth of other fungal and bacterial groups in the 

rhizosphere. Additionally, C. destructans might be able produce toxins or enzymes which 
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increase leakage from the roots. For example, when cocoyam roots are infected with Pythium 

myriotylum, loss of electrolytes is due mainly to the disruption of cell membranes caused by 

enzymes and toxins (Nyochembeng et al., 2007). In one study by Meharg and Killham (1995), 

root exudation of perennial ryegrass increased as a result of inoculation by a range of soil 

fungi and bacteria. Modification of exudation was induced by microbial metabolites which 

increased plasmalemma permeability or compromised its protein function. 

Bacterial populations could vary between the rhizospheres of infected and non infected plants 

due to the presence of decaying or lost roots in the former. This is because soil 

microorganisms are dramatically affected by the quality of plant litter and root turnover 

(Paterson, 2003). The shifts in the SSCP banding patterns could also reflect the loss or gain of 

bacteria affected by C. destructans antagonistic bacteria. The effect of inoculation on banding 

patterns could be partly explained by the fact that diseased plants can have different fungal 

and bacterial rhizosphere communities than those of healthy plants. For example, healthy 

black spruce seedlings had a higher proportion of Acidobacteria and γ-Proteobacteria than the 

diseased seedlings which sustained a higher proportion of Actinobacteria (Filion et al., 2004). 

In the same study, it was also reported that beneficial microorganisms and those with 

biocontrol potential against soil-borne pathogens, for example Pseudomonas, Bacillus and 

Paenibacillus, were detected in the rhizosphere of only healthy seedlings. However, there was 

no evidence about whether the communities associated with healthy roots promoted disease 

suppression, or if they were present because the pathogen was not.  

Marschner et al (2002) analysed bacterial (16S rDNA) and eukaryotic (18S rDNA) 

community structure of white lupin using PCR-DGGE. They reported that soil microbial 

communities were modified by organic acid exudation and that the changes in community 

structure were reflected in the DGGE banding patterns, with several bands being present for 

all organic acid concentrations, but others for low or high concentrations. By sequencing of 

bands, Schwieger and Tebbe (2000) found that inoculation of alfalfa with the pathogen 

Sinorhizobium meliloti L33 modified the rhizosphere bacterial community, decreasing the 

proportion of γ-Proteobacteria while increasing the proportion of α-Proteobacteria. In this 

study, the shift seen in the SSCP banding pattern when defoliation stress was severe could 

perhaps be attributed to similar pathogen induced leakage. 

In several gels, the banding pattern of the inoculated and/or stressed treatment was quite 

different from the non-inoculated and unstressed treatments, with particular groups of bands 

most affected. It is possible that the absent bands represent bacteria that may have been 

inhibited by the pathogen itself, or the induced change in root exudates was not conducive to 
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their growth. Specific bacterial groups could require large amounts of carbon from their host, 

often being dependent on specific root exudate components, as was found to be the case with 

soil fungi from defoliated trees (Cullings et al., 2005). Bacteria differ in their ability to utilise 

particular carbon substrates in the rhizosphere, for example, organic acids. When the relative 

availability of these change/fluctuate, the competitive ability of some species may increase or 

decrease accordingly, changing the microbial community structure (Marschner et al., 2002). 

Defoliation treatments may also have altered the grapevine root exudate quantity and quality 

in such a way.  

The soil only controls give an indication of how much the grapevine rootstocks contributed to 

the soil bacterial populations, as opposed to what was already present in bulk soil. These 

controls were similar to several of the stress/inoculation treatments, such as in 101-14 for the 

low stress non-inoculated and high stress non-inoculated /inoculated treatments. For rootstock 

Schwarzmann they were most similar to the high stress non-inoculated and all of the 

inoculated treatments. This suggests that the bacterial communities in all of these treatments 

are similar to those in bulk soil, where there is likely to be less carbon and organic matter than 

around plants, due to the lack of root exudation and decaying plant tissues. Maize plants for 

example, are estimated to deposit 100 mg C kg-1 soil per day (Iijima et al., 2000). Looking at 

Schwarzmann in particular, it seems likely that the similarity between rhizospheres of highly 

stressed plants and the control soils is the result of low root exudation by this low vigour 

rootstock.  

The great similarity in types and numbers of bands for both rootstock varieties and all 

treatments and the differences in band intensities suggested that the response to pathogen and 

/or defoliation stress is not related to the presence or absence of a specific bacterial group, but 

rather to the abundance or functionalities of bacteria. Overall, the findings of this study were 

in line with those of Costa et al (2006a), who found no significant differences in the 

Pseudomonas species diversity (DGGE fingerprints) for different maize cultivars, but rather, 

shifts in the relative abundance of dominant populations related to plant development. 

However, as discussed in Chapter 2, one of the obvious difficulties in interpreting the SSCP 

gels was the tightly clustered bands at the base of the gel. Optimisation methods are also 

outlined in that section.  

Again, as with Chapter 2, DNA sequencing was used to identify the bacterial species 

generating the banding patterns. Matches to GenBank sequences were not 100%, and ranged 

from 88-95%. The maximum identification percentage given for the sequenced bands are not 

high enough for an absolute assignment of bacterium species identity. However, the 
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percentage identity was considered adequate to give some indication of phylum, class or 

genus level match as similar results were obtained by Opelt et al (2007). Sequences 

corresponding to SSCP bands showed that the grapevine rhizosphere included members of the 

bacterial phylum Firmicutes (Table 4.4), a group that includes genera implicated in the 

biological control of fungal pathogens, including but not limited to, Bacillus, Clostridium and 

Paenibacillus (de Vos et al., 1984). For example, a Bacillus isolate (UYBC38) was 

demonstrated to be antagonistic towards Botrytis cinerea (Rabosto et al., 2006), a Clostridium 

species, isolated from rice field soil was antagonistic to the pathogen Rhizoctonia solani (Niza 

et al., 2007), and a strain of Paenibacillus polymyxa (BRF-1) suppressed the growth of 

Phialophora gregata, the cause of soybean brown stem rot (Zhou et al., 2008). Members of 

the Proteobacterium phylum were also detected in the grapevine rhizosphere soil. This 

phylum includes such genera as the Pseudomonas (γ-Proteobacteria) and Burkholderia 

(β-Proteobacteria) (Brenner et al., 2005) which have also been implicated in the biocontrol of 

fungal pathogens (Costa et al., 2006a; Opelt et al., 2007). Additionally, the bacterial groups 

found here were similar to those detected on roots of black spruce seedlings grown in a 

nursery (Filion et al., 2004), including bacterial groups such as Acidobacteria, Actinobacteria, 

Firmicutes, Proteobacteria (alpha, beta, delta, gamma), and Verrucomicrobia. A large number 

of the bands sequenced in their experiment also matched up with an “uncultured bacterium”. 

In the SSCP analysis of grapevine rhizosphere bacterial communities, the bands that changed 

the most in response to treatment were 21, 22, 23 and 65. In the C. destructans inoculated 

rhizosphere, of 101-14 in particular, high intensity defoliation resulted in fading of the bands, 

indicating a decrease in the populations of these bacteria. Bands 21 and 65 represented 

members of the Verrucomicrobia, while band 22 was a member of the Acidobacteria. 

Cardenas and Tiedje (2008) found that Verrucomicrobia and Acidobacteria were largely 

unculturable but ubiquitous soil bacteria, which would not have been identified as dominant 

members of the rhizosphere had only culture dependent methods been employed. The role of 

these bacteria is uncertain but some members of the Verrucomicrobia are known cellulose 

degrading organisms (Schmalenberger & Tebbe, 2002), and methane oxidisers (Dunfield  

et al., 2007). Band 23 was probably a member of the γ-Proteobacteria.  Some members of the 

Proteobacteria are known to be physiologically flexible and able to make use of several root 

exudate compounds (Zul et al., 2007). Decreasing intensity of this band occurred when 

101-14 was highly carbohydrate stressed, providing further evidence to the hypothesis that 

this treatment could cause reduction in quantity of root exudates.    
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With so many similarities in the sequences between grapevine rootstock varieties, it is likely 

that many of the bacterial groups were common to both rootstocks. However, strains of 

antagonistic bacteria have been shown to have different genotypic and phenotypic profiles, 

but the same mobility on a DGGE gel (Costa et al., 2006a), and perhaps the same could occur 

with SSCP.  

In summary, this trial shows that carbohydrate stress increases C. destructans black foot 

disease incidence and severity. Of the two rootstock varieties grafted to the scion wood, 

101-14 appears more susceptible to infection than Schwarzmann. However, given the large 

effect of high levels of defoliation on Schwarzmann root dry weight, it would seem that this 

rootstock is more susceptible to carbohydrate stress. The SSCP analysis indicates that stress 

and pathogen presence can alter bacterial communities in the rhizosphere. These changes may 

either contribute to, or be a product of, the increased susceptibility of 101-14 to black foot 

infection and the low root dry weight of Schwarzmann caused by carbohydrate stress. 
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CHAPTER 5  
CONCLUDING DISCUSSION AND FUTURE WORK 

This research set out to determine whether grapevine rhizosphere bacteria play a role in the 

reportedly different susceptibilities of grapevine rootstock varieties to Cylindrocarpon black 

foot disease. When this study began, it was considered that C. destructans was mainly 

responsible for black foot disease (Gubler et al., 2004), but it was also acknowledged that 

other species might be involved (Bonfiglioli, 2005). In South Africa, another Cylindrocarpon 

species, C. liriodendri is now believed to be the dominant pathogen; some isolates were re-

identified from C. destructans to C. liriodendri using DNA sequence data (Halleen et al., 

2006b). Recent research in New Zealand by Probst et al (2007) also found C. liriodendri 

isolates to be more pathogenic than those of C. destructans and C. macrodidymum. 

5.1 CHAPTER 2: POPULATION, DIVERSITY AND 
FUNCTIONALITY OF RHIZOSPHERE BACTERIA  

The size and diversity of bacterial populations associated with the rhizospheres of the 

different grapevine rootstocks was evaluated by dilution plate counts and molecular 

characterisation with SSCP. The results indicated that the size and diversity of bacterial 

populations did not directly correlate with the reported differences in susceptibilities of the 

rootstocks to Cylindrocarpon black foot disease. Rootstock 5C had bacterial populations that 

were larger and more varied between plants than those from the rhizospheres of 101-14, 

Riparia Gloire and Schwarzmann. The larger bacterial populations of 5C could be attributed 

to its greater vigour, since Merckx et al (1985; 1987) showed that rhizosphere soil microbial 

biomass increases with rhizodeposition. Root exudates may differentially inhibit or stimulate 

C. destructans growth, since they can include compounds toxic to some microorganisms  

(Fu & Cheng, 2002). For example, those of the common bean were shown to inhibit the 

growth of Rhizobium species, probably through the action of phenolic compounds (Kato et al., 

1997). Conversely, allelochemicals exuded from some rice cultivars, but not others, were 

shown to stimulate soil bacterial communities, but inhibit fungi (Kong et al., 2008).  
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To establish whether root exudates can influence the growth of Cylindrocarpon species, 

exudates could be collected from the different rootstocks and plate assays used to determine 

whether they stimulate or inhibit fungal growth or spore germination. Buxton (1962) 

impregnated filter paper with root exudates from banana varieties with different 

susceptibilities to Panama wilt. Strips of this filter paper were placed on agar plates inoculated 

with spores of F. oxysporum f.sp. cubense and its effect on germination determined. 

Alternatively, percent germination could be calculated by adding spores to root exudates, in 

microtiter plates or samples spotted onto glass slides (Gunawardena et al., 2005). However, 

influencing factors such as plant age, pathogen strain or root surface area and volume should 

be considered when undertaking such an experiment.  

