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Abstract: During disease or toxin challenges, the behavioral activities of grazing animals alter in 
response to adverse situations, potentially providing an indicator of their welfare status. Behavioral 
changes such as feeding behavior, rumination and physical behavior as well as expressive behavior, 
can serve as indicators of animal health and welfare. Sometimes behavioral changes are subtle and 
occur gradually, often missed by infrequent visual monitoring until the condition becomes acute. 
There is growing popularity in the use of sensors for monitoring animal health. Acceleration sensors 
have been designed to attach to ears, jaws, noses, collars and legs to detect the behavioral changes 
of cattle and sheep. So far, some automated acceleration sensors with high accuracies have been 
found to have the capacity to remotely monitor the behavioral patterns of cattle and sheep. These 
acceleration sensors have the potential to identify behavioral patterns of farm animals for monitor-
ing changes in behavior which can indicate a deterioration in health. Here, we review the current 
automated accelerometer systems and the evidence they can detect behavioral patterns of animals 
for the application of potential directions and future solutions for automatically monitoring and the 
early detection of health concerns in grazing animals. 
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1. Introduction 
Automatic accelerometers represent a relatively new and emerging technology to 

provide continuous and real-time evaluation of animal activity on-farm to support repro-
duction and health. In grazing ruminant livestock production systems improving animal 
efficiency represents large opportunities in improving environmental, animal welfare and 
economic outcomes. Implementing sensors and big data into livestock enterprises are pro-
posed as an effective means for meeting many of these outcomes [1]. Various sensor tech-
nologies have been designed and implemented to provide information on a wide range 
of aspects of animal health and behavior. The previous reviews have described many of 
the links between animal physiology and different types of sensors which include wear-
able sensors which detect sweat, temperature, sound, movement and so on using a range 
of technological approaches [1,2]. The most common and widely commercialised of these 
technologies is the accelerometer sensor. A systematic review was conducted into the use 
of raw accelerometer data based on a 3-step method to predict ruminant behavior through 
predictive models [3]. However, those reviews were focused on behavior classification 
using accelerometer datasets and did not provide information on how specific behavioral 
changes can be for animal sickness characterized in the face of varying challenges, which 
remains a gap in our knowledge. 

In this context, behavior could be considered an important component of animal 
well-being for animal welfare assessment [4]. Grazing cows with a good health status and 
productivity had been shown to spend less time lying down/resting and exhibit more 
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feeding and rumination activity [5]. Further, animal behavioral changes, defined as ab-
normal, that are forced by the impact of an adverse environment and help the animals 
cope with an adverse environment, are indicators of poor welfare [6]. Animals suffering 
from diseases such as mastitis, metritis, metabolic disorders and ketosis, usually exhibit 
behavioral alterations. Cows with clinical mastitis show a decrease in feed intake and feed 
rate as well as fewer feeding bouts or visits to the feeder during peak feeding times [7]. 
Grazing dairy cows with metritic infections increased the total daily lying time the first 
week postpartum which simultaneously reduced physical activity and reduced feeding 
in the three weeks before diagnosis [8]. When cows suffer from hypocalcaemia, their feed-
ing duration and number of visits to the feeder postpartum were shown to be reduced [9]. 
Ketotic cows have shown prolonged standing time and decrease feeding duration over 
the week before partum [10]. Behavioral responses of lying and rumination patterns of 
individuals exposed to environmental challenges were associated with animal welfare, 
indicating the balance of changeable behavioral patterns associated with the environment 
and similar behavioral responses on different conditions towards how to cope with health 
risk at different external situations at the individual level [11]. As a consequence, animal 
behavior can serve as an indicator of their welfare. The potential for accelerometer tech-
nology to detect changes in animal behavior associated with welfare concerns is a prom-
ising area that requires further investigation in order to link measured changes across a 
range of parameters to a specific disease and allow targeted individualized treatment. If 
successful this approach could lead to the timely diagnosis of sub-clinical disease, leading 
to improved welfare outcomes for farmed livestock. However, in order to detect a pattern 
of behavior that is indicative of a specific disease challenge, consideration needs to be 
given to the behavioral traits that are typically expressed when animals are in a poor wel-
fare state. The ultimate aim may be use one or more sensors to provide a fingerprint of 
behavior patterns that are unique and indicative to a specific disease or welfare state. 

Hence, this review aims to provide the behavioral parameters currently measured to 
indicate the health status of farm ruminants and their potential to be categorized via ac-
celeration sensors used in precision livestock farming. Furthermore, revisited in this re-
view are the current application and development of acceleration sensor technologies that 
have been validated to be available for accurate detection and classification of behavioral 
patterns. 

2. Behavioral Indicators of Animal Health 
Healthy ruminants spend their time in a range of behaviors which include eating, 

ruminating, socializing and resting. As indicated above, behavioral response to changes 
in health are diverse. Various behavioral changes, such as reduced grazing or ruminating 
time, changes in physical activity (lying, standing and posture) and expressive behaviors, 
could be observed and measured during the periods of different health challenges. This 
section will review the size of the variation in specific behaviors when the health status of 
an animal is compromised.  

2.1. Eating 
Eating behavior is a common behavioral indicator of animal welfare. The loss of ap-

petite or a reduction in voluntary food intake is the most frequently reported symptom of 
infection with pathogens [12]. Although it is not always clear how anorexia provides a 
functional advantage to the animals during times when the nutritional demands of an 
immune response may be increased, infection-induced anorexia is considered to be an 
active behavior of systematical defense and elimination against pathogens, which is a 
complex mechanism of acute phase response related to immune, endocrine and central 
nervous system [13]. Pro-inflammatory cytokines released as part of the immunological 
cascade, act as a central mediator in the brain of infected animals and result in behavioral 
changes such as reduced eating time and fewer social activities [14–16]. Feed intake of 
susceptible animals can be decreased by the diseases such as metritis, mastitis, parasitism 
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or lameness. For example, intramammary infusion with Escherichia coli reduced average 
feeding time by approximately 20% in the first day following infection compared with 
two days prior to infection [17]. Mastitic dairy cows had a lower feed intake and fewer 
feeding bouts and spent less time lying [18], while the dry matter intake (DMI) of dairy 
cows with mild and severe metritis was, respectively, decreased by 0.21 and 0.33 kg/d 
which was associated with 4.0, and 4.8 min/d reduced feeding times [19]. Further, lame 
dairy cows with higher locomotion scores, displaying more visible symptoms of lameness, 
had fewer, larger meals with shorter total feeding duration [20], with changes of feed in-
take and feeding time as well as feeder visits suggested as indicators to detect health dis-
orders of dairy cows [21]. Similar observations have been reported during infection with 
multi-cellular organisms. In young ruminants, the maximum reduced feed intake of 
calves on pasture for the first season was observed at day 42, 37 and 25 for groups with 
low, medium and high infection levels of Ostertagia ostertagi, respectively [22]. Voluntary 
feed intake of lambs infected artificially with Teladorsagia circumcincta and/or Tricho-
strongylus colubriformis has frequently been reported to be reduced with the extent directly 
proportional to larval challenge. Voluntary feed intake of ewe lambs infected artificially 
with 1500 or 7000 T. circumcincta larvae in two doses per week for 6 weeks, was reduced 
by approximately 10% [23], and voluntary daily food intake of susceptible lambs dosed 
with 7000 T. circumcincta larvae 3 times per week for 12 weeks, was decreased by 13% 
compared with the control group [24]. Furthermore, dry matter intake of lambs receiving 
3000 T. circumcincta and 3000 T. colubriformis larvae per day for 18 weeks was reduced by 
60% [25]. In general, the changes of voluntary feed intake of animals confronted with 
stressful conditions is typically considered an adaptive behavioral alteration, although the 
functional advantage that this provides to the animal is yet to fully elucidated. Neverthe-
less, alterations to feed intake, feeding frequency and a general grazing behavior have the 
potential to provide useful indicators of the status of animal health and welfare associated 
with disease. A major obstacle has been the difficulty in assessing these parameters, par-
ticularly assessment of feed intake, of animals when grazing. 

