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1. Introduction
Growth is described as an increase in the weight and size 
of a living organism over a certain period of time. Growth 
curves have different applications such as constructing 
livestock feeding programs, determining the optimum 
slaughtering age, and monitoring the effects of selection 
(1). Sheep growth data have been fitted into random 
regression models for growth (2). However, the shape of 
sheep growth curves is influenced by many factors: breed 
type, management, environment, selection, and nutrition 
conditions (3). Well-known general growth functions such 
as Brody, Gompertz, logistic, and von Bertalanffy have 
been used to monitor growth curves in sheep (4–10). These 
models are popular in growth trend modeling because of 
their generality and simplicity of use. 

Fixed and mixed models have been used in analyzing 
growth data. Mixed models provide robust theoretical 
statistical frameworks to model dependent variables 
as a function of random and fixed effects. The Bayesian 
approach utilizes hierarchical models instead of mixed 
models to estimate model parameters for mixed effects, 

containing both fixed and random effects (11). In the 
present study, a simple hierarchal model was used to 
estimate individual animal growth parameters. In this 
case, the hierarchical model shared many features with 
the growth data random regression model, where fixed 
effects of regression were fitted to show the overall growth 
curve. Random effects were used to show deviation of 
each individual from the overall growth curve (5,12,13). 
The accuracy of predicting the growth curve of Iranian 
Lori-Bakhtiari sheep was studied using nonlinear growth 
functions (von Bertalanffy, Gompertz, logistic, and Brody) 
to accompany hierarchical modeling. In addition, simple 
and flexible hierarchical modeling was introduced with 
general computation requirements that was compatible 
with different variance–covariance structures when 
random effects were of interest in repeated data measuring 
used in animal breeding. Some very advanced pure 
mathematical models, i.e. the grey system theory models, 
that could be new powerful growth prediction tools for 
breeders and experts were pointed out. The mathematical 
foundation of grey theory was introduced by Deng (14). 
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The grey model has a rigor theoretical basis working quite 
well in practical scenarios. The results predicted by the 
grey model are relatively stable and reliable, which gives us 
fairly accurate results in low time point data. Grey theory 
could generally be used to predict the development and 
change of the system behavior value containing both the 
known and the unknown/uncertain information. In the 
concept of growth modeling, this idea has been used (15).

2. Materials and methods
2.1. Data collection and management
The growth data of 1410 sheep of the Iranian Lori-Bakhtiari 
breed (521 males, 889 females) gathered from 1990 to 2011 
were used in the present study. The data included birth 
weight (BW), weaning weight (WW), 6-month-old weight 
(W6), 9-month-old weight (W9), and 12-month-old weight 
(W12). These data were from a research flock at the Lori-
Bakhtiari sheep breeding station located in Charmahal and 
Bakhtiari Province, Iran. This research flock was formed in 
1989 with about 206 ewes, which had successfully reared 
at least one lamb, and 28 rams of typical Lori-Bakhtiari 
breed. The sheep were managed under semimigratory or 
village production systems. From December to May at the 
station, the sheep were fed with alfalfa, barley, and wheat 
stubbles; however, for the rest of the year, the sheep were 
grazed on range and cereal pasture including the breeding 
period. By means of natural mating, ewes were assigned 
to rams for the first time at an average age of 18 months. 
In this flock, lambing generally started in late January and 
lambs remained with their dams until weaning. During the 
preweaning time, lambs had access to both mother’s milk 
and creep feed ad libitum (from 15 days of age). All lambs 
were weaned at about 90 ± 5 days of age. After weaning, 
the lambs were separated into female and male flocks 
and the female lambs were assigned to cultivated alfalfa 
(in pasture form). Male lambs were treated differently 
and they received maintenance and growth ration until 6 
months of age. The rate of replacement of ewes and rams, 
after culling the animals with abnormalities, was around 

30% and less than 10%, respectively. Voluntary culling for 
the ewes was at 7 years old but the rams were kept until 
their offspring were available for replacement. Along with 
different sort of traits and pedigree data, other information 
such as age of ewes at mating were recorded routinely. The 
station was located in Shahrekord at 31°9′N, 32°48′E. The 
average annual rainfall in the region was about 400 to 600 
mm with a mean temperature of 16 °C, and an average 
elevation of 1734 m above sea level. 
2.2. Nonlinear growth functions 
Nonlinear growth curve functions of von Bertalanffy, 
Gompertz, logistic, and Brody (9,10,16,17) were fitted to 
the data to estimate the parameters of the models and see 
if the growth curves fit well (Table 1).