Functionality assays indicated that bacterial isolates from the rhizosphere of Riparia Gloire 

had more strongly positive responses than those from the more susceptible 101-14. More 

bacteria from Riparia Gloire produced highly active hydrolytic enzymes and siderophores 

than bacteria from other rootstocks, and these bacteria may play a role in suppressing black 

foot disease. However, the results are inconclusive and it is recommended that further 

research be carried out. More comprehensive functionality tests employing a larger number of 

assays, such as those employed by Berg et al (2002; 2005), could be used in combination with 

a larger number of bacterial isolates (from all rootstock varieties). This might provide a more 

complete picture of the role of grapevine rhizosphere bacteria in rootstock susceptibility to 

black foot disease as was found by Berg et al (2002; 2005) from their studies on the pathogen 

V. dahliae. A total of 120 bacterial isolates were screened in the current experiment, but 

others have tested a significantly larger sample, for example, Berg et al (2002) assessed 5854 

bacterial isolates and Berg et al (2005) assessed 2648. However, for such a large scale 

experiment high through-put and partly automated methods would be necessary. Identifying 

all the bacterial isolates, at the dilution plating stage, would also have been advantageous as a 

range of isolates with known diversity could have then been assessed for functionality. The 

effect of reinoculating promising beneficial bacterial isolates back into the grapevine 

rhizosphere should also be investigated. Bacterial isolates that were demonstrated to have 

strongly positive functionality assay responses could be made into a filtrate and introduced to 

the soil of plants prior to inoculation with Cylindrocarpon species. 
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5.2 CHAPTER 3: SUSCEPTIBILITY OF GRAPEVINE 
ROOTSTOCKS TO C. DESTRUCTANS AND F. 
OXYSPORUM 

A pathogenicity trial involving both C. destructans and F. oxysporum determined their 

pathogenicity to four rootstock varieties. These pathogens were able to infect the roots of the 

grapevine rootstocks tested to different extents. Rootstocks 101-14 and 5C were most 

susceptible to C. destructans, while Riparia Gloire and Schwarzmann were more susceptible 

to F. oxysporum. Results suggested that F. oxysporum might be the more aggressive pathogen 

because it caused greater disease severity overall. There was also an indication that 

inoculation with one pathogen increased plant susceptibility to another, with increased  

F. oxysporum infection in the C. destructans inoculated treatments of Riparia Gloire and 

Schwarzmann. In the report by Harvey and Jaspers (2006) and the current experiment, Riparia 

Gloire demonstrated low susceptibility to C. destructans, and in the latter was shown to have 

a relatively small bacterial population. In the current study 5C had high susceptibility and a 

relatively large bacterial population. Together, these findings appear to support the work of 

Gilbert et al (1994), Neal et al (1973) and Rumberger et al (2007) where more susceptible 

plant cultivars had larger bacterial populations than the less susceptible plant cultivars. No 

other significant differences were noted between the rhizosphere bacterial populations of the 

rootstocks that could be correlated with their susceptibilities. 

Any differences in the susceptibilities of grapevine rootstocks to C. destructans and 

F. oxysporum could in part be due to differences in physical barriers to fungal penetration. 

The production of secondary wall material increases disease resistance by providing a barrier 

to fungal penetration, or by some juvenile tissue being unavailable to the invading fungi 

(Taher & Cooke, 1975). Future research could investigate whether different grapevine 

rootstocks differ in how much carbohydrate they invest in these barriers; it is possible that the 

more resistant ones may have greater internal differentiation and lignification, limiting the 

movement of invading fungi within the plant. Plants could be inoculated with the pathogens, 

and then the number and thickness of these barriers examined under the light microscope. 

Investigations should also be conducted to determine whether the more susceptible varieties 

differ in exudates that attract either C. destructans or F. oxysporum to their roots. For 

example, Botha et al (1990) showed that root exudates of avocado varieties with high 

resistance to Phytophthora cinnamomi attracted fewer of the pathogen’s zoospores than the 

more susceptible varieties. Botha and Kotze (1989) found that particular amino acids 

(glutamic acid, aspartic acid and arginine) responsible for attracting the pathogen were most 
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abundant in the susceptible plants. Marais and Hattingh (1985) found similar interactions 

between grapevines and P. cinnamomi. 

5.3 CHAPTER 4: CARBOHYDRATE STRESS EFFECTS ON 
C. DESTRUCTANS DISEASE SEVERITY AND 
RHIZOSPHERE POPULATIONS 

Carbohydrate stress significantly increased C. destructans black foot disease severity in 

grafted grapevine plants with rootstocks 101-14 and Schwarzmann. As before, rootstock 

variety 101-14 appeared more susceptible to infection than Schwarzmann, but Schwarzmann 

root dry weight was more depleted by the carbohydrate stress. Stress and inoculation also 

altered grapevine rhizosphere bacterial communities, and these changes appeared to be related 

to the differences in rootstock susceptibility to Cylindrocarpon black foot disease. Further 

investigations should evaluate the effects of leaf trimming treatments and rootstock variety on 

grapevine root exudation volume and composition to provide a more complete picture of how 

these factors affect the grapevine rhizosphere.  

No conclusive results could be reported for the role of grapevine rhizosphere bacteria in the 

susceptibilities of rootstocks to Cylindrocarpon black foot disease, when stressed or 

unstressed, but further research, using additional molecular tools and functionality assays 

involving more bacterial isolates (from all the rootstocks) might offer some clarification. It is 

likely that the mechanisms of action might be more subtle than could be determined by the 

methods used in this study.  

Several other experiments have incorporated the use of both universal and genus-specific 

bacterial primers. For example, Opelt et al (2007) used SSCP to analyse the endophytic and 

ectophytic bacterial populations associated with Sphagnum mosses. They used both universal 

bacterial primers (16S rDNA), and Burkholderia-specific primers because Burkholderia 

species were known to antagonise V. dahliae. In the current study, bacterial groups containing 

genera implicated in biocontrol were identified by sequencing, and so further studies could 

repeat this experiment using both universal bacterial primers and genus specific primers. 

Bacterial genera known to have biocontrol capabilities could be targeted, for example, 

Pseudomonas, Burkholderia, Paenibacillus, Bacillus, Clostridia and Streptomycetes (family 

Streptomycetaceae, class Actinobacteria) (Inbar et al., 2005). The latter are known to produce 

a large array of secondary metabolites including antibiotics and extracellular enzymes, which 

could be investigated with primers specific to the Actinobacteria as reported by Inbar et al 

(2005). Challis and Hopwood (2003) used Streptomycetaceae specific primers to study the 

distribution of these bacteria in response to root proximity and compost amendment. 
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Actinomycetes have been shown to inhibit C. destructans in vitro (Whitelaw-Weckert, 2004) 

and so they would be an ideal group to monitor in a defoliation study as root exudates are 

their primary carbon source (Crawford et al., 1993).  

The sequencing results obtained here could be used as a guide to choose group specific 

primers for species present in the grapevine rhizosphere, particularly species known to inhibit 

the growth of C. destructans in vitro. This would be a useful addition, as species of biological 

importance may be at levels too low to be detected by the use of universal bacterial primers, 

particularly with the very small size of the samples analysed. Future investigations could also 

determine the diversity of fungi (including the pathogens) in the rhizosphere of grapevines 

since Costa et al (2006b) found that plant species affected rhizosphere community structure of 

both bacteria and fungi. Arbuscular mycorrhizal fungi would be a useful group to monitor 

because they are known to colonise grapevine roots (Schreiner, 2003) and are a dominant 

beneficial influence in the rhizosphere (Bending et al., 2006).  

Primers that target specific functionalities could also be investigated, for example, genes 

implicated in fungal antagonism, such as those coding for hydrolytic enzymes or secondary 

metabolites. Genes involved in siderophore production in particular, might be good targets as 

reported by Opelt and Berg (2004) who found that nearly all of the V. dahliae antagonistic 

Pseudomonas and Burkholderia species isolated from bryophytes produced siderophores.  

To gain a better functional understanding of the mechanisms behind bacterial antagonism of 

fungal pathogens, Berg et al (2002) also used a PCR screening approach to target the phlD 

gene in Pseudomonas putida isolates. This gene codes for DAPG, one of the antibiotics 

frequently implicated in the biocontrol of fungal pathogens. A similar study was undertaken 

by Frey-Klett et al (2005) who used primers to amplify regions of genes involved in the 

synthesis of the antibiotics phenazine-1-carboxylic acid, pyrrolnitrin and pyoluteorin. Such 

primers directed to genes might have been informative in this experiment, targeting plant-

beneficial bacterial functionalities or genes that encode antifungal compounds.  

To determine which genes were being actively expressed in the grapevine rhizospheres, or 

which bacterial groups were most active, it might have been beneficial to use primers that 

target RNA rather than DNA, as DNA based analyses do not differentiate between dormant 

and active populations. The total rhizosphere microbial DNA extracted could be from 

dormant or dead cells (Sharma et al., 2005). Vestergard et al (2008), used DGGE for studying 

both 16SrRNA and 16SrDNA genes to determine the effect of arbuscular mycorrhizal fungi 

on the bacterial communities of pea plants. Sharma et al (2005) also amplified both 16S 

rRNA and rDNA in their DGGE analysis of bacterial community structure in the rhizosphere 
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of grain legumes. Use of RNA is crucial because changes in microbial activity are not always 

reflected in changes in bacterial community structure (Vestergard et al., 2008). However, 

DNA and RNA based analyses can yield very similar results, perhaps indicating that in the 

rhizosphere, the metabolically active bacteria are dominant (Poulsen et al., 1993). It is 

therefore possible that the bacteria dominating the SSCP gels in this study were the 

metabolically active ones. However, the use of quantitative PCR with genus specific, RNA 

specific, or function specific primers would have allowed more conclusive proof of the 

abundance and activities of bacterial groups within rhizosphere communities. For example, 

Kandeler et al (2009) used quantitative PCR to determine the abundance of total bacteria, 

nitrate reducers and denitrifiers in the different soil layers of a forest, using the 16S rRNA 

gene as well as nitrate reduction and denitrification genes, respectively.  

The amount of soil used for analysis limited the overall effectiveness of the molecular 

methodology used in the current study, and a method using more soil would have been ideal. 

In this study, samples of 0.25 g were used whereas up to 1 g has been used in other studies 

(Costa et al., 2006a). Rhizosphere soil was chosen over the rhizoplane or bulk soil because it 

is the microbial habitat most strongly influenced by plants and commonly used in studies that 

investigated the composition of root microbial communities (Kowalchuk et al., 2002; 

Dohrmann & Tebbe, 2005), however, useful information might have been gained from the 

rhizoplane soil as well. Using soil from different depths, at different locations along the root 

axis, or from older/younger plants may also have affected the outcome since root exudation 

and its associated soil bacterial communities, are influenced by these factors (Yang & 

Crowley, 2000; Walker et al., 2003; Morgan et al., 2005). 

Better sequence matches at the genus or species level would have provided a better picture of 

the grapevine rhizosphere communities, and could have allowed the detection of more subtle 

differences between rootstock varieties. As discussed in previous sections, matches were 

considered adequate for the broader levels of identification, although the accuracy of any 

genus or species level matches should not be relied upon. However, it appears that multiple 

methods are sometimes necessary to successfully identify rhizosphere bacteria to genus or 

species level. For example, Berg et al (2005) identified all V. dahliae antagonistic bacterial 

isolates from their study on potato rhizosphere, phyllosphere, endorhiza and endosphere 

communities. They used fatty acid methyl ester gas chromatography (FAME-GC), sequencing 

of the 16S rRNA gene covering variable regions v1-v4, with additional characterisation by 

rep-PCR with BOX primers and gas chromatography using the MIDI system (Microbial 

Identification System, Inc., USA). This allowed them to successfully identify 316 of their 349 
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isolates to the genus or species level. Using multiple methods might have improved 

identification in the present study.   

If given further time and resources, it could have been worthwhile to carry out a field trial 

with a greater number of replicates, rootstock varieties and scion combinations. This would 

allow one to determine whether the trends observed here, in terms of carbohydrate stress 

increasing disease severity, were consistent in the vineyard situation. Plants grown in pots in  

a greenhouse, with the associated physical constraints and controlled watering and lighting, 

may react differently to those grown in the field when exposed to artificially induced stress. 