2.2. Ruminating 
Ruminating behavior is a subcategory of feeding behavior pattern, defined as regur-

gitating a bolus, chewing the cud or moving the head and jaw in a circular motion and 
then swallowing the masticated cud. Chewing can reduce dietary particle size, promote 
the secretion of saliva as a buffer for lubricating the bolus swallowed and maintaining 
optimum rumen pH to enhance microbial digestion of forage, facilitate microbial coloni-
zation of the rumen and the clearance of small forage particles from the rumen into the 
lower gastrointestinal tract [26]. In general, ruminating duration can be increased by poor-
quality forage with high neutral detergent fiber and cell wall content [27,28], and in-
creased forage particle size [29]. However, reduced ruminating time is often observed 
during health challenges, such as heat stress [30] and metritis [31], at least some of which 
can be expected to be related to reductions in feed intake. Decreased rumination is usually 
considered to decrease in saliva flow and rumen buffering [32], which may affect the func-
tion of rumen digestion and nutrient absorption. Therefore, ruminating can serve as an 
indicator of the animal health and welfare. There has been limited research on changes of 
ruminating behavior caused by infection. For example, daily ruminating duration of dairy 
cows was reduced by up to 15–30% before diagnosis, due to metritis [33], mastitis [34] and 
lameness [35]. Reduced rumination time during calving or lactation was used as a meas-
urement to monitor early endometritis, ketosis, lameness and mastitis disease of dairy 
cows [36,37]. However, ruminating time is frequently combined with other behavioral in-
dicators to assess ruminant welfare. Cows with increased somatic cells in milk reduced 
both their rumination and feeding time, indicating changes in these behaviors could be 
considered as the indicators for udder health or a response to inflammation somewhere 
in the body [5]. Behavioral indicators related to sheep welfare were considered to be ru-
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minating, feeding (DMI and water intake), lying as well as the time of standing and locat-
ing during seclusion [38], indicating rumination function is only one of a myriad of activ-
ities and behaviors than can be used in combination to assess welfare. 

2.3. Physical Activity 
2.3.1. Active Behavior  

The physical activity of on-farm animals is normally described in forms such as lying, 
standing, walking and other body movements. Lying and standing can be classified as 
inactive behavior, while walking and body movements can be regarded as active behav-
ior. Behavioral changes in physical activity and fever are usually simultaneous with a re-
duction in active behavior and an increase in inactive behavior. The reduced activity is 
associated with changes in body temperature when invading pathogens activate a pro-
inflammatory immune reaction [39]. The subsequent reduction in activity is believed to 
be necessary to preserve the energetic resources of individual animals to fight infection 
[15,40]. Various studies have been carried out to reveal the changes of physical activity 
caused by infectious diseases. For instance, metritic infection increased the total daily ly-
ing duration of dairy cows with a simultaneous reduction of active behavior in 3 days 
before and after diagnosis [41]. Daily lying time of cows diagnosed with clinical metritis 
were increased compared with cows without clinical metritis (628.9 vs. 591.2 min/d, re-
spectively) [42]. Similarly, compared with healthy cows, cows diagnosed with metritis 
had reduced daily physical activity (512.5 vs. 539.2 arbitrary units/d, respectively) and 
postpartum daily ruminating time (415.9 vs. 441.0 min/d, respectively) [31]. Further, ru-
mination duration (36.8 vs. 39.8 min/2 h, respectively) and physical activity (27.7 vs. 30.5 
units/2 h, respectively) were reduced in sick cows with ketosis, metritis, lameness and 
other health problems, compared with healthy cows [43]. The induced infections of mas-
titis result in prolonged standing duration and shortened total lying duration with in-
creasing step count and decreased overall activity [17,44]. Sheep in pain caused by lame-
ness or mastitis may display licking, rubbing or scratching painful areas, less movement 
and changes in posture to avoid contact with the painful area [45]. Some researchers found 
sheep infected with the degenerative scrapie disease spent less than half their time stand-
ing compared with the normal sheep and spent more time in an abnormal recumbent pos-
ture and more time in rubbing and self-biting [46]. In studies of animal with skin parasites, 
the infestation of mites (Psoroptes ovis) caused rubbing behavior of sheep, leading to a re-
duction in lying time and an increase in the number of lying bouts [47]. These changes in 
movement activity typically relate to one or more parts of the body. The previous example 
with mites can provide immediate and short term visual cues to the farmers through rub-
bing and self-biting, but over the time other changes in activity such as reduced lying time 
is important for welfare but less visible. 

2.3.2. Inactive Behavior  
Inactivity and recumbency in animals reflect a wide range of health challenges and 

welfare status. Mean total daily lying time and mean duration of lying bouts of dairy cows 
with hoof lesions were increased as locomotion score was increased, indicating the in-
creasing severity of hoof lesions in cows [48]. On farms using deep bedded stalls, dairy 
cows with severe lameness tended to lie down 1.6 h longer per day, had longer lying bouts 
and greater variation in the duration of lying bouts with behavioral thresholds identified 
for severe lameness such as lying time >14.5 h/d, log bout duration > 4.5 log(min)/bout 
and standard deviation of log bout duration > 4.0 log (min)/bout [49]. When lactating dairy 
cows were in a high comfort and health state, average daily total lying time = 8.7 h/d, mean 
daily lying bouts = 12.1 and average duration of lying bouts = 46.1 min, showing that any 
changes in lying behavior of dairy cows can indicate the occurrence of health and welfare 
issues [50]. Activity patterns such as lying time, lying bouts and steps were measured to 
identify pain and stress of dairy cows suffering clinical metritis [42]. Some researchers 
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have reported that lying comfort was a behavioral indicator associated with welfare to 
assess the impact of the cubicle on cattle welfare [51]. Lying behavior has also been used 
in combination with other behaviors for the assessment of ruminant welfare. Diseased 
pre-weaned dairy calves had longer daily lying (17.6 vs. 16.7 h/d, respectively), lying bout 
duration (74.8 vs. 56.0 min, respectively), shorter feeding time (19.3 vs. 22.8 min, respec-
tively) and fewer feeder visits (2.1 vs. 3.2, respectively) compared with healthy calves, 
indicating changes in the number of lying bouts and lying time along with feeding pat-
terns can be used to predict disease of dairy calves [52]. Moreover, lying and walking 
activity were recorded as behavioral indicators under the conditions of on-pasture and 
indoor housing to evaluate the influence of these conditions on dairy cows’ well-being for 
comparison [53]. Behavioral indicators of lying behavior (total time and synchronization) 
and locomotion score have been suggested to estimate dairy cow welfare during housing 
[54] while lying behavior, gait score, and walking speed could be utilized as behavioral 
indicators to monitor hoof lesions of dairy cows [55]. In addition, standing behavior of 
dairy cows before calving could be considered as a parameter to detect postpartum sub-
clinical ketosis [56]. Behavioral changes of dairy cows such as reduced standing (5.52 vs. 
6.51 h/12 h, respectively), increased lying (6.48 vs. 5.50 h/12 h, respectively) and shorter 
feeding at night were recorded in dairy cows suffering claw horn lesions [57]. Further-
more, behavioral activities such as voluntary standing posture, weight shifting from one 
foot to another and uneven weight bearing as well as standing on the edge of stalls have 
been suggested to provide an indicator for lameness of cows [58]. However, not all in-
crease in inactivity are associated with health per se. Animals respond to climatic extremes 
through variation in behavior with increased inactivity in both very hot or very cold con-
ditions [59–63], and these changes in activity in response to non-disease challenges need 
to be accounted for. 