Individual estimation of the growth curve parameters 
and mean square error (MSE) were obtained using the 
modified Gauss–Newton iterative procedure available 
in SAS (version 9.2) and the NLMIXED procedure (18). 
In general, the NLMIXED procedure can be used to 
fit different forms of linear models, e.g., simple linear 
regression, multiple linear regression, and analysis of (co)
variance when observations are not normally distributed 
or contain outliers. Here the error part of the model was 
assumed to be normally distributed and independent of 
the random effects of the model. Amounts of Akaike’s 
information criteria (AIC) and the logarithm of the 
likelihood function (−2 LogL) values for each of model 
were obtained at this step.
2.3. Simple hierarchical modeling
In hierarchical growth modeling, as in repeated growth 
modeling, multiple observations associated with the same 
animal were considered. The hierarchical models were 
used as follows:

Model 1: yit = a0i + b1(Time)it + εit        var(εit) ~ a0i
2 1(i = j)

Model 2: yit = a0 + bi1(Time)it + εit     var(εit) ~ a0i
2 1(i = j)

Model 3: yit = a0i + bi1(Time)it + εit     var(εit) ~ a0i
2 1(i = j)

In Model 1, it was assumed that the starting point for 
growth (birth weight) was different across all the sheep in 

Table 1. Nonlinear growth functions used in the current study.

Nonlinear functions Model* References

von Bertalanffy Wt = A(1 – Be-kt)3 + ε 16, 10
Gompertz Wt = Ae (– Be-kt) + ε 17, 10
Logistic Wt = A(1 – Be-kt)-1 + ε 16, 10
Brody Wt = A(1 – Be-kt) + ε 9, 10

*Wt = the animal weight at a determined age (t), A = the predicted asymptotic 
weight at maturity (kg), B = the integration constant to which initial weight 
is related or animal maturation rate at birth (kg), K = the rate of maturity.



328

GHADERI-ZEFREHEI et al. / Turk J Vet Anim Sci

the population but time would imply an identical effect 
on the growth pattern of all sheep (only in the random 
intercept model). Model 2 assumed the same starting 
point for growth for all the sheep in the population, but 
time would imply different effects on the growth pattern 
of each animal in the population (only in the random 
slope model). In Model 3, it was assumed that both the 
starting point for growth and effects of time on growth 
were different (in the random intercept and slope models). 
Models 1 and 2 can be seen as special cases of Model 3. In 
the above models, yit represents the growth of the ith sheep 
at time point t, ai represents specific intercept for ith sheep, 
bi represents the specific regression coefficient (slope) 
for the ith sheep, and εit represents the error model and it 
was assumed to be independently identically distributed 
with parameters (0, σe

2). Note that the parameters of the 
model that lack the subscript are assumed to be the same 
parameters for all sheep (see Models 1 and 2). Model 3 can 
be expanded as follows:

ai = αi + ai
*		  ai

* ~ N(0,σa
2)

bi = β + bi
*		  bi

* ~ N(0,σb
2)

Finally, the general model can be written as
yit = α + β ((Time)it − (Time)i) + ai

* + bi
* ((Time)it − (Time)

i) + εit   var(εit) ~ ak
21(i=j)

The above model is a rewritten hierarchical model 
where (Time)it demonstrates the average time for the ith 
sheep, α is the fixed effect for average weight of the sheep 
at start of recording, β is the fixed effects regression 
coefficient of time, ai

*= ai − α is the random sheep specific 
effect, and bi

* = bi − β is the sheep specific random effect. 
It was assumed that the above random effects were jointly 
normally distributed with zero mean and variance–
covariance ψ as follows: 

 ai
*

bi
* ~iidN 0

0 ,ψ = 
σa

2 σab

σab σb
2  

As a result, variance–covariance between observations 
can be shown as follows:

	

	

var(yit) = 1 (Time)it 𝜓𝜓
1

(Time)it
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 1 (Time)it
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In addition, it was assumed that covariance was
cov(yit , yik)= cov(ai + bi(Time)it + eit , ai + bi(Time)ik + eik) 
= σa

2 + σab(Time)ik + σab(Time)it + σb
2(Time)it(Time)ik

The above hierarchical model parameters were 
estimated using REML and implemented in SAS MIXED 

procedure (18). In addition, the procedure is featured with 
many variance–covariance structures (almost 30) to fit to 
the data. Figure 1 shows this modeling graphically. 
2.4. Linear model
To analyze the effect of environmental factors on the 
observed live weights of sheep and the growth curve 
parameters A, B, and K, the following linear model was 
used:

yijkl = μ + Si + Aj + Tk + Bl + εit 
where yijkl = weight, μ = the overall mean, Si = the effect of 
ith sex, Aj = the effect of age of ith dam, Tk = the effect of 
ith type of birth, Bl = the effect of ith year of birth, and εit = 
random error of the model. The GLM procedure (SAS 9.2) 
was used to estimate the parameters of the model.