This is because natural environmental stresses are highly variable in amount and time 

(Schoeneweiss, 1981). Pathogen inoculum levels could also vary between the field and the 

greenhouse, with inoculum potentially being more localised in the former due to soil 

characteristics and water flow. Future investigations could also determine the effect of 

carbohydrate stress on a selection of the implicated Cylindrocarpon species, or genotypes, 

since subspecies variation in pathogenicity has been shown to occur (Probst et al., 2007). 

Different inoculum types could also be trialled, although conidia and mycelia of C. 

destructans, C. liriodendri and C. macrodidymum have recently been shown to convert to 

chlamydospores when placed in the soil environment (pers. comm. M. Jaspers, 2009).  

It is also important to note that soil, site, plant developmental stage and season are capable of 

altering exudation, root morphology and, therefore, structure of rhizosphere communities, 

including the composition, relative abundance and diversity of antagonistic bacteria (Berg  

et al., 2005; 2006). The molecular component of this trial could be further expanded to 

examine rhizosphere bacterial populations over a longer period of time, but this was not 

possible due to time constraints. For example, sampling rhizosphere soil across seasons could 

have revealed seasonal fluctuations in soil microbial populations not seen in the single end of 

trial sampling done here. For example, temperature gradient gel electrophoresis profiles from 

maize grown in tropical soils revealed strong seasonal shifts in bacterial diversity, in the 

eubacterial bacterial profiles as well as in the group specific profiles of Proteobacteria and 

Actinomycetes (Gomes et al., 2001). 
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5.4 RELEVANCE OF THIS STUDY TO THE MANAGEMENT 
OF CYLINDROCARPON BLACK FOOT DISEASE 

The results of the current study are relevant to the New Zealand grape growing industry.  

They have confirmed that commonly used grapevine rootstocks are susceptible to both C. 

destructans and the less studied F. oxysporum, indicating that greater efforts should be made 

to monitor both of these in New Zealand vineyards. Since the removal of leaves was shown to 

increase C. destructans disease severity, growers should take every precaution to protect their 

plants from abiotic and biotic stresses that result in loss of foliage. Managing environmental 

factors (as well as insects and diseases that cause defoliation) that could stress grapevines 

should be an important part of integrated pest management strategies (Schoeneweiss, 1981). 

This is of particular importance in cool climate environments like New Zealand, because there 

is little or no postharvest carbohydrate reserve accumulation when leaf senescence is soon 

after, or coincides with, fruit harvest (Bennett et al., 2005). 

As part of normal vineyard management, canopy thinning is considered to confer benefits 

such as improved yield, rooting and bud fertility. It also improves canopy air flow and 

humidity, making pest and disease control easier (Smart et al., 1990; Stapleton & Grant, 1992; 

Hunter et al., 1995). However, these results indicate that care should be taken by grape 

growers when deciding the intensity of canopy thinning in areas at risk to Cylindrocarpon 

infection. In fact, it should probably be considered with respect to other grapevine pathogens 

as well. This study showed that removal of 33% of leaves from above the fourth node was not 

detrimental to the rootstocks tested, but this percentage could vary with rootstock and scion 

combinations depending on their vigour.    

Treatments used in this experiment were more severe than used in normal trimming practices, 

but are also relevant in that they show how vines are likely to respond to more severe 

defoliation stress events such as early frost (Bennett, 2002). In vineyards, the mature vines 

have developing fruit clusters that are very strong sinks for photosynthate (Motomura, 1990) 

which could exacerbate the stress caused by normal trimming. Drought can also create 

carbohydrate stress (Horsley et al., 2000), and it is thought that the decrease in summer rains 

and an increase in the evapotranspiration potential due to climate change may increase this 

effect (pers. comm. S. Delrot, 2008). Additionally, since black foot disease primarily affects 

young vines, growers should be cautious with trimming young vines and perhaps not harvest 

from vines in their second year, which is currently a common practice in New Zealand. 

Further research is necessary for clarification, but it seems likely that any factors that cause 

severe carbohydrate stress may increase black foot disease severity. 
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5.5 CONCLUSIONS 
This study has demonstrated that diversity and abundance of grapevine rhizosphere bacteria 

vary between grapevine rootstock varieties with different susceptibilities to Cylindrocarpon 

black foot disease. These bacteria may therefore play a role in the differing susceptibilities, 

but this needs to be further investigated in field trials and with more comprehensive 

methodology. If the role of grapevine rhizosphere bacteria is better understood, they could 

potentially be managed to allow New Zealand grape growers to minimise the damaging 

effects of this serious and economically important disease. In the future it might possible to 

manage, by cultural practices or introduction of species, natural rhizosphere bacterial 

populations in such a way that they promote optimal plant growth and health. To do this the 

factors influencing the abundance and diversity of bacteria with antagonistic potential need to 

be better understood. Berg et al (2006) concluded that this knowledge “could be the key for a 

successful biological control by bacterial antagonists”. 
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APPENDIX 1  
1.1 GENERAL MEDIA AND RECIPES 
King’s Medium B (KB): for fluorescent Pseudomonads 

20.0 g Protease peptone No.3 (Difco) 

10 mL glycerol 

1.5 g K2HPO4 

1.5 g MgSO4.7H2O 

15.0 g Technical Agar No.3 (Oxoid) 

H2O to make 1 litre  

The pH adjusted to 7.2 with 1M NaOH at 25ºC prior to autoclaving. 

Fluorescent Pseudomonads were observed under UV light as fluorescent colonies (King et al., 

1954; Atlas, 2004). 

Nährstoffarmer agar  

1.0 g KH2PO4 

1.0 g KNO3 

0.5 g MgSO4.7H2O 

0.5 g KCl 

0.2 g glucose 

0.2 g sucrose 

20.0 g Oxoid agar no. 3 

All ingredients except the agar were dissolved in 1 L of SDW and the pH adjusted to 6-6.5. 

The agar was added and dissolved before the solution was autoclaved (15 min, 121ºC, 15 Psi) 

and allowed to cool to 50ºC (Waller et al., 2002). 
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50x TAE (Tris-acetate) Stock  

Dissolve 242 g Tris in 500 mL SDW. 

Add 100 mL 0.5 M Na2EDTA (pH 8.0) and 57.1 mL glacial acetic acid before adjusting the 

volume to 1 Litre with SDW. 

Store at room temperature and then dilute to 1x as required. 

 

10x TBE (Tris-borate) Stock 

Dissolve 108 g Tris and 55 g of boric acid in 900 mL SDW. 

Add 40 ml 0.5 M Na2EDTA (pH 8.0) and then make up to 1 Litre with SDW. 

Store at room temperature and then dilute to 1x as required. 
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APPENDIX 2  
2.1 ADDITIONAL MATERIAL FOR CHAPTER 2 
Chrome azural S (CAS) agar: for siderophores  

The following solutions were prepared separately. In total this made 1 Litre of CAS agar. 

Solution 1: Fe-CAS indicator solution 

10 mL of 1 mM FeCl3.6H2O in 10 mM HCL 

50 mL aqueous solution of CAS (1.21 mg mL-1).  

This dark purple mixture was gradually added, with constant stirring, to 40 mL of an aqueous 

solution of hexadecyltrimethylammonium bromide (HDTMA; 1.82 mg mL-1) causing the 

colour to change to dark blue. The solution was then autoclaved (15 min, 121ºC, 15 Psi) and 

allowed to cool to 50ºC.  

Solution 2: the buffer solution 

Dissolve 30.24 g of piperazine-N,N′-bis (2-ethanesulfonic acid) (PIPES) in 750 mL of a salt 

solution containing: 

0.3 g KH2PO4 

0.5 g NaCl 

1.0 g NH4Cl   

The pH was adjusted to 6.8 using 50 % (w:v) KOH, then water was added to make up to a 

total volume of 800 mL. 15 g of agar was added to this solution before it was autoclaved and 

allowed to cool to 50ºC.  

Solution 3  

The following were added to 70 mL of water:  

2 g glucose 

2 g mannitol 

493 mg MgSO4.7H2O 

11 mg CaCl2 
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1.17 mg MnSO4.H2O 

1.4 mg H3BO3 

0.04 mg CuSO4.5H2O 

1.2 mg ZnSO4.7H2O 

1.0 mg Na2MoO4.2H20.  

The solution was then autoclaved and allowed to cool to 50ºC.  

Solution 4  

3 g casamino acids was dissolved into 30 mL of water (10% w:v).  

The casamino acid solution was filter sterilised using a sterile syringe and 0.22 μm Millipore 

filter unit. The solution was not autoclaved. 

Finally, under aseptic conditions, solution 3 was added to solution 2, solution 4 was then 

added to this, and lastly, solution 1 was added with enough stirring to thoroughly mix the 

solutions without producing bubbles. The poured agar was cyan blue to sea-green in colour 

(Alexander & Zuberer, 1991; pers. comm. B. Pottinger, 2006). 

Skimmed milk agar (SMA): for protease  

Solution 1 

In a 500 mL Schott bottle, 50 g of skim milk powder (Anchor) was dissolved in SDW, and 

made up to 500 mL with SDW. 

Solution 2  

In a 1 L Schott bottle, 2.8 g Nutrient Agar (Oxoid) and 20 g agar (Davis) were dissolved and 

made up to 500 mL with SDW. 

Solution 1 and 2 were autoclaved separately and cooled to 55ºC before adding solution 1 to 

solution 2 under aseptic conditions. The plates were immediately poured and the set agar was 

a peachy-cream colour (Opelt & Berg, 2004; pers. comm. B. Pottinger, 2006). 
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Carboxymethylcellulose (CMC) agar: for glucanase 

10 g CMC (Preswollen, microgranular, Sigma-Aldrich, Germany) 

0.5 g asparagine 

0.5 g yeast extract (Difco, USA) 

0.5 g MgSO4.7H2O 

0.5 g (NH4)2SO4 

1.0 g KH2PO4 

0.5 g KCl 

1.0 g CaCl2  

15 g agar (Davis) 

SDW to make the solution to 1 Litre. 

After autoclaving and cooling to 50 ºC, 2 mL of filter sterilised (0.22 μm Millipore filter unit) 

200 µM MUF β-D-lactoside (Sigma-Aldrich, Germany) was added to the CMC agar and the 

plates poured (Miller et al., 1998).  

Chitinase assay 

• Basal agar 

15 g agar (Davis) 

2.0 g (NH4)2SO4 

1.1 g Na2HPO4 

0.7 g KH2PO4 

0.2 g MgSO4.7H2O 

1.0 mg FeSO4  

1.0 mg MnSO4  

SDW to make the solution to 1 Litre (Atlas, 2004). 
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• Chitin agar 

Half (50 mL) of the CM-Chitin-RBV (remazol brilliant violet-linked chitin) solution (Loewe, 

Germany) was dialysed at 4ºC overnight in a length of dialysis tubing (MWCO 10,000 Da), 

presoaked in hot water and secured with clips. Dialysis was carried out in a 10 L bucket of 

SDW with a magnetic stirrer to remove the sodium azide. 

The basal agar and the chitin were autoclaved separately, cooled to 50ºC and then 50 mL of 

each mixed in a 1:1 ratio as per the manufacturer’s instruction. The pH was found to be within 

the recommended 5-7.5 range. Plates were poured immediately. The agar set a deep violet 

colour (Johansen & Binnerup, 2002). 

2.2 CHITIN AGAR TROUBLESHOOTING  
Testing basal agar medium  

Ten randomly selected bacterial isolates taken from the rhizosphere soils and the S. 

entomophila positive control were grown on the basal medium. Plates were incubated at 23ºC 

in the dark for 14 d. All bacteria grew slowly and so the agar was considered an adequate 

nutrient agar medium. 

Chitin concentration  

To determine the best chitin concentration, dialysed chitin was mixed into the agar at 1:1 and 

1:4 concentrations, but clearing was not observed in the sample or control bacterial plates 

after incubation at 23ºC in the dark for 14 d, with plates being assessed every day for 14 d. 