2.3.3. Expressive Behavior  
Subtle expressive behaviors, such as tail and ear position, facial expression, panting, 

separation from the flock and coughing, can be also regarded as the behavioral indicators 
to evaluate animal welfare under different circumstances. For example, behavioral reac-
tions of dairy cows were used as the possible indicators to assess pain during the period 
of mastitis, which included changes of standing/lying, in addition to tail and ear position 
and attitude toward surroundings [64]. Sheep suffering pain induced by foot rot or mas-
titis can be identified to show abnormal facial expression, such as closing palpebral fissure 
by the eyelids, narrowing eye aperture, tightening masseter muscle with a convex shape, 
abnormal ear posture with ventral and caudal rotation, a concaved jaw and an abnormal 
“V” shape of nostril and philtrum [45]. The behavioral indicators of sheep welfare could 
include alertness, separation from the flock, posture, gait, panting, response to stimula-
tion, shivering, coughing and play [65]. 

3. Acceleration Sensors for Measurement of Behavioral Patterns 
With the many behavior cues, the ability to detect animal health issues and address 

them promptly offers an opportunity to improve outcomes and improve production and 
wellbeing. However, collection of quantifiable animal activity on pasture based on direct 
observation or video monitoring, are both time consuming and labor intensive, and the 
presence of an observer can disrupt normal behavioral patterns [66–68]. In extensive pas-
toral system, it is difficult to continuously monitor animal behaviour, especially for large 
numbers spread over long distances [69]. The development of sensor and communication 
technologies has improved the ability to remotely monitor activities of livestock in a broad 
range of environments and on a scale not previously possible. In order to decode the rec-
orded data, it is essential to develop an analysis system to classify various behaviors and 
postures of animals [70]. Currently there are 22 validated accelerometers available to iden-
tify behaviors related to feeding and drinking, and/or movement and resting in cows [71]. 
In a meta-analysis of sensor technology, there are 129 commercially available sensors 
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identified with only 18% having validation reports [72]. However, the relationship be-
tween the sensor analysis and the observed behavior needs to be validated to provide 
confidence in the technology and subsequent user adoption. 3-Dimensional (x, y and z 
axis) accelerometer sensors were used in ninety-seven percent of 66 relevant studies [3], 
measuring acceleration values within three orthogonal spatial axes capturing the animal’s 
motion dynamics, as the x-axis corresponds to the front-back direction while the y-axis 
and the z-axis detect the side-to-side direction and the up-down direction, respectively 
[73]. Accelerometers attached below the neck of cattle measures the 3-axis inertial and 
gravitational accelerations with the x-axis detecting the up-down direction, the y-axis de-
tecting the front-back and the z-axis detecting the right-left direction [74]. However, ear-
mounted triaxial accelerometers in sheep detect the accelerometry datasets from x-axis, y-
axis and z-axis corresponding to the directions of up-down, right-left and front-back, re-
spectively, while the x-axis, y-axis and z-axis of collar-mounted accelerometers detect the 
right-left, the front-back and the up-down direction [75]. Overall, wearable 3-axis acceler-
ation sensors have the capability to capture the accelerometry data corresponding to ani-
mal behaviors which can indicate the health status of farmed animals. 3-axis acceleration 
sensors with lightweight, small size, accuracy and real-time monitoring are a promising 
system to identify animal behaviors. Moreover, the research on behavioral changes of an-
imals could also facilitate the diagnosis of animal diseases and offer significant infor-
mation to determine treatment decisions given to animals. Behavioral changes may lead 
to the occurrence of abnormal statistics from the collected 3D-accelerometry datasets. 
Hence, the processing and analysis of accelerometry data from a wearable 3-Dimensional 
accelerometer sensors can provide information related to animal health state. Among pre-
vious studies, various acceleration sensors attached to ears, jaws, collars, legs or noses, 
have already been validated on characteristics of behavioral activities of animals, shown 
in Table 1. These acceleration sensors were validated using a range of statistical parame-
ters including correlation coefficient, coefficient of determination, accuracy, sensitivity, 
specificity, precision, Kappa, concordance correlation coefficient or/and F-score during 
previous studies. 

Table 1. The accelerometer systems used for the validation of behavioral activities. r = correlation 
coefficient (Pearson or Spearman’s rank), Acc = accuracy, Se = sensitivity, Sp = specificity, Pr = pre-
cision, Kappa = κ, F-score, CCC = concordance correlation coefficient, and R2 = coefficient of deter-
mination. 

Accelerometer Placement Parameter Measurement of Validity NO.  
Animals 

CowManager SensOor 
(Agis Automatisering 

BV, Harmelen, the Neth-
erlands) 

Ear (cow) 

Percentage of eating time in 6 h recording r = 0.88, κ = 0.77 [76] 15 
Percentage of eating time in about 20 h re-

cording 
r = 0.88, CCC = 0.99 [77] 24 

Percentage of ruminating time in 6 h re-
cording 

r = 0.93, κ = 0.85 [76] 15 

Percentage of eating time in about 20 h re-
cording 

r = 0.72, CCC = 0.99 [77] 24 

Percentage of eating/ruminating time in 40 
h recording 

r = 0.83 [78] 10 

Allflex® eSense™ (SCR 
Engineers Ltd., Netanya, 

Israel) 
Ear (heifer) Minute-level panting for 10 days Se = 0.30–0.33, Sp > 0.70 [79] 99 

SMARTBOW (Smart-
bow GmbH, Weibern, 

Austria) 

Ear (cow) 
Hourly rumination time in 4 h recording r= 0.97, CCC = 0.96 [80] 48 

Hourly rumination time in 20 h recording r > 0.99 [81] 10 

Ear (calf) Total ruminating time in 4 h recording 
Se = 89.4%, Sp = 94.9%, Acc = 

93.9%, Pr = 78.5%, F1 score = 83.6%, 
Kappa = 0.80 [82] 

15 
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Total time of postures (lying, standing, lo-
comotion) in 4 h recording 

Se = 94.4%, Sp = 94.3%, Pr = 95.8%, 
Acc = 94.3% [82] 