3. Results and discussion
3.1. Nonlinear growth functions 
The estimation of parameters A (predicted live weight 
at maturity), B (difference between mature live weight 
and birth weight), and K (growth rate to maturity) and 
associated R2, MSE, AIC, and the −2log likelihood (−2 
LogL) for the 4 models are shown in Table 2. Predicted 
live weight at maturity (A) was largest in the Brody model 
(59.12 kg) and lowest in the logistic model (54.4 kg). 
Difference between mature and birth live weight (B) was 
largest in the logistic model (6.05 kg) and smallest in the 
von Bertalanffy model (0.85 kg). Predicted growth rate to 
maturity (K) was largest in the logistic model (0.59 kg) and 
smallest in the Brody model (0.25 kg), which may indicate 
an earlier maturity rate in the logistic model compared to 
those in the other models.

Abegaz et al. (9) reported 37.6, 0.88, and 0.27 kg for 
predicted live weight at maturity, difference between live 
weight at maturity and birth, and growth rate to maturity, 
respectively when applying the Brody growth function to 
Horro sheep. Similarly, Bathaei and Leroy (4), Topal et al. 
(6), Gbangboche et al. (7), and Malhado et al. (19) reported 
different A, B, and K values when they fitted different 
growth functions to the same growth data, indicating that 
the applied model sharply affects the estimated model 
parameters. In the current study, the Brody model based 
on the lowest MSE and AIC and the highest R2 was the 
best fitted model to describe growth in Iranian Lori-
Bakhtiari sheep. The results showed high agreement with 
those obtained by Bahreini et al. (10) in Iranian Balouchi 
sheep. The results also support Bathaei and Leroy (4), 
who analyzed and evaluated different growth functions in 
Iranian Mehraban fat-tailed sheep. They used the Brody 
function because of its simplicity of interpretation and ease 
of estimation. Lewis et al. (5) showed that the Gompertz 
function had desirable properties to describe growth in 
Suffolk sheep. Topal et al. (6) reported that the Gompertz 
and the von Bertalanffy models showed the best estimation 
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of growth in Morkaraman and Awassi sheep breeds, 
respectively. Certain properties such as goodness of fit to 
data, lower computational cost, biological interpretability 
of parameters, and managing missing data support the 
Brody model as the best model to monitor sheep growth 

patterns. However, in the current study, there were no 
missing data values. 

The effects of the linear model factors on sheep live 
weights measured at different ages are shown in Table 3 
and they were mostly significant (P < 0.01). The male lambs 

Figure 1. Schematic representation of hierarchical modeling. A simple linear regression, an only random intercept model, and an only 
random slope model (hierarchical models) of sheep growth over time are shown in this Figure. Here, for the simple linear regression, 
it is assumed that a hypothetical sheep 36 at three points had repeated records. The vertical axis shows growth and the horizontal axis 
is the time at which the records were collected. This model can be used for predicting the growth of a whole population, provided the 
average records for three time points for all the animals are available. However, as stated above, this model cannot show individual sheep 
growth trend since it is a linear model. The only random slope model shows the individual growth with relevant parameters. This model 
shows the growth of an individual sheep and can be started with identical intercept and each sheep could have a different growth rate 
(regression coefficient) over time. For example, the growth of sheep 27 increased sharply with progressing time but this growth was 
not the case for sheep 52. In addition, it seems that the increase in growth of the sheep does not change, i.e. it is time invariant (only 
random intercept model). This model can identify an individual animal at the starting point and is useful in selecting the best animals 
for breeding. It also reveals which animals show better growth over time.

Table 2. Parameter estimations ± standard error, coefficient of determination (R2), mean square error (MSE), Akaike’s Information 
Criterion (AIC), and −2log Likelihood (−2 LogL) for 4 models describing the growth curves in Lori-Bakhtiari Sheep breed

Estimated least squares of parameters ± SE* 

Models A B K R2 Root MSE AIC −2 LogL

Brody 59.12±  0.35 5.83±  0.05 0.25 ± 0.004 0.94 6.1 53,028 53,074
Gompertz 55.23 ± 0.23 2.93 ± 0.04 0.42 ± 0.006 0.93 6.7 53,318 53,310
Logistic 54.4 ± 0.21 6.05±  0.23 0.59±  0.008 0.92 6.4 54,141 53,152
von Bertalanffy 55.71 ± 0.25 0.85±  0.009 0.364 ± 0.006 0.90 6.9 53,028 54,133