The same was procedure was carried out for the non dialysed chitin with the same result. 

Twenty randomly selected bacteria were used, inoculating with overnight Nutrient Broth 

cultures. Assessment of clearing was attempted with the naked eye, against a dark or white 

background, and by holding up to both natural and artificial lights sources, but reactions were 

not conclusively strong enough for this assay to be used.  

Growth trial 

Ten randomly selected bacteria, and Serratia entomophila, a known chitinase producer, were 

used for this trial. The following agars were used: NA, basal medium – chitin, basal medium 

+ non-dialysed chitin (1:1) and basal medium + dialysed chitin (1:1). All agar was visually 

confirmed to be at the same colour intensity. Wells of multiwell plates which contained these 

agars were inoculated with 10 µL of an overnight Nutrient Broth culture, of which there were 
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ten replicates. Incubation was for 14 d at 23ºC in the dark, with plates checked at 7 d and 14 d 

for growth of bacteria and any visible clearing.  

All the bacteria grew well on the NA, while growth was slow on the basal medium alone, and 

very slow on the agar containing the dialysed and non-dialysed chitin. Since clearing was not 

observed, even on the different concentrations of chitin, the aim was to use differential growth 

rates to rank chitinase production. However, it was concluded that the difference in bacterial 

growth between the plates that included chitin and those that did not was not sufficient for 

growth to be used as an indicator of chitin utilisation. The chitin in the agars was the main 

carbon source, and as such was expected to enhance the growth of bacteria. This not working 

meant that the chitinase assay could not be included in this study. 

 

 

Figure 2.2-1: Set up of the multiwell plates showing basal media (clear) and basal media plus either 
dialysed chitin (left) or non-dialysed chitin (right). 

 

Figure 2.2-2: Bacteria growing (arrow) on plate where chitin (1:1 ratio) was the primary carbon 
source. No clearing was visible. 
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2.3 ASSESSMENT CRITERIA FOR PLATE BIOASSAYS 

2.3.1  Dual plating assay 
Table 2.3-1: The criteria used in dual plating to grade the inhibition of a C. destructans isolate by 
grapevine rhizosphere bacteria. 

Criteria used for dual plating assessment Grade

No fungal inhibition, mycelium growth to plate edge, through bacterial colony - 

Slight fungal inhibition with small indent seen in fungal colony around the bacterial colony, 
but mycelial growth still to the plate edge with no zone of inhibition visible 

+/- 

Moderate fungal inhibition, fungal growth up to bacterial colonies but restricted, colony 
taking on a diamond shape 

+ 

Strong fungal inhibition, with zone of inhibition (>1mm) where bacteria and fungus do not 
touch, fungal colony taking on a diamond shape 

++ 

 

2.3.2 Glucanase assay 
Table 2.3-2: The criteria used to grade the fluorescence resulting from glucanase activity in grapevine 
rhizosphere bacteria on modified CMC agar. 

Criteria used for the assessment of glucanases production Grade 

No fluorescence, dark - 

Slight fluorescence, very little light emitted by colony, hard to determine +/- 

Moderate fluorescence, some white-blue light emitted by bacterial colony + 

High fluorescence, bright white-blue light emitted by bacterial colony ++ 
 

2.3.3 Protease assay 
Table 2.3-3: The criteria used to grade the clearing resulting from protease activity in grapevine 
rhizosphere bacteria on SMA agar. 

Criteria used for assessment of protease production Grade

No clearing of agar around bacterial colony - 

Faint or incomplete clearing of agar around bacterial colony +/- 

Small clearing zone around bacterial colony <5 mm wide + 

Moderate clearing zone around bacterial colony 5-10 mm wide ++ 

Large clearing zone around bacterial colony >1 cm wide +++ 
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2.3.4 Siderophore assay  
Table 2.3-4: The criteria used to grade siderophore secretion by grapevine rhizosphere bacteria grown 
on CAS agar. 

Criteria used for the assessment of siderophore production Grade 

No bacterial growth, no orange colony pigmentation or halo -- 

Bacterial growth, no orange colony pigmentation or halo +/- 

Bacterial growth, orange pigmentation of colony, orange halo 0-1 cm ++ 

Bacterial growth, orange pigmentation of colony, orange halo >1 cm +++ 
 

2.4 ANOVA TABLES AND ADDITIONAL STATISTICAL 
MATERIAL FOR CHAPTER 2 
 
Table 2.4-1: Analysis of variance (ANOVA) table showing the effect of grapevine rootstock variety 
(treatment) on the mean total bacterial count (NA). 

Variate Log10 (total bacterial count on NA) 

Source of 
variation 

d.f.* s.s.* m.s.* v.r.* F pr.* 

Treatment 4 1.22572 0.30643 3.99 0.012 

Residual 25 1.92235 0.07689   

Total 29 3.14807    
* d.f. = degrees of freedom, s.s. = sums of squares, m.s. = mean square, v.r. = variance ratio,  
   F pr. = F probability 
 

Table 2.4-2: Analysis of variance (ANOVA) table showing the effect of grapevine rootstock variety 
(treatment) on the mean total bacterial count (KB). 

Variate Log10 (total bacterial count on KB) 

Source of 
variation 

d.f.* s.s.* m.s.* v.r.* F pr.* 

Treatment 4 3.2760 0.8190 4.89 0.005 

Residual 25 4.1845 0.1674   

Total 29 7.4604    
* d.f. = degrees of freedom, s.s. = sums of squares, m.s. = mean square, v.r. = variance ratio,  
   F pr. = F probability 
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Table 2.4-3: Analysis of variance (ANOVA) table showing the effect of grapevine rootstock variety 
(treatment) on the mean fluorescent Pseudomonad count  

Variate Log10 (total fluorescent Pseudomonad count +1) 

Source of 
variation 

d.f.* s.s.* m.s.* v.r.* F pr.* 

Treatment 3 34.712 11.571 3.49 0.035 

Residual 20 66.364 3.318   

Total 23 101.076    
* d.f. = degrees of freedom, s.s. = sums of squares, m.s. = mean square, v.r. = variance ratio,  
   F pr. = F probability 
 

Table 2.4-4: Analysis of variance (ANOVA) table showing the effect of grapevine rootstock variety 
(treatment) on the mean spore forming bacterial count. 

Variate Log10 (spore forming bacterial count) 

Source of 
variation 

d.f.* s.s.* m.s.* v.r.* F pr.* 

Treatment 4 0.12579 0.03145 1.62   0.201 

Residual 25 0.48658 0.01946   

Total 29 0.61237    
* d.f. = degrees of freedom, s.s. = sums of squares, m.s. = mean square, v.r. = variance ratio,  
   F pr. = F probability 
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2.5 DILUTION PLATING DATA FOR THE INITIAL SOIL 
CONTROLS 
Table 2.5-1: Raw data means from the dilution plate assessment of the ten soil only controls (initial) at 
the start of the experiment. The data includes the three replicate plates used for each of the ten 
controls. For each of the bacterial count types: total (NA and KB), fluorescent Pseudomonad and spore 
forming, the mean number of CFU per agar plate, as well as the log10 CFU per gram of oven dried soil 
are shown. 

Dilution Count Agar type CFU (plate) Log10 CFU 

10-4 51.77 6.48 

10-5 7.23 6.84 

10-6 

Total bacteria NA 

1.53 7.15 

10-4 57.93 6.73 

10-5 8.40 6.87 

10-6 

Total bacteria 

1.20 6.95 

10-4 0.50 4.71 

10-5 0.25 5.91 

10-6 

Florescent Pseudomonads

KB 

0.03 6.52 

10-3 52.00 5.71 

10-4 10.77 6.02 

10-5 

Spore forming bacteria NA 

1.37 6.05 
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2.6 THE BACTERIA ISOLATED FROM THE RHIZOSPHERE OF GRAPEVINE CULTIVARS AND 
BULK SOIL IN CHAPTER 2 
Table 2.6-1: The origin and colony morphology of the bacterial isolates selected from the control soils and used in the functionality tests. 

Isolate Replicate Media type Plate* Dilution Colony morphology (size, form, opacity, colour, elevation, surface, margin) 

C1 1 KB P 10-4 large, circular, opaque, raised, smooth, shiny, entire margin 

C2 1 KB P 10-4 small, irregular, opaque, cream, raised, smooth, shiny, entire margin 

C3 1 KB P 10-4 very small, circular, opaque, cream, raised, smooth, shiny, entire margin 

C4 1 NA S 10-3 medium, circular, opaque, cream, crateriform, smooth, dull, entire margin 

C5 1 NA S 10-5 small, circular, opaque, cream, flat, smooth, shiny, entire margin 

C6 1 NA S 10-3 medium, circular, opaque, cream, flat, thick, smooth, dull, entire margin 

C7 1 NA T 10-5 medium, circular, opaque, cream, flat, smooth, shiny, entire margin 

C8 1 NA T 10-5 medium, circular, opaque, peach, raised, smooth, shiny, entire margin 

C9 1 NA T 10-4 small, circular, opaque, salmon-brown, raised, smooth, shiny, entire margin 

C10 1 NA T 10-4 medium, circular, opaque, cream, flat, thick, smooth, shiny, entire margin 

C11 2 KB P 10-5 medium, circular, opaque, cream-white, raised, smooth, shiny, entire margin 

C12 2 KB P 10-5 small, circular, opaque, raised, smooth, shiny, entire margin 

C13 2 KB P 10-4 medium, circular, opaque, cream, raised, smooth, shiny, entire margin 

C14 2 NA S 10-4 large, circular, opaque, cream, flat, concentric rings, thick, dull, entire margin 

C15 2 NA S 10-3 medium, circular, opaque, cream, flat, smooth, dull, entire margin 

C16 2 NA S 10-3 medium, circular, opaque, cream, crateriform, smooth, dull, entire margin 

C17 2 NA T 10-4 small, circular, opaque, yellow, raised, smooth, shiny, entire margin 

C18 2 NA T 10-4 small, circular, opaque, yellow, raised, smooth, shiny, entire margin 

C19 2 NA T 10-4 very small, circular, opaque, cream-white, raised, smooth, shiny, entire margin 
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C20 2 NA T 10-4 large, irregular, opaque, cream-white, flat, smooth, dull, entire margin 

C21 3 KB P 10-4 medium, circular, opaque, yellow, raised, smooth, shiny, entire margin 

C22 3 KB P 10-4 medium, circular, opaque, cream-white, flat, smooth, shiny, entire margin 

C23 3 KB P 10-4 very small, circular, opaque, cream-white, raised, smooth, shiny, entire margin 

C24 3 NA S 10-4 large, circular, opaque, cream-white, flat, thick, smooth, shiny, entire margin 

C25 3 NA S 10-5 medium, irregular, opaque, cream-brown, thick, crateriform, shiny, entire margin 

C26 3 NA S 10-5 medium, circular, opaque, cream, flat, thick, smooth, shiny, entire margin 

C27 3 NA T 10-4 large, irregular, opaque, raised with convoluted ridges, thick, dull, entire margin 

C28 3 NA T 10-4 large, circular, opaque, cream, thick, crateriform, dull, entire margin 

C29 3 NA T 10-4 very small, circular, opaque, orange-brown, raised, smooth, shiny, entire margin 

C30 3 NA T 10-4 very small, circular, opaque, cream, raised, smooth, shiny, entire margin 

C31 4 KB P 10-4 small, circular, opaque, cream, raised, smooth, shiny, entire margin 

C32 4 KB P 10-4 medium, circular, opaque, cream-white, raised, smooth, shiny, entire margin 

C33 4 KB P 10-4 small, circular, opaque, yellow, raised, smooth, shiny, entire margin 

C34 4 NA S 10-4 small, circular, opaque, cream-white, flat, smooth, shiny, entire margin 

C35 4 NA S 10-3 medium, irregular, translucent, cream-white, flat, dull, entire margin 

C36 4 NA S 10-3 very small, circular, translucent, cream-white, flat, smooth, dull, entire margin 

C37 4 NA T 10-4 medium, circular, opaque, yellow, raised, smooth, shiny, entire margin 

C38 4 NA T 10-4 medium, circular, opaque, cream, raised, smooth, shiny, entire margin 

C39 4 NA T 10-4 very small, circular, opaque, yellow, raised, shiny, smooth, entire margin 

C40 4 NA T 10-4 medium, irregular, opaque, cream-white, flat, smooth, dull, entire margin 
*Plate types: T (total bacteria), P (total bacteria KB) and S (spore forming bacteria). 
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Table 2.6-2: The origin and colony morphology of the bacterial isolates selected from the rhizosphere of 101-14 and used in the functionality tests. 