HOBO Pendant G data 
loggers (Onset Com-
puter Corporation, 

Pocasset, MA, USA) 

Ear (cow) Grazing time in 30 min recording 
Se = 85.47%, Sp = 82.08%, Pr = 

77.63% for the intervals of 5 min 
[67] 

20 

Jaw (cow) 
Grazing time in 30 min recording R2 = 0.96 [83] 

7 
Rumination time in 30 min recording R2 = 0.91 [83] 

Neck (cow) Feeding time in 3 h recording Se = 0.789, Sp = 0.937, R2 = 0.90 [84] 12 

Leg 
(ewe and ram) 

Walking, trotting and galloping duration 
in 15 min recording 

Overall Acc = 87% [85] 
13 

Standing and lying duration in 15 min re-
cording 

Acc = 99.95% and 99.50%, respec-
tively [85] 

GCDC X16-mini MEMS 
accelerometers (Gulf 
Coast Data Concepts, 

MS, USA) 

Ear (ewe) 
Total grazing, standing and walking num-

ber in 10 s epochs sampling 

Acc = 94%, 96% and 99%, respec-
tively [86] 

Se, Sp, Acc and Pr from 92% to 
100% [86] 

10 

DairyCheck system 
(BITSz engineering 

GmbH, Zwickau, Ger-
many) 

Jaw (cow) 

Total feeding time in 311-422 min record-
ing 

r = 0.86, R2 = 0.74 [87] 
14 

Total rumination time in 311-422 min re-
cording 

r = 0.87, R2 = 0.75 [87] 

AML prototype V1.0 
(AerobTec, Bratislava, 

Slovakia) 

Lower jaw 
(sheep) 

Total grazing, lying, running, standing 
and walking at 3, 5, 10 s epochs sampling 

Acc = 81.5–85.5% [88] 10 

ADXL335 (Analog De-
vices, One Technology 
Way, Norwood, MA, 

USA) 

Lower jaw 
(ewe) 

Total grazing duration in 675 min record-
ing 

Se = 96%, Sp = 97%, Pr = 95%, Acc = 
96% [89] 

3 
Total ruminating duration in 675 min re-

cording 
Se = 89%, Sp = 97%, Pr = 89%, Acc = 

95% [89] 
Total resting duration in 675 min record-

ing 
Se = 93%, Sp = 95%, Pr = 94%, Acc = 

94% [89] 

BEHARUM device (An-
alog Devices, One Tech-

nology Way) 

Lower jaw 
(ewe) 

Grazing acceleration values per min for 
20-25 min in the 30 s epoch sampling 

Se = 94.8%, Sp = 93.0%, Pr = 94.1%, 
Acc = 94.0%, κ = 0.9 [90] 

48 
Ruminating acceleration values per min 
for 20-25 min in the 30 s epoch sampling 

Se = 80.4%, Sp = 94.7%, Pr = 88.1%, 
Acc = 90.0%, κ = 0.8 [90] 

Hr-Tag (Allflex SCR En-
gineers Ltd., Netanya, 

Israel) 
Neck (cow) Rumination times per 2 h recording r = 0.93, R2 = 0.87 [91] 27 

Actiwatch Mini® 
(CamNtech, Cambridge, 

UK) 
Neck (ewe) 

Total counts of high, medium and low ac-
tivity per min in 20 min sampling 

Overall Acc = 79.98% for high/me-
dium activity and 74.56% for low 

activity [92] 
9 

Bosch BMI160 (Bosch-
sensortec) 

Neck (sheep) 

Grazing behavior points in 2 h recording 
with a window discretization 

Sp = 98%, Pr = 96%, F-score = 95% 
[75] 

6 
Ruminating behavior points in 2 h record-

ing with a window discretization 
Sp = 97%, Pr = 92%, F-score = 89% 

[75] 

MooMonitor+ (Dairy-
master, Co. Kerry, Ire-

land) 
Neck (cow) 

Total feeding time in 4 h recording r = 0.93, R2 = 0.85, CCC = 0.80 [93] 
24 Total ruminating time in 4 h recording r = 0.99, R2 = 0.97, CCC = 0.95 [93] 

Total resting time in 4 h recording r = 0.94, R2 = 0.88, CCC = 0.82 [93] 
Hourly grazing time in daily 4 h recording r = 0.94, CCC = 0.97 [94] 

12 Hourly ruminating time in daily 4 h re-
cording 

r = 0.97, CCC = 0.98 [94] 

Omnisense Series 500 
Cluster Geolocation Sys-

tem (Omnisense 
Ltd., Elsworth, UK) 

Neck (cow) 

Feeding bouts, feeding bout duration, and 
total feeding time (daily, morning/after-

noon/night) 

Sp = 93.0%, Pr = 83.5%, Acc = 83.2% 
[95] 

19 

Total feeding duration in 36 h recording Se = 98.78%, Pr = 93.10% [96] 6 
ADXL330 (Analog De-
vices, Norwood, MA 

02062, USA) 
Neck (cow) 

Total feeding duration during 30 d Se = 75%, Pr = 81%, Acc = 96% [97] 
30 

Total ruminating duration during 30 d Se = 75%, Pr = 86%, Acc = 92% [97] 
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Axivity AX3 (Axivity 
Ltd., Newcastle, UK) 

Neck (cow) 
Minute-level feeding/rumination in 6 h re-

cording 
Overall Acc = 93% [98] 10 

Ear (ewe) 

Total number of grazing behavior at 10 s 
epoch Support Vector Machine test 

Acc = 76.9%, Se = 90.3%, Sp = 
98.1%, Pr = 96.8%, κ = 0.6 [99] 

12 Total number of active or inactive behav-
iors at 30 s epoch Classification and Re-

gression Tree test 

Acc = 98.1%, Se, Sp, Pr from 96.9% 
to 98.6%, κ = 1.0 [99] 

H30CD (Hitachi Metals, 
Ltd., Tokyo, Japan) 

Neck (cow) 
Minute-level eating, ruminating, lying in 6 

h recording 
Pr = 99.2% by a 10-fold cross-vali-
dation, Se = 100%, Sp = 100% [100] 

38 

Kenz Lifecorder Plus de-
vice (LCP, Suzuken Co., 

Ltd., Nagoya, Japan) 
Neck (cow) 

Minute-level grazing in daily 4 h record-
ing for 12 d 

R2 = from 0.97 to 0.99 [101] 6 

GENEActiv (Activin-
sights Ltd., Kimbolton, 
Cambridgeshire, UK) 

Neck 
(ewe and lamb) 

Data points of standing and lying in ewes 
for 39 d 

Average Acc = 83.7% [102] 

116 
Data points of standing and lying in lambs 

for 39 d 
Average Acc = 85.9% [102] 

Data points of activities in ewes for 39 d Average Acc = 70.9% [102] 
Data points of activities in lambs for 39 d Average Acc = 80.8% [102] 

ActiGraph wGT3X-BT® 
(ActiGraph, LLC, Pen-

sacola, FL, USA) 
Neck (lamb) 

5s epoch counts of grazing during 4 d re-
cording 

Acc = 91%, Se = 94%, Sp = 88%, Pr = 
86% [103] 

6 
5s epoch counts of resting during 4 d re-

cording 
Acc = 93%, Se = 89%, Sp = 96%, Pr = 

96% [103] 
5s epoch counts of walking during 4 d re-

cording 
Acc = 95%, Se = 72%, Sp = 97%, Pr = 

76% [103] 

InvenSense MPU-9250 
(no mentioned provider) 

Neck (lamb) 
Confusion matrix for grazing activity in 
22.5 h recording at the 5 s, 10 s and 15s 

epoch 

Pr, Sp, Se, Acc between 92.6% to 
98.9% [104] 

3 

Track A Cow (ENGS, 
Rosh Pina, Israel) 

Leg (cow) 

Minute-level feeding time in 4 h recording 
per day 

r = 0.93; CCC = 0.79 [80] 
48 

Minute-level lying time in daily 4 h re-
cording 

r > 0.99; CCC > 0.99 [80] 

ADXL345 (Analog De-
vices, Norwood, MA 

02062, USA) 
Leg (cow) 

Feeding duration at second-level window Se = 52%, Pr = 55%, Acc = 80% [105] 

5 

Active walking duration at second-level 
window 

Se = 94%; Pr = 89%; Acc = 99% [105] 

Lying duration at second-level window Se = 93%; Pr = 82%; Acc = 92% [105] 
Standing up duration at second-level win-

dow 
Se = 74%; Pr = 85%; Acc = 99% [105] 

AfiAct Pedometer Plus 
(Afimilk, Kibbutz Afi-

kim, Israel) 
Leg (cow) Hourly lying time in 4 h recording r > 0.99; CCC > 0.99 [80] 48 

IceQube (IceRobotics 
Ltd., Edinburgh, Scot-

land) 

Leg (cow) Hourly lying time in 4 h recording r > 0.99; CCC > 0.99 [80] 48 

Leg (lamb) 
Second-level durations of standing, lying 

in daily 1 h recording for 40 h 
Positive predictive value > 92%, 

sensitivity > 88% [106] 
10 

IceTag3D-accelerometer 
(IceRobotics Ltd., Edin-

burgh, UK) 
Leg (lamb) 

Second-level durations of standing, lying 
in daily 1 h recording for 40 h 

Sensitivity and specificity > 91.5% 
[106] 

10 
Second-level lying bouts in daily 1 h re-

cording for 40 h 
Positive predictive value > 44%, 

sensitivity > 91% [106] 
FEDO (ENGS, Rosh 

Pina, Israel) 
Leg (calf) 

Daily step counts, the number of lying 
bouts, lying time, the visits to feed bunk 

Se = 68.8%, Sp = 72.4%, Acc = 71.5% 
[107] 

325 

RumiWatch system 
(ITIN + HOCH GmbH, 

Liestal, Switzerland) 

Noseband 
(beef cattle) 

Hourly feeding time at 10 min interval 
sampling in daily 6 h recording for 6 d 

Pr = 88%, Acc = 89%, r = 0.81 [108] 
8 

Hourly rumination time at 10 min interval 
sampling in daily 6 h recording for 6 d 

Pr = 76%, Acc = 91%, r = 0.75 [108] 

Leg (cow) 
Lying duration over 24 h recording r = 1 [109] 18 

Standing and walking time over 10 min 
recording 

r = 0.96 [109] 21 
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3.1. Ear-Attached Accelerometers 
As presented in Table 1, ear- attached accelerometers are a category of acceleration 

sensors that are generally small in size and lightweight. The Cowmanager SensOor is an 
example of an ear-attached accelerometer that has been used to simultaneously identify 
the animals’ behaviors of eating, rumination, resting and active behavior for which vali-
dation data exists. It has been concluded that there are moderate correlations for eating (r 
= 0.88) and high correlations for rumination (r = 0.93) between the sensors and observa-
tions [76]. However, some researchers found moderate correlations for eating/ruminating 
time (r = 0.83) between the sensors and observations [78]. There were good correlations of 
rumination (r = 0.72) and eating (r = 0.88) between sensor data and direct visual observa-
tions [77]. As for illness monitoring, ear-mounted accelerometers have been used to iden-
tify the behavioral changes of beef steers induced by the challenge of lipopolysaccharide 
injection, with the results showing that steers infected with lipopolysaccharide spent less 
time on highly active behaviors, eating and ruminating than the control [110]. From this 
perspective, this technology has the promising advantages of simultaneously detecting a 
range of animal activities and conditions. In addition, other ear-attached accelerometers 
have been validated to accurately identify specific behaviors. The ear-attached sensor 
FDX-ISO 11784/11785 demonstrated Se = 99.9%, Sp = 99.6% for feeding in cattle [111]. The 
SMARTBOW has been tested to record the ruminating behavior and posture of cows and 
there were high correlations with observations for rumination time (r = 0.97, concordance 
correlation coefficient, CCC = 0.96) [80], and high correlations for rumination time (r > 
0.99) [81], and high correlations for rumination (89% sensitivity, 95% specificity and 94% 
accuracy) and posture (lying, standing and locomotion) (94% sensitivity, 94% specificity, 
95% precision and 94% accuracy) [82]. The GCDC X16-mini MEMS accelerometers at-
tached to the ear of ewes were used to remotely classify behavioral activities of grazing, 
standing and walking with high prediction accuracies (94%, 96% and 99%, respectively) 
and sensitivity, specificity, accuracy and precision all being from 92% to 100% for all the 
observed activities in comparison with the collar deployed accelerometer and the front 
leg mounted accelerometer [86]. While the aforementioned examples may not be a com-
plete list of the validation work that has been undertaken, regardless of the technology 
platform, reliable estimates of various animal behaviors can be obtained through the use 
of ear-mounted accelerometers. 

3.2. Jaw-Mounted Accelerometers 
Jaw-mounted accelerometers are acceleration sensors that can provide valuable in-

formation for research on grazing behavior patterns, although these may be limited for 
commercial applications on-farm. These accelerometers have already been validated to 
detect grazing behavior with a high degree of accuracy. The HOBO Pendant G data logger 
is an acceleration sensor that can be attached to the jaws of cows to monitor grazing time, 
rumination time and feeding time as well as lying time. It has been reported the HOBO 
Pendant G data loggers fixed to the medial-lateral jaws of dairy cows could identify graz-
ing time and rumination time with the variance of the prediction R2 = 0.961 and 0.945, 
respectively, compared with visual observations [83]. Dairy Check is another jaw-attached 
acceleration sensor that has a high accuracy when used in dairy cows; r = 0.86 for feeding 
duration and r = 0.87 for rumination duration between the sensor system and visual ob-
servations [87]. Differentiating feeding behavior of free-ranging ruminants have been 
shown to improve production efficiency, with the logger AML prototype V1.0 tri-axial 
accelerometer attached onto the under-jaw of the ewe to identify and classify the grazing, 
lying, running, standing and walking activities of sheep at pasture with the results show-
ing the 81.5–85.5% accuracy for all five behaviors [88]. Some researchers even suggested 
a tri-axial accelerometer sensor of the ADXL335 placed under the lower jaw, to automati-
cally classify grazing, ruminating, and resting activities of dairy sheep [89], reporting 96% 
sensitivity, 97% specificity, 95% precision and 96% accuracy for grazing, a 89% sensitivity, 
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97% specificity, 89% precision and 95% accuracy for ruminating and a 93% sensitivity, 
95% specificity, 94% precision and 94% accuracy for resting with a 93% overall accuracy 
for the three behaviors. The BEHARUM device (ADXL335 MEMS) attached under the 
lower jaw of sheep, including a three-axial accelerometer sensor and a force sensor, has 
been used to accurately validate and identify behavior of grazing, rumination and other 
activities of lambs at pasture, and the results demonstrated were the optimized accuracies 
of 94.0% for grazing, 90.0% for ruminating and 95.5% for other activities with the peak 
overall accuracy of 89.7% in the 30s epoch [90]. 