Isolate Replicate Media type Plate* Dilution Colony morphology (size, form, opacity, colour, elevation, surface, margin) 

1.1 1 KB P 10-5 medium, circular, opaque, cream, convex, smooth, shiny, entire margin 

1.2 1 KB P 10-5 small, circular, opaque, cream, flat, dry, entire margin 

1.3 1 KB P 10-4 fluorescent, large, opaque, cream, convex, smooth, shiny, entire margin 

1.4 1 NA S 10-3 small, circular, opaque, cream, flat, smooth, shiny, entire margin 

1.5 1 NA S 10-4 large, circular, opaque, cream, crateriform, thick, dull, entire margin 

1.6 1 NA S 10-3 small, circular, opaque, cream, flat, shiny, smooth, entire margin 

1.7 1 NA T 10-5 small, circular, opaque, cream, convex, shiny, smooth, entire margin 

1.8 1 NA T 10-4 small, circular, opaque, salmon, convex, shiny, smooth, entire margin 

1.9 1 NA T 10-4 medium, circular, opaque, cream, flat, shiny, smooth, entire margin 

1.10 1 NA T 10-4 small, circular, opaque, cream, raised, dry, entire margin 

1.11 2 KB P 10-5 very small, circular, opaque, cream, raised, dull, entire margin 

1.12 2 KB P 10-4 medium, circular, opaque, yellow, raised, smooth, shiny, entire margin 

1.13 2 KB P 10-4 very small, circular, opaque, cream, raised, smooth, shiny, entire margin 

1.14 2 NA S 10-5 medium, circular, opaque, salmon, flat, smooth, shiny, entire margin 

1.15 2 NA S 10-4 small, circular, opaque, white-cream, flat, dull, entire margin 

1.16 2 NA S 10-3 medium, circular, opaque, cream, flat, smooth, dull, entire margin 

1.17 2 NA T 10-4 large, circular, opaque, cream, thick, crateriform, dull, entire margin 

1.18 2 NA T 10-4 large, circular, opaque, cream, thick, crateriform, dull, entire margin 

1.19 2 NA T 10-4 small, circular, opaque, cream-white, raised, smooth, shiny, entire margin 

1.20 2 NA T 10-5 medium, circular, opaque, cream-white, convex, smooth, shiny, entire margin 

1.21 3 KB P 10-4 fluorescent, large, irregular, opaque, cream, convex, smooth, shiny, entire margin 
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1.22 3 KB P 10-5 medium, circular, opaque, cream-apricot, convex, smooth, shiny, entire margin 

1.23 3 KB P 10-4 fluorescent, circular, opaque, cream, raised, smooth, shiny, entire margin 

1.24 3 NA S 10-4 large, circular, opaque, cream, thick, crateriform, dull, entire margin 

1.25 3 NA S 10-4 small, circular, opaque, cream-white, flat, dull, entire margin 

1.26 3 NA S 10-3 medium, circular, opaque, cream, raised, smooth, dull, entire margin 

1.27 3 NA T 10-5 medium, circular, opaque, cream, raised, smooth, dull, entire margin 

1.28 3 NA T 10-5 medium, circular, opaque, cream, raised, smooth, shiny, entire margin 

1.29 3 NA T 10-4 small, circular, opaque, cream, flat, smooth, dull, entire margin 

1.30 3 NA T 10-6 small, circular, opaque, cream, raised, smooth, shiny, entire margin 

1.31 4 KB P 10-4 large, circular, opaque, cream, umbonate, smooth, shiny, entire margin 

1.32 4 KB P 10-4 small, circular, opaque, cream-white, raised, smooth, shiny, entire margin 

1.33 4 KB P 10-4 small, circular, opaque, yellow, raised, smooth, shiny, entire margin 

1.34 4 NA S 10-4 large, circular, opaque, cream, thick, crateriform, dull, entire margin 

1.35 4 NA S 10-3 medium, circular, opaque, cream, raised circular ridge, dull, entire margin 

1.36 4 NA S 10-3 small, circular, white, flat, dull, entire margin 

1.37 4 NA T 10-4 medium, circular, opaque, apricot-cream, flat, smooth, shiny, entire margin 

1.38 4 NA T 10-6 small, circular, opaque, convex, smooth, shiny, entire margin 

1.39 4 NA T 10-4 Bacillus mycoides, large, filamentous, cream, flat, dull, filiform margin 

1.40 4 NA T 10-4 small, circular, opaque, cream-white, convex, smooth, shiny, entire margin 
*Plate types: T (total bacteria), P (total bacteria KB) and S (spore forming bacteria). 
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Table 2.6-3: The origin and colony morphology of the bacterial isolates selected from the rhizosphere of Riparia Gloire and used in the functionality tests. 

Isolate Replicate Media type Plate* Dilution Colony morphology (size, form, opacity, colour, elevation, surface, margin) 

R1 1 KB P 10-5 medium, circular, opaque, orange-yellow, raised, smooth, shiny 

R2 1 KB P 10-4 large, circular, opaque, cream, raised, smooth, shiny 

R3 1 KB P 10-4 medium, circular, opaque, cream, umbonate (slight), smooth, dull 

R4 1 NA S 10-5 large, circular, opaque, cream, thick, crateriform, creased, dull, entire margin 

R5 1 NA S 10-4 small, circular, slightly translucent, cream-white, flat, smooth, shiny 

R6 1 NA S 10-4 Bacillus mycoides, large, filamentous, cream, flat, dull, filiform margin 

R7 1 NA T 10-4 very small, circular, opaque, orange-yellow, raised, shiny, smooth 

R8 1 NA T 10-4 medium, circular, opaque, cream, raised, smooth, shiny 

R9 1 NA T 10-5 medium, circular, opaque, orange-yellow, raised, smooth, shiny 

R10 1 NA T 10-4 small, irregular, slightly translucent, cream-white, flat, smooth, shiny 

R11 2 KB P 10-6 medium, circular, opaque, cream, raised, smooth, shiny 

R12 2 KB P 10-4 large, circular, opaque, apricot, surrounded by a thinner ring, raised, smooth, shiny 

R13 2 KB P 10-5 medium, circular, opaque, cream-white, raised, smooth, shiny 

R14 2 NA S 10-5 large, circular, opaque, cream, thick, crateriform, creased, dull, entire margin 

R15 2 NA S 10-3 medium, circular, opaque, cream-white, flat, smooth, dull 

R16 2 NA S 10-3 very small, circular, translucent, cream, flat, thin, smooth, shiny 

R17 2 NA T 10-6 medium, circular, opaque, cream, raised, smooth, shiny 

R18 2 NA T 10-5 medium, circular, opaque, cream-peach, raised, smooth, shiny 

R19 2 NA T 10-4 medium, circular, cream, opaque, filliform margin 

R20 2 NA T 10-4 very small, circular, opaque, cream-white, raised, smooth, shiny 

R21 3 KB P 10-5 medium, circular, opaque, cream-orange, raised, smooth, shiny 
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R22 3 KB P 10-4 small, circular, opaque, orange, raised, smooth, shiny 

R23 3 KB P 10-4 small, circular, opaque, cream-white, raised, smooth, shiny 

R24 3 NA S 10-3 medium, circular, opaque, cream, thick, crateriform, creased, dull, entire margin 

R25 3 NA S 10-4 small, circular, opaque, cream-white, flat, smooth, shiny 

R26 3 NA S 10-4 medium, circular, opaque, brown-apricot, flat, smooth, dull 

R27 3 NA T 10-5 medium, circular, opaque, cream, flat, smooth, dull 

R28 3 NA T 10-5 very small, circular, opaque, cream-white, raised, smooth, shiny 

R29 3 NA T 10-4 very small, circular, opaque, cream , raised, convoluted surface, dull 

R30 3 NA T 10-4 very small, circular, opaque, cream-white, raised, smooth, shiny 

R31 4 KB P 10-4 medium, irregular, opaque, reddish-apricot, flat, smooth, shiny 

R32 4 KB P 10-4 medium, circular, opaque, cream-white, raised, smooth, shiny 

R33 4 KB P 10-4 large, circular, opaque, cream, raised, smooth, shiny 

R34 4 NA S 10-4 medium, circular, opaque, cream, thick, crateriform, dull 

R35 4 NA S 10-4 small, circular, opaque, cream-white, flat, smooth, shiny 

R36 4 NA S 10-3 medium, irregular, opaque, cream, flat, smooth, dull 

R37 4 NA T 10-5 large, circular, opaque, cream, thick, crateriform, creased, dull, entire margin 

R38 4 NA T 10-5 small, circular, opaque, orange-yellow, raised, smooth, shiny 

R39 4 NA T 10-4 medium, circular, opaque, cream, thick, crateriform, creased, dull, entire margin 

R40 4 NA T 10-4 large, circular, opaque, cream, flat, smooth, shiny 
*Plate types: T (total bacteria), P (total bacteria KB) and S (spore forming bacteria) 
.
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APPENDIX 3  
3.1 “OTHER” FUNGAL INFECTION DATA FOR CHAPTER 3  
Table 3.1-1: Infection data for all non F. oxysporum and C. destructans fungi isolated from four 
rootstock varieties inoculated with F. oxysporum (F), C. destructans (C) or no inoculation (O) at 0 cm 
and 5 cm from the stem base. Values are total colonies and may include more than one isolate per 
tissue fragment. 

Treatment 0 cm 5 cm 

Variety Inoc F B A Pi Pe F B A Pi Pe 

O 9 0 0 0 14 3 0 0 0 1 

F 5 4 0 6 7 3 0 0 2 1 

101-14 

C 14 2 3 0 8 2 1 0 1 0 

O 11 0 2 0 2 4 0 0 3 0 

F 9 1 1 6 5 3 1 0 2 0 

5C 

C 8 0 3 0 8 1 0 1 1 0 

O 17 2 2 1 0 3 0 1 1 1 

F 13 0 0 0 5 3 0 0 0 1 

Schw. 

C 21 1 0 5 4 5 0 0 0 1 

O 27 1 1 1 10 6 0 0 0 3 

F 28 3 2 0 7 3 1 1 0 1 

R.Gl 

C 14 0 0 4 10 2 0 0 0 3 
 

Key  

Inoc: inoculation status (N=not inoculated, Y=inoculated) 

Schw: Schwarzmann 

R.Gl: Riparia Gloire 

F: Fusarium sp. 

B: Botryosphaeria sp. 

A: Alternaria sp. 

Pi: Pythium sp. 

Pe: Penicillium sp. 

 

NB: No Phomopsis or Paecilomyces spp. were isolated in this experiment. 
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3.2 FUSARIUM OXYSPORUM SEQUENCE DATA FOR 
CHAPTER 3 
Table 3.2-1: Fusarium oxysporum isolates used in this experiment were sequenced using the primer 
ITS5. The following sequence data was obtained from GenBank. 

Isolate Fragment size 
(bp) 

Best match Accession 
number 

Coverage Maximum 
identity 

24B 520 

39A 518 

80B 519 

81B 514 

105A 520 

127B 519 

Fusarium 
oxysporum 

isolate 

EU839400.1 
EU839400.1 
EU839400.1 
EU839400.1 
EU839400.1 
EU839400.1 
EU839400.1 

100% 
100% 
100% 
100% 
100% 
100% 
100% 

99% 
99% 
99% 
99% 
99% 
99% 
99% 

 
 
Table 3.2-2: Sequence alignment data for the Fusarium oxysporum isolates used to inoculate the 
grapevines in Chapter 3. Both homology and distance matrices are given. 