3.3. Collar-Mounted Accelerometers 
Neck-mounted accelerometers are common sensors which can simultaneously iden-

tify activities related to feeding, ruminating and physical behaviors. Some neck-mounted 
sensors have been proposed for validation in cattle and sheep. For instance, It’s been 
found that the ruminating times recorded by the neck-mounted Hr-Tag loggers, provided 
by Allflex SCR Engineers Ltd., had a high correlation with that recorded through visual 
observations (r = 0.93, R2 = 0.87) [91]. Furthermore, Hr-Tag was used to detect the differ-
ences of feeding and ruminating between sick and healthy dairy cows [112]. They found 
pre-calving cows with subclinical ketosis or subclinical ketosis and metritis spent less 
feeding and ruminating. Hr-Tags have been validated to monitor rumination and activity 
of dairy cows for identifying health disorders such as displaced abomasum, ketosis, indi-
gestion, mastitis and metritis [33,34,113]. Other researchers have used Hr-tags to catego-
rize patterns of activity and ruminating of beef cattle for the early detection of cattle res-
piratory disease and lameness which facilitates targeted treatment [114]. As a conse-
quence, Hr-Tag is regarded as a reliable sensor to remotely monitor animal health. 

Some other accelerometers have also been validated in cattle. For example, the Moo-
Monitor+ had been validated with an r = 93% of feeding time, an r = 0.94 of resting time 
for cows [93] and an r = 0.94 and CCC = 0.97 of grazing time for cows [94]. The Xtrinsic 
MMA8451Q 3-Axis was able to detect cattle’s feeding activity that was highly correlated 
with observations with a 98.78% sensitivity and 93.10% precision [96] and a 93.0% speci-
ficity, 83% precision and 83% accuracy [95]. The ADXL330 had a moderate correlation 
between sensors and observations for feeding (75% sensitivity, 81% precision and 96% 
accuracy) and for lying (80% sensitivity, 83% precision and 84% accuracy) in cows [97]. 
There were a 85% sensitivity, 95% specificity and 92% precision of feeding and a 92% sen-
sitivity, 96% specificity and 88% precision of rumination for support vector machine ap-
proach by using Axivity AX3 to record the behavioral activities of cows’ feeding and ru-
minating [98]. 

Collar-mounted sensors can also identify sheep behaviors, such as Actiwatch Mini®, 
GENEActiv, ActiGraph wGT3X-BT®, AXY-3, and InvenSense MPU-9250, Gulf Coast X-16-
4 Accelerometer. The sensors of Actiwatch Mini® activity monitor attached to the necks of 
the ewes when used in combination with the activity scores to record behaviors with an 
overall accuracy of 79.98% and 74.56% for active and inactive, respectively [92]. The accel-
erometer GENEActiv has a 83.7% average accuracy of standing and lying and a 80.8% 
average accuracy of grazing, rumination, inactive and walking in ewes, a 85.9% average 
accuracy of standing and lying and a 85.9% average accuracy of inactive, suckling, walk-
ing in lambs by random forest decision tree [102], while the accelerometer ActiGraph can 
detect the grazing, walking and resting behaviors of lambs on pasture with a classification 
accuracy of 89.6% [103]. The neck-mounted devices of AXY-3 accelerometer were used 
along with fractal methods to record temporal sequences of behavioral activity patterns 
of parasitized sheep which spent 66.03% ± 24.49% of the day and 18.30% ± 8.58% of the 
night active during the experimental periods, indicating an accurate description of the 
activity/inactivity patterns of sheep although the activity/inactivity patterns of parasitized 
sheep rely on long-term activity events and gastrointestinal parasite infection [115]. As 
the neck-mounted accelerometers, InvenSense MPU-9250 has a precision, specificity, sen-
sitivity, accuracy between 92.6% to 98.9% for grazing activity and non-grazing behaviors 
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[104], and Gulf Coast X-16-4 Accelerometer can be used to remotely detect perennial 
ryegrass staggers of sheep grazing on endophyte-infected grass [116]. 

3.4. Leg-Mounted Acceleromers 
Leg-attached accelerometers are typically used to identify lying, standing and walk-

ing patterns of animals. The IceTag and IceQube 3D-accelerometers commercially availa-
ble for identifying the behavioral activities are validated to accurately record standing and 
lying time of growing lambs, with all sensitivity and specificity > 91.5% of the IceTag for 
standing and lying, and sensitivity > 91% and >88% of IceTag and IceQube for lying bouts 
[106]. Further, IceTag and/or IceQube have been used to remotely identify activity pat-
terns of cattle and/or lambs exposed to nematode parasitism [117–119], opioid involve-
ment [120] and neuronal ceroid lipofuscinosis [121]. As a result, IceTag and IceQube are 
promising tools to monitor animal health problems. 

There are other validated acceleration sensors proposed with high accuracy used in 
cattle and sheep, including Track A Cow, ADXL345, AfiAct Pedometer Plus and The 
HOBO Pendant G accelerometer. Track A Cow and AfiAct Pedometer Plus were simulta-
neously examined to determine feeding and lying and all of them had been validated with 
the high correlations of recorded data for feeding time (r = 0.93; CCC = 0.79) and lying 
time (r > 0.99; CCC > 0.99), respectively, compared with observations [80]. The ADXL345 
accelerometer was reported to have 92% accuracy, 93% sensitivity, 82% precision for ly-
ing, 99% accuracy, 82% sensitivity, 86% precision for lying down, 99% accuracy, 74% sen-
sitivity, 85% precision for standing up, and 99% accuracy, 94% sensitivity, 89% precision 
for active walking, but poor accuracy, sensitivity and precision for feeding and standing 
[105]. The HOBO Pendant G acceleration data logger, mounted on the left lateral side of 
the hind leg of sheep, had the highest accuracy for walking and running and showed the 
highest discriminatory values of 99.95% for standing and 99.50% for lying [85]. 

3.5. Noseband-Mounted Acceleromers 
Though noseband-attached accelerometers may have limited practical use and are 

not widely used, they can provide scientific solutions and valuable information for re-
search purposes. A nose-attached accelerometer RumiWatch system has been validated 
to identify the eating behavior patterns of cows. There were moderate correlations for 
feeding time with 88% precision, 89% accuracy and r = 0.81, and rumination time with 
76% precision, 91% accuracy and r = 0.75 between the RumiWatch system and visual ob-
servations [108], whereas the RumiWatch system mounted to the leg had an r = 1 of lying 
time, an r = 0.96 of standing, an r = 0.96 of walking time and an r = 0.98 of stride number 
with r = 0.75 for stride duration and r = 0.81 for stride length [109], indicating that it has 
the capability of monitoring animal health and welfare on farms. 

3.6. Other Acceleromer-Related Sensors 
In order to accurately classify animal activity, some other 3-axis acceleration-related 

sensors that may not be included in Table 1, have been also used or developed, such as 
Silent Herdsman[122,123], ProMove-mini [124], iFarmTec [125], MPU9250 9-axis micro-
electromechanical system [73], MinIMU-9V2 IMU [126], Digitanimal Livestock GPS [127], 
GPS collar [128], Bosch BMI160 [75,129] and Bosch BMA400 micro electromechanical sys-
tem [130]. Further, these sensors are utilized in combination with additional sensors 
or/and approaches of data processing and analysis for predicting animal behaviors. 

Neck-mounted Afimilk Silent Herdsman collar and tail-mounted AX3 3-axis logging 
accelerometer were simultaneously attached to beef and cows, together with machine 
learning random forest algorithms developed for predicting calving based on single-sen-
sor variables and multiple sensor-data [123]. Convolutional Neural Network was devel-
oped to classify ruminating, eating and other behaviors of cattle using the motion-related 
data captured by Silent Herdsman collars and Rumiwatch halters, achieving an overall F1 
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score, precision and recall of 82%, 83% and 82%, respectively for validation performance 
[122]. The ProMove-mini containing a 3-axis accelerometer and 3-axis gyroscope, was at-
tached to the neck of goats within independent different orientations to collect real-world 
datasets and had a 94%accuracy for all the data through a simple Naive Bayes classifier 
based on a single feature [124]. An existing monitoring platform iFarmTec composed of A 
Wireless Sensor Network, a Computational Platform and a User Interface, was used to 
fetch the data from sheep motions together with a video camera used for recording sheep 
behaviors and machine learning Decision Trees algorithms applied within multiple fea-
tures to achieve an overall accuracy over 91% [125]. 

In addition, a MinIMU-9V2 IMU integrated with a LSM303DLHC 3-axis accelerom-
eter, a L3GD20 3-axis gyroscope, and a 3-axis magnetometer, was used as a collar sensor 
together with a GPS to measure the movement dynamics of horse gaits with achieving up 
to 97.96 ± 1.42% accuracy and an efficient energy consumption under Artificial Neural 
Network model using cross validation [126], and MPU9250 9-axis micro-electromechani-
cal system was integrated with battery pack and solar panels into a collar tags to collect 
3D-accelerometry data corresponding to grazing, ruminating, resting and other behaviors 
of cattle using several different machine-learning algorithms via cross-validation, with 
results showing the algorithms multilayer perceptron (MLP) with a single hidden layer, 
logistic regression (LR) with an one-versus-one reduction scheme and support vector ma-
chine (SVM) with an one-versus-one reduction scheme, yielded the highest overall accu-
racies of approximately 93% [73]. Moreover, the same MPU9250 9-axis micro-electrome-
chanical system, mounted to the neck of cattle to fetch the 3D-accelerometry data related 
to cattle behaviors using an end-to-end deep learning algorithm, had an overall Matthews 
correlation coefficient values between 80.34–95.68%. 

GPS sensors have also been also combined with 3-axis acceleration sensors to capture 
the 3D-accelerometry datasets corresponding to animal behaviors. The Digitanimal Live-
stock GPS device is integrated with a 3-D micro-electromechanical-system accelerometer 
and a GPS sensor, which was attached to the neck of cattle to obtain the accelerometer raw 
data at a sampling frequency of 10 Hz together with video recording on the durations of 
grazing, ruminating, laying and steady standing, and a random forest machine learning 
algorithm was used to classify cattle behaviors matched to accelerometer records with 
good accuracies of 0.93, 0.907. 0.881, and 0.922 for grazing, ruminating, laying and steady 
standing, respectively [127]. A lab-constructed GPS collar, which is comprised of an iGotU 
GT-120 GPS logger and a 3-axis X16 mini accelerometer, was mounted to the bottom of 
the cattle’s neck to classify grazing and non-grazing behaviors using random forest (RF), 
linear discriminant analysis (LDA), quadratic discriminate analysis (QDA), and support 
vector machines (SVM) for comparison [128]. Moreover, a CSIRO collar sensor containing 
a 3-axis accelerometer and a 3-axis magnetometer in its piezoelectric micro-electrome-
chanical system (MEMS) chip, was attached below cattle’s neck in combination with a GPS 
sensor on top of cattle’s neck to classify the foraging, ruminating, resting, travelling and 
other active behaviors of grazing cattle by mixture models and decision tree [74]. The re-
sults of these trials showed good classification accuracy of identifying behaviors of graz-
ing cattle. 

Both Bosch BMI160 and Bosch BMA400 are integrated with a 16 bit triaxial gyroscope 
and a 16 bit triaxial accelerometer. Machine learning random forest algorithm for classi-
fying grazing and ruminating behavior of sheep yielded the highest overall accuracies of 
92% and 91% for collar and ear sensors, respectively, using the raw data collected by Bosch 
BMI at 16 Hz sampling frequency [75]. Similarly, using Bosch BMI160 together with the 
random forest approach to identify lying, standing and walking in sheep yielded the best 
performance with 95% accuracy and 91–97% F1 score at 32 Hz frequency, 7 s window and 
32 Hz frequency, 5 s window for collar and ear sensors compared with 91–93% accuracy 
and F-score 88–95% at 16 Hz frequency, 7 s window [129]. The recurrent neural network 
(RNN) models within gated recurrent unit (GRU) architecture was utilized to analyze 3D-
accelerometry data associated with cattle behavior captured by Bosch BMA400, showing 
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better classification accuracy and less complexity than the ones with long short-time 
memory (LSTM) architecture [130]. 

4. Considerations around Sensor Choice 
Acceleration sensors provide a means to accurately record and classify the behavioral 

patterns of on-farm animals and have the potential to provide valuable behavioral indica-
tors to measure animal welfare and health status from which management decisions un-
der different infection challenges can be made. As outlined above, there already exists a 
multitude of different sensor technologies, and it can be expected that more will be devel-
oped in the future. However, it needs to be considered how a farmer may make a suitable 
choice over the right acceleration sensor systems for it to be implemented commercially 
on a large scale. The real time monitoring systems of acceleration sensors should fulfill 
some requirements to reach the level of practical applications on-farm and would be con-
sidered a necessary function of any accelerometer. The accelerometer devices should also 
have the attribute of being cost-effective, light weight and tolerant of different conditions 
during practical application without impacting animal behavior. For many farmers the 
adoption of a new digital technology depends on how easily it can be integrated with 
current digital platforms [131]. The application site of acceleration sensors over an animal 
body should also be taken into consideration as an important factor affecting accuracy of 
remote detection and should be considered, especially in the context of what information 
is captured and for what purpose. As mentioned in Section 3, 3-Dimensional accelerome-
ter sensors can be mounted to different positions over animals, which may influence their 
predictive performance. It has been suggested that ear, neck and jaw-mounted sensors 
had better capability for monitoring feeding behavior, while leg-mounted sensors exhib-
ited better results on behavioral activities such as walking and resting than collar-
mounted sensors [71]. Accurate detection of animal behavior may depend on the catego-
ries of behavioral patterns on the condition of infection challenges, though behavioral 
changes can be used as the indicators of animal health. For instance, lameness can lead to 
abnormality of active behaviors such as walking and posture while parasitic infection in-
duces anorexia, detected through a decrease in eating time. The behavioral alterations of 
an animal wearing a triaxial accelerometer sensor lead to changes of 3-axis accelerometry 
directions where the accelerometry datasets with abnormality are then generated. Accel-
erometer sensors transform static or dynamic acceleration due to gravity or animal mo-
tions into the voltage outputs as the measurements of animal activities [2]. As a conse-
quence, accelerometry data captured via a wearable 3D accelerometer sensor can indicate 
the health status of an animal. 