Homology matrix of the 6 sequences: 
24B                 100% 
39A                 100.0% 100% 
80B                 100.0% 100.0% 100% 
105A               100.0% 100.0% 100.0% 100% 
81B                 100.0% 100.0% 100.0% 100.0% 100% 
127B               100.0% 100.0% 100.0% 100.0% 100.0% 100% 
 

Distance matrix of the 6 sequences: 
24B                 0 
39A                 0.000 0 
80B                 0.000 0.000 0 
105A               0.000 0.000 0.000 0 
81B                 0.000 0.000 0.000 0.000 0 
127B               0.000 0.000 0.000 0.000 0.000 0 
 



 136

3.3 IDENTIFICATION OF FUSARIUM OXYSPORUM 
Table 3.3-1: Characters used in the identification of Fusarium oxysporum cultures grown on PDA and 
Oatmeal Agar. 

Item Description References 

Mycelia Fluccose (woolly). 
Sparse, abundant, spreading. 
Colour: white-pale violet, vinaceous, grey-purple, 
salmon, peach. 

Booth, 1977 
Leslie & Summerell, 2006 
Pio et al., 2008 
 

Microconidia Oval, elliptical or kidney shaped. Straight or 
curved. 
Typically aseptate. 
Size: 5-12 x 2.2-3.5 µm. 

Booth, 1977 
Leslie & Summerell, 2006 

Macroconidia Slightly sickle-shaped. 
Typically 3 septate (can be 2-5). 
Size: 27-60 x 3-5 µm. 
Thin walled. 
Typically produce abundant sporodochia. 
Apical cell: tapered/curved with or without slight 
hook. 
Basal cell: foot-shaped to pointed. 

Booth, 1977 
Nelson et al., 1983 
Burgess et al., 1989 
Leslie & Summerell, 2006 

Chlamydospores May be formed. Often abundant. 
Singly, pairs, clusters, or short chains. 
Smooth or rough walled. 
Terminal or intercalary. 

Leslie & Summerell, 2006 
Toussoun & Nelson, 1968 

Sclerotia Small. May be abundant. 
Light brown, blue to blue-black or violet. 

Leslie & Summerell, 2006 
Toussoun & Nelson, 1968 

Agar 
pigmentation 

Pale to dark violet or dark magenta. Some isolates. Leslie & Summerell, 2006 
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Figure 3.3-1: Fusarium oxysporum spores (left) and chlamydospores (right, arrow) when grown on 
OA. Incubated 20ºC, 12 h dark: 12 h light for 14 days. 

 

 

 

Figure 3.3-2: An example of different Fusarium oxysporum colony morphologies on PDA. Top and 
reverse of colonies shown. Incubated 20ºC, 12 h dark: 12 h light for 14 days. 
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3.4 ANOVA TABLES FOR CHAPTER 3 
Table 3.4-1: Analysis of variance (ANOVA) for C. destructans disease severity of grapevine 
rootstocks at 0 cm from the stem base. 

Dependent Variable: 0cm_severity_C

67.609a 20 3.380 2.967 .000
33.779 1 33.779 29.651 .000
17.899 9 1.989 1.746 .090
34.868 3 11.623 10.202 .000

6.798 2 3.399 2.984 .056
8.383 6 1.397 1.226 .300

103.668 91 1.139
209.000 112
171.277 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

 

Table 3.4-2: Analysis of variance (ANOVA) for C. destructans disease incidence of grapevine 
rootstocks at 5 cm from the stem base. 

Dependent Variable: 5cm_severity_C

4.665a 20 .233 2.176 .007
2.198 1 2.198 20.509 .000
2.110 9 .234 2.187 .030
1.739 3 .580 5.408 .002

.474 2 .237 2.209 .116

.241 6 .040 .374 .894
9.754 91 .107

17.000 112
14.420 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

 

Table 3.4-3: Analysis of variance (ANOVA) for F. oxysporum disease severity of grapevine 
rootstocks at 0 cm from the stem base. 

Dependent Variable: 0cm_severity_ F

62.770a 20 3.138 1.956 .017
102.796 1 102.796 64.069 .000

18.915 9 2.102 1.310 .243
10.742 3 3.581 2.232 .090
13.492 2 6.746 4.204 .018
20.102 6 3.350 2.088 .062

146.007 91 1.604
311.000 112
208.777 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.
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Table 3.4-4: Analysis of variance (ANOVA) for F. oxysporum disease incidence of grapevine 
rootstocks at 5 cm from the stem base. 

Dependent Variable: 5cm_severity_F

3.108a 20 .155 .867 .627
5.389 1 5.389 30.066 .000
1.586 9 .176 .983 .459

.552 3 .184 1.026 .385

.659 2 .329 1.837 .165

.384 6 .064 .357 .904
16.311 91 .179
25.000 112
19.420 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

 

Table 3.4-5: Analysis of variance (ANOVA) for root dry weight data. 

Dependent Variable: ROOT_DW

3083.237a 20 154.162 1.742 .040
80445.082 1 80445.082 908.787 .000

683.198 9 75.911 .858 .566
1929.377 3 643.126 7.265 .000

82.767 2 41.383 .468 .628
415.227 6 69.204 .782 .586

8055.241 91 88.519
96477.680 112
11138.479 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

 

Table 3.4-6: Analysis of variance (ANOVA) for shoot dry weight data. 

Dependent Variable: SHOOT_DW

576.732a 20 28.837 2.562 .001
3803.363 1 3803.363 337.911 .000

101.894 9 11.322 1.006 .441
366.876 3 122.292 10.865 .000

37.075 2 18.537 1.647 .198
81.115 6 13.519 1.201 .313

1024.253 91 11.256
5507.970 112
1600.986 111

Source
Corrected Model
Intercept
REP
VAR
TRT
VAR * TRT
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.
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Table 3.4-7: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between F. oxysporum infected and non-infected 101-14 plants. 

228.443 1 228.443 2.473 .127
2493.708 27 92.360
2722.152 28

11.514 1 11.514 1.292 .266
240.634 27 8.912
252.148 28

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_F

SHOOT_DW * INCID_F

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-8: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between C. destructans infected and non-infected 101-14 plants. 

485.048 1 485.048 5.854 .023
2237.104 27 82.856
2722.152 28

11.061 1 11.061 1.239 .276
241.087 27 8.929
252.148 28

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_C

SHOOT_DW * INCID_C

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-9: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between F. oxysporum infected and non-infected 5C plants. 

955.463 1 955.463 6.282 .019
3954.478 26 152.095
4909.941 27
130.501 1 130.501 9.020 .006
376.180 26 14.468
506.681 27

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_F

SHOOT_DW * INCID_F

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-10: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between C. destructans infected and non-infected 5C plants. 

679.158 1 679.158 4.174 .051
4230.784 26 162.722
4909.941 27

6.703 1 6.703 .349 .560
499.978 26 19.230
506.681 27

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_C

SHOOT_DW * INCID_C

Sum of
Squares df Mean Square F Sig.
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Table 3.4-11: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between F. oxysporum infected and non-infected Riparia Gloire plants. 

10.858 1 10.858 .297 .590
950.007 26 36.539
960.864 27

9.333 1 9.333 .764 .390
317.419 26 12.208
326.752 27

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_F

SHOOT_DW * INCID_F

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-12: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between C. destructans infected and non-infected Riparia Gloire plants. 

.298 1 .298 .008 .929
960.567 26 36.945
960.864 27

2.256 1 2.256 .181 .674
324.496 26 12.481
326.752 27

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_C

SHOOT_DW * INCID_C

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-13: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between F. oxysporum infected and non-infected Schwarzmann plants. 

18.891 1 18.891 .747 .396
632.563 25 25.303
651.454 26

6.578 1 6.578 1.041 .317
157.949 25 6.318
164.527 26

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_F

SHOOT_DW * INCID_F

Sum of
Squares df Mean Square F Sig.

 

Table 3.4-14: Analysis of variance (ANOVA) showing the difference in root and shoot dry weights 
between C. destructans infected and non-infected Schwarzmann plants. 

12.079 1 12.079 .472 .498
639.375 25 25.575
651.454 26

.192 1 .192 .029 .866
164.335 25 6.573
164.527 26

(Combined)Between Groups
Within Groups
Total

(Combined)Between Groups
Within Groups
Total

ROOT_DW * INCID_C

SHOOT_DW * INCID_C

Sum of
Squares df Mean Square F Sig.
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3.5 RAW DATA MEANS FOR CHAPTER 3 
Table 3.5-1: Raw data means for F. oxysporum disease severity at 0 cm. Values are shown 
for the three inoculation treatments: C. destructans (C), F. oxysporum (F) and none (O). 

Inoc Rootstock variety Mean (%)

101-14 10.00 

5C 13.89 

Riparia Gloire 56.25 

C 

Schwarzmann 27.78 

101-14 52.78 

5C 13.89 

Riparia Gloire 32.50 

F 

Schwarzmann 37.50 

101-14 17.50 

5C 7.50 

Riparia Gloire 10.00 

O 

Schwarzmann 17.50 
 

Table 3.5-2: Raw data means for C. destructans disease severity at 0 cm. Values are shown 
for the three inoculation treatments: C. destructans (C), F. oxysporum (F) and none (O). 

Inoc Rootstock variety Mean (%)

101-14 37.50 

5C 52.78 

Riparia Gloire 0.00 

C 

Schwarzmann 2.78 

101-14 22.23 

5C 16.67 

Riparia Gloire 0.00 

F 

Schwarzmann 0.00 

101-14 27.78 

5C 15.00 

Riparia Gloire 0.00 

O 

Schwarzmann 0.00 
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Table 3.5-3: Raw data means for F. oxysporum disease incidence 0 cm and 5 cm from trunk base. 
Values are shown for the three inoculation treatments: C. destructans (C), F. oxysporum (F) 
and none (O). 

Inoc Rootstock variety 0 cm Mean (%) 5 cm Mean (%) 

101-14 20.00 30.00 

5C 22.22 22.22 

Riparia Gloire 62.50 50.00 

C 

Schwarzmann 66.67 22.22 

101-14 77.78 22.22 

5C 44.44 22.22 

Riparia Gloire 50.00 40.00 

F 

Schwarzmann 75.00 12.50 

101-14 40.00 20.00 

5C 10.00 10.00 

Riparia Gloire 10.00 10.00 

O 

Schwarzmann 30.00 10.00 
 

Table 3.5-4: Raw data means for C. destructans disease incidence 0 cm and 5 cm from stem base. 
Values are shown for the three inoculation treatments: C. destructans (C), F. oxysporum (F) 
and none (O). 

Inoc Rootstock variety  0 cm Mean (%) 5 cm Mean (%) 

101-14 50.00 40.00 

5C 66.67 33.33 

Riparia Gloire 0.00 12.50 

C 

Schwarzmann 11.11 11.11 

101-14 33.33 33.33 

5C 33.33 0.00 

Riparia Gloire 0.00 0.00 

F 

Schwarzmann 0.00 0.00 

101-14 30.00 30.00 

5C 20.00 20.00 

Riparia Gloire 0.00 0.00 

O 

Schwarzmann 0.00 0.00 
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Table 3.5-5: Raw data means for overall (0 cm and 5 cm) F. oxysporum disease incidence.  
Values are shown for the three inoculation treatments: C. destructans (C), F. oxysporum (F) 
and none (O). 

Inoc Rootstock variety Mean (%)

101-14 30.00 

5C 22.22 

Riparia Gloire 62.50 

C 

Schwarzmann 66.67 

101-14 77.78 

5C 44.44 

Riparia Gloire 60.00 

F 

Schwarzmann 75.00 

101-14 40.00 

5C 10.00 

Riparia Gloire 10.00 

O 

Schwarzmann 30.00 
 

Table 3.5-6: Raw data means for overall (0 cm and 5 cm) C. destructans disease incidence.  
Values are shown for the three inoculation treatments: C. destructans (C), F. oxysporum (F) 
and none (O). 

Inoc Rootstock variety Mean (%)

101-14 60.00 

5C 66.67 

Riparia Gloire 12.50 

C 

Schwarzmann 13.89 

101-14 44.44 

5C 55.56 

Riparia Gloire 0.00 

F 

Schwarzmann 0.00 

101-14 30.00 

5C 30.00 

Riparia Gloire 0.00 

O 

Schwarzmann 0.00 
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Table 3.5-7: Raw data means for the root dry weights of grapevine rootstocks when exposed 
to different inoculation treatments: C. destructans (C), F. oxysporum (F) and none (O). 

Inoc Rootstock variety Mean (g)

101-14 24.92 

5C 32.96 

Riparia Gloire 25.55 

C 

Schwarzmann 26.04 

101-14 25.11 

5C 36.84 

Riparia Gloire 21.21 

F 

Schwarzmann 23.31 

101-14 30.36 

5C 33.83 

Riparia Gloire 27.41 

O 

Schwarzmann 23.48 
 

Table 3.5-8: Raw data means for the shoot dry weights of grapevine rootstocks when exposed 
to different inoculation treatments: C. destructans (C), F. oxysporum (F) and none (O). 

Inoc Rootstock variety Mean (g)

101-14 4.49 

5C 8.08 

Riparia Gloire 3.20 

C 

Schwarzmann 6.90 

101-14 5.09 

5C 8.28 

Riparia Gloire 3.13 

F 

Schwarzmann 4.21 

101-14 6.12 

5C 10.11 

Riparia Gloire 6.00 

O 

Schwarzmann 4.86 
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Table 3.5-9: Raw data showing the effect of C. destructans disease incidence (0=absent, 1=present) 
on the mean root and shoot dry weights of grapevine rootstocks. 

 Root dry weight Shoot dry weight 

 Incidence Incidence 

Variety 0 1 0 1 

101-14 23.17 (n=16) 31.39 (n=13) 4.68 (n=16) 5.92 (n=13) 

5C 29.59 (n=14) 39.44 (n=14) 8.38 (n=14) 9.36 (n=14) 

Riparia Gloire 26.64 (n=27) 25.20 (n=1) 4.23 (n=27) 2.70 (n=1) 

Schwarzmann 24.10 (n=25) 26.65 (n=2) 5.37 (n=25) 5.05 (n=2) 
 

Table 3.5-10: Raw data showing the effect of F. oxysporum incidence (0=absent, 1=present) on the 
mean root and shoot dry weights of grapevine rootstocks. 

 Root dry weight Shoot dry weight 

 Incidence Incidence 

Variety 0 1 0 1 

101-14 29.69 (n=15) 23.74 (n=14) 5.85 (n=15) 4.59 (n=14) 

5C 37.89 (n=21) 24.40 (n=7) 10.11 (n=21) 5.13 (n=7) 

Riparia Gloire 24.13 (n=16) 25.38 (n=12) 4.68 (n=16) 3.51 (n=12) 

Schwarzmann 23.35 (n=12) 25.03 (n=15) 5.90 (n=12) 4.91 (n=15) 
 

Table 3.5-11: Raw data showing the effect of grapevine rootstock on the mean shoot and root dry 
weights of vines. 

Variety Root dry weight (g) Shoot dry weight (g) 

101-14 26.86 5.24 

5C 34.52 8.87 

Riparia Gloire 24.31 4.57 

Schwarzmann 24.29 5.35 
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3.6 PLANT INFORMATION FOR CHAPTER 3 
Table 3.6-1: The different grapevine rootstock variety and treatment combinations, showing how 
many plants of each were replaced and how many were the original plants. 

Rootstock Trt Description Original Replacement 

O not inoculated 4 6 

F inoculated with F. oxysporum 6 3 

101-14 

C inoculated with C. destructans 5 5 

O not  inoculated 0 10 

F inoculated with F. oxysporum 2 7 

5C 

C inoculated with C. destructans 3 5 

O not inoculated 10 0 

F inoculated with F. oxysporum 8 0 

Schwarzmann 

C inoculated with C. destructans 9 0 

O not inoculated 10 0 

F inoculated with F. oxysporum 10 0 

Riparia Gloire 

C inoculated with C. destructans 8 0 
 

 

Figure 3.6-1: An example of the root galls observed on plants belonging to grapevine rootstock 5C. 
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APPENDIX 4  
4.1 ANOVA TABLES FOR CHAPTER 4 
Table 4.1-1: Analysis of variance (ANOVA) for C. destructans disease severity of grapevine 
rootstocks at 0 cm from the trunk base. Stress treatments 0, 1 and 2 are treated separately. 

 Dependent Variable: 0cm_severity

17.953 1 17.953 18.578 .005
5.811 6.013 .966a

5.798 6 .966 .918 .488
70.536 67 1.053b

1.389 1 1.389 1.320 .255
70.536 67 1.053b

5.116 1 5.116 4.860 .031
70.536 67 1.053b

4.300 2 2.150 2.042 .138
70.536 67 1.053b

3.066 2 1.533 1.456 .240
70.536 67 1.053b

.315 2 .157 .149 .861
70.536 67 1.053b

.097 1 .097 .093 .762
70.536 67 1.053b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VAR

Hypothesis
Error

INOC

Hypothesis
Error

STRESS

Hypothesis
Error

INOC * STRESS

Hypothesis
Error

VAR * STRESS

Hypothesis
Error

VAR * INOC

Type III Sum
of Squares df Mean Square F Sig.

.999 MS(REP) + .001 MS(Error)a. 

 MS(Error)b.  

Table 4.1-2: Analysis of variance (ANOVA) for C. destructans disease severity of grapevine 
rootstocks at 0 cm from the trunk base. Stress treatments 0 and 1 are combined. 

 Dependent Variable: 0cm_severity

22.002 1 22.002 22.619 .002
7.365 7.571 .973a

5.806 6 .968 .954 .463
71.030 70 1.015b

1.707 1 1.707 1.682 .199
71.030 70 1.015b

7.239 1 7.239 7.134 .009
71.030 70 1.015b

.105 1 .105 .104 .748
71.030 70 1.015b

4.307 1 4.307 4.245 .043
71.030 70 1.015b

2.609 1 2.609 2.571 .113
71.030 70 1.015b

.290 1 .290 .286 .594
71.030 70 1.015b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VARIETY

Hypothesis
Error

INOC

Hypothesis
Error

VARIETY * INOC

Hypothesis
Error

STRESS2

Hypothesis
Error

INOC * STRESS2

Hypothesis
Error

VARIETY *
STRESS2

Type III Sum
of Squares df Mean Square F Sig.

.894 MS(REP) + .106 MS(Error)a. 

 MS(Error)b.  
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Table 4.1-3: Analysis of variance (ANOVA) for C. destructans disease incidence of grapevine 
rootstocks at 5 cm from the trunk base. Stress treatments 0, 1 and 2 are treated separately. 

 Dependent Variable: 5cm_severity

1.731 1 1.731 38.812 .001
.269 6.039 .045a

.267 6 .045 .310 .930
9.625 67 .144b

.000 1 .000 .002 .967
9.625 67 .144b

.000 1 .000 .002 .967
9.625 67 .144b

.223 2 .112 .778 .464
9.625 67 .144b

.081 2 .040 .281 .756
9.625 67 .144b

.060 2 .030 .209 .812
9.625 67 .144b

.000 1 .000 .002 .967
9.625 67 .144b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VAR

Hypothesis
Error

INOC

Hypothesis
Error

STRESS

Hypothesis
Error

INOC * STRESS

Hypothesis
Error

VAR * STRESS

Hypothesis
Error

VAR * INOC

Type III Sum
of Squares df Mean Square F Sig.

.999 MS(REP) + .001 MS(Error)a. 

 MS(Error)b.  

Table 4.1-4: Analysis of variance (ANOVA) for C. destructans disease incidence of grapevine 
rootstocks at 5 cm from the trunk base. Stress treatments 0 and 1 are combined. 

 Dependent Variable: 5cm_severity

1.724 1 1.724 30.950 .000
.615 11.039 .056a

.274 6 .046 .325 .922
9.834 70 .140b

.007 1 .007 .049 .826
9.834 70 .140b

.005 1 .005 .036 .850
9.834 70 .140b

6.758E-05 1 6.758E-05 .000 .983
9.834 70 .140b

.051 1 .051 .360 .551
9.834 70 .140b

.056 1 .056 .398 .530
9.834 70 .140b

.051 1 .051 .360 .551
9.834 70 .140b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VARIETY

Hypothesis
Error

INOC

Hypothesis
Error

VARIETY * INOC

Hypothesis
Error

STRESS2

Hypothesis
Error

INOC * STRESS2

Hypothesis
Error

VARIETY *
STRESS2

Type III Sum
of Squares df Mean Square F Sig.

.894 MS(REP) + .106 MS(Error)a. 

 MS(Error)b.  
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Table 4.1-5: Analysis of variance (ANOVA) for root dry weight data. Stress treatments 0, 1 and 2 are 
treated separately. 

 Dependent Variable: ROOT_DW

26842.700 1 26842.700 4359.268 .000
37.102 6.025 6.158a

36.904 6 6.151 .471 .828
875.564 67 13.068b

122.073 1 122.073 9.341 .003
875.564 67 13.068b

.004 1 .004 .000 .986
875.564 67 13.068b

272.252 2 136.126 10.417 .000
875.564 67 13.068b

95.627 2 47.814 3.659 .031
875.564 67 13.068b

56.594 2 28.297 2.165 .123
875.564 67 13.068b

7.218 1 7.218 .552 .460
875.564 67 13.068b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VAR

Hypothesis
Error

INOC

Hypothesis
Error

STRESS

Hypothesis
Error

INOC * STRESS

Hypothesis
Error

VAR * STRESS

Hypothesis
Error

VAR * INOC

Type III Sum
of Squares df Mean Square F Sig.

.999 MS(REP) + .001 MS(Error)a. 

 MS(Error)b.  

Table 4.1-6: Analysis of variance (ANOVA) for root dry weight data. Stress treatments 0 and 1 are 
combined. 

 Dependent Variable: ROOT_DW

22387.600 1 22387.600 3501.184 .000
64.338 10.062 6.394a

33.005 6 5.501 .394 .880
976.110 70 13.944b

170.773 1 170.773 12.247 .001
976.110 70 13.944b

1.676 1 1.676 .120 .730
976.110 70 13.944b

8.729 1 8.729 .626 .432
976.110 70 13.944b

242.259 1 242.259 17.373 .000
976.110 70 13.944b

23.288 1 23.288 1.670 .201
976.110 70 13.944b

50.075 1 50.075 3.591 .062
976.110 70 13.944b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VARIETY

Hypothesis
Error

INOC

Hypothesis
Error

VARIETY * INOC

Hypothesis
Error

STRESS2

Hypothesis
Error

INOC * STRESS2

Hypothesis
Error

VARIETY *
STRESS2

Type III Sum
of Squares df Mean Square F Sig.

.894 MS(REP) + .106 MS(Error)a. 

 MS(Error)b.  
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Table 4.1-7: Analysis of variance (ANOVA) for shoot dry weight data. Stress treatments 0, 1 and 2 
are treated separately. 

 Dependent Variable: SHOOT_DW

920.715 1 920.715 442.790 .000
12.510 6.016 2.079a

12.472 6 2.079 .731 .626
190.502 67 2.843b

72.227 1 72.227 25.402 .000
190.502 67 2.843b

.060 1 .060 .021 .885
190.502 67 2.843b

7.847 2 3.923 1.380 .259
190.502 67 2.843b

4.862 2 2.431 .855 .430
190.502 67 2.843b

3.312 2 1.656 .582 .561
190.502 67 2.843b

.028 1 .028 .010 .922
190.502 67 2.843b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VAR

Hypothesis
Error

INOC

Hypothesis
Error

STRESS

Hypothesis
Error

INOC * STRESS

Hypothesis
Error

VAR * STRESS

Hypothesis
Error

VAR * INOC

Type III Sum
of Squares df Mean Square F Sig.