Sensor technologies have the potential to perform early detection of behavioral 
changes due to animal diseases. There has been multiple biosensors such mechanical sen-
sors, acoustic sensors, electromyography sensors and acceleration sensors as proposed to 
quantify physiological and behavioral responses of animals exposed to different diseases 
and real-time monitoring animal behaviors using wireless sensors to acquire data can pro-
vide detailed and precise information on animals’ activity and wellbeing [2]. Further, 
among the motion-detection sensors, acceleration sensors are capable of monitoring any 
changes in an animal’ behavioral patterns for predicting the sickness induced by infection. 
However, appropriate accelerometer sensors need to be chosen to detect the information 
from the behavioral changes of sick animals with sub-clinical signs. In general, the symp-
toms of sick animals with sub-clinical infection are subtle, making it more difficult to mon-
itor changes in animal behavior by direct observation. For instance, grazing time can be 
affected by different factors, such as animal age, breed, physiological status, health/dis-
ease, vegetation, weather, season and environment [132]. Although the occurrence of ab-
normal behavioral patterns may indicate a decrease in animal health or wellbeing, most 
behavioral indicators cannot be specific for a particular issue of animal health. Some signs 
of different sub-clinical infections in cattle and sheep may be similar and subtle, but with 
detailed investigations into the extent and pattern of changes in behaviors this approach 
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of utilizing sensors can potentially provide sufficient evidence that animal health is im-
paired leading to diagnosis and appropriate treatment. The behaviors such as expressive 
activities mentioned in Section 2.3.3 may be hardly detected using a single sensor. There-
fore, additional sensors or/and monitoring approaches are suggested for implementation, 
including a GPS and video recording. Moreover, two or more sensors, such as ProMove-
mini [124] and MinIMU-9V2 IMU [126], can be integrated into a whole monitoring system 
to facilitate the collection of accelerometry data. The value of real time data from acceler-
ation sensor recordings can be considered as an early diagnostic signal to timely detect 
changes in particular behaviors that relate to health. However, the designed infrastructure 
of a 3D-acceleration sensor is an important aspect that needs to be considered for enabling 
the transmission, transformation and acquisition of real time data. The eGrazor collar tags 
[133] is an example that consists of an artificial intelligence device, battery pack, and solar 
panels. Further, the sampling frequency of an acceleration sensor associated with energy 
consumption should be appropriately selected to capture the accelerometer data for pre-
dicting behaviors. The results of validation performance varied based on the sampling 
frequencies [129]. The balance between sampling rate and an efficiency of energy con-
sumption also needs to be obtained for validation performance to prolong the battery life. 
The sufficient Wi-Fi connection or direct line of site to the transmitter for an acceleration 
sensor, which may facilitate the applications in certain environments, should be taken into 
consideration as well as a long battery life with sustainable supply of electrical power and 
a data storage and management system that enables viewing, storing and downloading 
real time data. Already a smart ear tag containing a microcontroller, a triaxial accelerom-
eter, satellite communication interface, an on-board memory, a solar panel and a battery 
has been developed [130], which can provide new perspectives for future research. In cur-
rent studies related to the detection of behavioral patterns, the total time spent on specific 
behavior during a day or a period is often measured for evaluating the impact of some 
diseases or adverse conditions. However, diurnal patterns of activities may be more sen-
sitive and useful for early identification of animal welfare concerns, particularly when 
seeking to identify which challenge the animal may be facing. The diurnal duration of 
lying, diurnal lying bouts and diurnal steps as well as diurnal motion index of grazing 
cattle have been evaluated under the parasitic infection using the collected 3D-accelerom-
etry data [119]. This approach of developing a behavioral fingerprint which of diurnal 
patterns of animal behaviors that are unique to a specific challenge is a promising area for 
future studies and applications, although there has been limited research on this area. 
However, a major consideration may be the processing and analysis of accelerometry data 
for predictive performance and how much this needs to rely on the comparison with vis-
ual observations, which themselves may contain error. Nevertheless, the raw accelerom-
eter data need to be preprocessed by cleaning noise in the raw time-series, calculating 
additional time-series, segmenting the time-series into time-windows, calculating features 
from each time-window and splitting datasets, and then machine learning algorithms are 
carried out to classify different behaviors [3]. Predicting sickness behaviors of animals us-
ing 3D-accelerometer data is promising for early diagnosis of animal diseases, although 
there are still limitations for practical utilization. In order to strengthen the potential of 
acceleration sensor technology, different behavioral parameters should be integrated for 
analysis at the same time, and the sensor system needs to be added with different func-
tions and has the capability of comparing and recognizing simultaneous changes of be-
havioral patterns [71]. 

5. Future Considerations 
Acceleration sensor systems are an efficient and reliable way that can make it much 

easier to record the activity status of an animal at pasture and have the potential to pro-
vide valuable insights as to their welfare state. However, acceleration sensor technologies 
cannot replace people and good management, due to that there may be similar behavioral 
changes under a number of different conditions, just helping identify individual animals 
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who are suffering from infections and need appropriate targeted treatments. Therefore, 
specific behavioral changes can be considered as indicators for animal health and welfare. 
As the early diagnostic tools for animal diseases, sensor technologies can measure charac-
teristic variables related to those behavioral indicators. A number of commercial acceler-
ation sensors have been increasingly available for livestock management and many of 
these have been shown to have high accuracies and sensitivities for detecting animal be-
haviors such as feeding, ruminating and physical activities. The acceleration sensor tech-
nology selected according to the purposes which it is being intended and how the infor-
mation provided may contribute to the development of precision livestock farming. As 
the sensor technologies are being developed, new detection technologies are constantly 
emerging, providing alternatives to identify the status of animals health under the im-
paired infection challenges. It is also important to improve the detection capability of be-
haviors and expand the current application of sensor technologies and integrate these into 
existing farm management. The integrated application of different sensor technologies 
can have the potential of to better monitor animal diseases, allowing for more timely di-
agnosis and treatment and facilitate animal performance. However, further research on 
the ability of sensors to assess animal welfare, including the diurnal patterns of activity, 
is necessary. Sensors can rapidly provide data, but there is still a gap in our understanding 
of how this data can best be managed and utilized to provide optimum benefit. The notion 
put forward here of utilizing changes in animals behavior to identify subclinical disease 
is an exciting prospect, where not only gross changes but the pattern of change may allow 
behavioral fingerprinting to be a means of optimizing animal productivity and wellness. 
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