.999 MS(REP) + .001 MS(Error)a. 

 MS(Error)b.  

Table 4.1-8: Analysis of variance (ANOVA) for shoot dry weight data. Stress treatments 0 and 1 are 
combined. 

 Dependent Variable: SHOOT_DW

858.825 1 858.825 397.380 .000
17.567 8.128 2.161a

12.445 6 2.074 .716 .638
202.800 70 2.897b

63.017 1 63.017 21.752 .000
202.800 70 2.897b

.175 1 .175 .061 .806
202.800 70 2.897b

.016 1 .016 .005 .942
202.800 70 2.897b

3.533 1 3.533 1.220 .273
202.800 70 2.897b

.196 1 .196 .068 .796
202.800 70 2.897b

.189 1 .189 .065 .799
202.800 70 2.897b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

REP

Hypothesis
Error

VARIETY

Hypothesis
Error

INOC

Hypothesis
Error

VARIETY * INOC

Hypothesis
Error

STRESS2

Hypothesis
Error

INOC * STRESS2

Hypothesis
Error

VARIETY *
STRESS2

Type III Sum
of Squares df Mean Square F Sig.

.894 MS(REP) + .106 MS(Error)a. 

 MS(Error)b.  
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4.2 RAW DATA MEANS FOR CHAPTER 4 
Table 4.2-1: Raw data means for C. destructans disease severity 0 cm from trunk base. 

 0 cm disease severity (%)  

 101-14 Schw. 

Inoc 0 1 2 0 1 2 

N 0 14.29 14.29 3.57 0 0 

Y 17.86 7.14 35.72 7.14 10.72 28.57 
 

Table 4.2-2: Raw data means for C. destructans disease incidence 5 cm from trunk base. 

 5 cm disease incidence (%) 

 101-14 Schw. 

Inoc 0 1 2 0 1 2 

N 0 28.57 14.29 14.29 16.67 14.29 

Y 14.29 14.29 14.29 0 14.29 28.57 
 

Table 4.2-3: Raw data means for overall plant C. destructans disease incidence. 

 Overall disease incidence data (% plants) 

 101-14 Schw. 

Inoc 0 1 2 0 1 2 

N 0 42.86 14.29 28.57 16.67 14.29 

Y 28.57 42.86 57.14 14.29 57.14 42.86 
* All out of a total of 7 plants, except Schw. N. 1 where only 6 plants  
were available. 
 
Table 4.2-4: Raw data means for the root dry weights of grapevine rootstocks 101-14  
and Schwarzmann, when inoculated (Y) and not inoculated (N) with C. destructans. 

 Root dry weight: Raw data means (g) 

 101-14 Schw. 

Inoc 0 1 2 0 1 2 

N 18.89 21.51 18.13 15.14 19.72 14.43 

Y 20.04 19.07 17.69 20.07 19.19 12.03 
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Table 4.2-5: Raw data means for the shoot dry weights of grapevine rootstocks 101-14 and 
Schwarzmann, when inoculated (Y) and not inoculated (N) with C. destructans. 

 Shoot dry weight: Raw data means (g) 

 101-14 Schw. 

Inoc 0 1 2 0 1 2 

N 3.414 5.343 3.914 1.843 2.133 3.129 

Y 3.857 4.014 5.071 2.529 2.329 2.371 
 

Table 4.2-6: Raw data showing the effect of C. destructans incidence on grapevine shoot and root dry 
weights for varieties 101-14 and Schwarzmann. 

 Root dry weight Shoot dry weight 

 Incidence Incidence 

Variety 0 1 0 1 

101-14 18.98 19.77 4.27 4.28 

Schw. 16.88 16.23 2.62 1.85 
* The number of plants in each category vary: 101-14 and Schwarzmann both have 29 plants with 0 incidence. 
101-14 has 13 plants with an incidence of 1, while Schwarzmann has 12. 
 
Table 4.2-7: Cylindrocarpon destructans disease severity 0 cm from the trunk base. Means provided 
for variety, inoculation and stress effects. 

Variety Mean % 

101-14 0.595 14.9 

Schw. 0.341 8.5 

   

Inoc Mean % 

N 0.220 5.5 

Y 0.714 17.9 

   

Stress Mean % 

0 0.286 7.2 

1 0.333 8.3 

2 0.786 19.7 
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Table 4.2-8: Cylindrocarpon destructans disease incidence 5 cm from the trunk base. Means provided 
for variety, inoculation and stress effects. 

Variety Mean % 

101-14 0.143 14.3 

Schw. 0.146 14.6 

   

Inoc Mean % 

N 0.15 15 

Y 0.143 14.3 

   

Stress Mean % 

0 0.071 7.1 

1 0.185 18.5 

2 0.179 17.9 
 

Table 4.2-9: Cylindrocarpon destructans disease incidence combined for 0 cm and 5 cm from the 
trunk base. Means provided for variety, inoculation and stress effects. 

Variety Mean % 

101-14 0.31 31 

Schw. 0.29 29 

   

Inoc Mean % 

N 0.20 20 

Y 0.40 40 

   

Stress Mean % 

0 0.179 17.9 

1 0.407 40.7 

2 0.343 34.3 
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Table 4.2-10: Root dry weight (g) data showing the influence of variety, inoculation and stress. 

Variety Mean 

101-14 16.690 

Schw. 19.22 

  

Inoc Mean 

N 17.93 

Y 18.01 

  

Stress Mean 

0 18.54 

1 19.88 

2 15.57 
 

Table 4.2-11: Shoot dry weight (g) data showing the influence of variety, inoculation and stress. 

Variety Mean 

101-14 4.27 

Schw. 2.4 

  

Inoc Mean 

N 3.32 

Y 3.36 

  

Stress Mean 

0 2.91 

1 3.50 

2 3.62 
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4.3 FUNGAL INFECTION DATA FOR CHAPTER 4 
Table 4.3-1: Total numbers of the most common fungi isolated from plants in each treatment 
combination. Values are total colonies may include more than one isolate per tissue fragment.  
If a column is not present there were no isolates for that pathogen at that location. 

   0 cm       5 cm       

Variety Inoc Stress Cd F B A Py Pe Cd F B A Py Pe Ph

Schw. N 0 3 8 0 1 2 12 1 2 0 0 2 1 1 

Schw. N 1 1 16 4 0 3 1 1 3 1 0 0 0 0 

Schw. N 2 3 11 2 0 4 8 1 2 3 1 1 1 2 

Schw. Y 0 6 13 0 0 1 3 0 4 1 0 0 0 0 

Schw. Y 1 4 13 0 1 1 7 2 0 0 1 0 3 3 

Schw. Y 2 9 1 12 0 8 0 2 0 2 0 4 0 0 

101-14 N 0 3 10 0 0 9 1 0 1 2 1 1 1 0 

101-14 N 1 4 7 1 0 5 1 2 3 2 0 0 0 0 

101-14 N 2 5 9 4 0 4 2 1 2 1 1 1 2 0 

101-14 Y 0 5 6 4 0 1 2 1 2 1 1 0 1 0 

101-14 Y 1 3 7 5 0 7 2 1 2 0 3 3 0 0 

101-14 Y 2 10 4 1 1 2 2 1 3 0 0 4 0 0 
 

Key 

Inoc: inoculation status (N=not inoculated, Y=inoculated) 

Stress: stress level (0=unstressed, 1=moderate, 2=high stress) 

Cd: Cylindrocarpon destructans 

F: Fusarium sp. 

B: Botryosphaeria sp. 

A: Alternaria sp. 

Pi: Pythium sp. 

Pe: Penicillium sp. 

Ph: Phomopsis sp. 
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4.4 IDENTIFICATION OF CYLINDROCARPON SPP. 
ISOLATES 
C. destructans colonies are dark brown, cinnamon or hazel; the dense aerial mycelium has a 

felt appearance and an even concentric growth pattern (Samuels & Brayford, 1990) 

(pers. comm. C. Bleach, 2006). The reverse colour of colonies is similar to the surface and 

ranges from buff to hazel. C. destructans produces macroconidia (15-25 μm x 4-8 μm), 

predominantly 1-3 septate (depending on colony age), straight and cylindrical, with apical 

cells broadly rounded. Chlamydospores are brown and readily produced (Samuels & 

Brayford, 1990; Brayford, 1992; Halleen et al., 2004).   

C. liriodendri colonies are typically cream but at times slightly sepia, with sparse aerial 

mycelium giving colonies a felt-like appearance (Halleen, 2005; Whitelaw-Weckert et al., 

2007). Colonies have a concentric growth pattern (pers. comm. C. Bleach, 2006). The reverse 

colour of colonies is similar to the surface and ranges from cream to slightly cinnamon or 

sepia. C. liriodendri produces numerous macroconidia (24-55 μm x 4.5-6.5 μm), which are 

1-3 septate, straight or slightly curved and cylindrical. Chlamydospores are brown and 

commonly produced (Halleen et al., 2004; Whitelaw-Weckert et al., 2007). 

C. macrodidymum colonies have no concentric growth pattern and the aerial mycelium is 

predominant, yellowish and covering the whole colony with a felt-like or woolly appearance. 

The reverse colour of colonies is dark brown to burnt umber (Halleen et al., 2004). C. 

macrodidymum produces numerous macro-conidia (26-45 μm x 4-8 μm) which are 1-4 septate 

(typically 3), straight, cylindrical or sometimes slightly clavate, and with slightly bent apical 

cells. It rarely forms chlamydospores (Halleen et al., 2004; Halleen et al., 2006a). 

   

 

Figure 4.4-1: Colony characteristics of Cylindrocarpon species (associated with black foot) on PDA. 

C. liriodendri C. destructans C. macrodidymum 



 158

  

 

 

Figure 4.4-2: Spore characteristics (macroconidia) of Cylindrocarpon species (associated with black 
foot) grown on PDA. 

C. liriodendri 

C. destructans 

C. macrodidymum 
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4.5 SUPPLEMENTARY MOLECULAR DATA FOR 
CHAPTER 4 
Table 4.5-1: Band intensity data for bands excised and sequenced from SSCP gels of DNA extracted 
from bacteria from the rhizosphere of grapevine rootstocks Schwarzmann and 101-14, inoculated (+) 
or not inoculated (-) with Cylindrocarpon destructans and exposed to no (0) moderate (1) or high (2) 
stress. C denotes soil only controls. 

 Controls 101-14 Schwarzmann 

Band +C -C +0 +1 +2 -0 -1 -2 +0 +1 +2 -0 -1 -2 

18 S S S S S S S S S S S M M M 

21 S S S! S! M M S M S S S S S M 

22 M M S! S! W M M M M M W S S M 

23 S M S! S! M M M M M M S S S S 

25 W M S M W W W W M M M M M W 

38 W S! S M S! W W W W M S S M W 

50 S S M S S S S M W S S W S S 

54 M M S W M W W W S M W W W M 

55 S M S! W M W W W W W W M W W 

62 W M S M M W W W M M M M M W 

64 S S M M W W S M S S S S! M W 

65 S M S! S M M M M S M S S S M 
 

Key 

S strong 

M moderate 

W weak 

! very strong 

Ratings of M and W can collectively be called weak . Bands rated W could not always be seen 

in the digital reproduction. 
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Figure 4.5-1: Composite SSCP gels of the three replicates per treatment for grapevine rootstocks 101-14 (A, B) and Schwarzmann (C,D), inoculated (+) or 
not inoculated (-) with Cylindrocarpon destructans and exposed to no (0), moderate (1) and high (2) stress. Soil only controls (E). Control gels show results 
for three replicates.  

A B

ED 

C
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Figure 4.5-2: Composite SSCP gel scans of the bands excised, amplified, and run again after re-amplification. Band numbers are shown above the columns. 
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