*A = the predicted asymptotic weight at maturity (kg), B = the integration constant to which initial weight is related or animal maturation 
rate at birth (kg), K = the rate of maturity
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and the single-born lambs had higher live weights, which 
may have been due to the hormonal and physiological 
differences between sexes, maternal conditions and milk 
production capacity, and the size of the uterus to grow 
single lambs relative to twin lambs (20). The effect of 
dam age on 9-month-old weight was significant. Figures 
2A and 2B show that the male and the single lambs had 
higher growth rates than those of the female and the twin 
lambs. The results were in agreement with those reported 
in previous papers (5,8). Figure 2C indicates that dams 
that were 3, 4, and 5 years old delivered lambs with higher 
growth rates than those delivered by the younger and the 
older dams. Usually with increasing maternal age, lamb 
weight also increases. Physical maturity of the dam and 
reduced need to grow further increases fetal and birth 
weight as well as allowing better milk production (10). 
There were significant effects of model factors on all the 
Brody model parameters (Table 3). Previous studies 
reported significant effects of type of birth, sex, and birth 
year on parameter A of the Brody growth model (4,9). 
In the present study, a significant effect was observed for 
birth type on parameter B estimated by the Brody growth 
model. Several studies have reported significant effects of 
sex on it (4,9,21). The observed significant effect of birth 
year on the growth model parameter is in agreement with 
the results reported by Batheai and Leroy (4) and Abegaz 
et al. (9). However, the effects of birth type, sex, and herd 
on any Brody and Gompertz growth model parameters 
were not reported as significant (22). Figures 2D–2H show 
how data were fitted to the respective models. As the Brody 
model (Figure 2H) had the best fit, much more attention 
was given to different aspects of this model, which can 
be seen in different subsets of Figure 2. Table 4 shows 
the significant effects of birth type and sex on Brody and 

Gompertz growth model parameters. The effect of birth 
year on maturity weight could be due to management and 
model factors in the birth year of the sheep because it could 
affect maternal ability to provide the right motherhood 
environment for her offspring.
3.2. Simple hierarchical modeling
Table 5 displays partial results of the hierarchical 
modeling, which is a part of the full hierarchical model 
in the current study (i.e. model 3 on sheep growth data). 
In terms of model fitting criterions, for full hierarchical 
modeling, −2 LogL (53114) was competitive with the 
Brody model. However, statistical comparisons between 
the results of these models failed. Comparison of the 
models should be based on some valid and motivated 
assumptions and assumptions of these models, in terms 
of type and number of parameters, were different. The 
data had no missing values and it took a long time for the 
model to get converged. This may have been due to the 
structures of random effects. Two predictions of animal-
specific intercept and slope were given for each animal. 
These specific predicted parameters of animals may help 
breeders to select the most productive animal. For example, 
both predicted parameters for sheep 100154 in Table 5 are 
negative. It might indicate that the growth trend for this 
sheep is lower than the population mean; therefore, this 
animal is less desirable for breeding purposes. However, 
for a predicted specific slope of animal, the null hypothesis 
cannot be rejected so easily (P > 0.05), however, for sheep 
100225 this argument is justified. In this type of modeling, 
parameters for each sheep were randomly selected from 
a bigger population. Thus, implementing hierarchical 
modeling utilizes random parameter selection (here the 
Gaussian distribution was used as it was desirable that 
weights followed up this distribution asymptotically). 

Table 3. Effects of linear model factors on body weights at different ages of Lori-Bakhtiari sheep.

Body weights at different ages*

Factors Records BW WW W6 W9 W12

Sex: 1410 ** ** ** ** **
Male 521 5.3 ± 0.23 32.27 ± 0.14 47.55 ± 0.17 60.26 ± 0.06 66.44 ± 0.22
Female 889 4.7 ± 0.32 27.38 ± 0.22 36.89 ± 0.32 47.44 ± 0.33 51.22 ± 0.32
Birth type: 1410 ** ** ** ** **
Single 1065 5.33 ± 0.23 30.14 ± 0.42 41.36 ± 0.23 52.17 ± 0.32 57.23 ± 0.33
Twin 345 4.44 ± 0.27 26.57 ± 0.27 39.18 ± 0.46 51.33 ± 0/23 55.16 ± 0.6
Age of dam 1410 ** ** ** ns ns
Birth year 1410 ** ** ** ** *

*BW = birth weight, WW = weaning weight, W6 = 6-month-old weight, W9 = 9-month-old weight, W12 = 12-month-old 
weight, ns = not significant (P > 0.05), ** = significant (P < 0.01).
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Figure 2. The results of different models for different factors: A) The Brody model for twin and single birth types, B) Trend of growth 
for the male and female sheep, C) The Brody model at different dam ages, D) Logistic model for average weights at different ages, E) The 
von Bertalanffy model for average weights at different ages, F) The Gompertz model for average weights at different ages, G) The Brody 
model for average weights at different ages, H) The Brody model for sex of sheep.
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Pertaining to the hierarchal modeling, it should be noted 
that such a model has its advantages and disadvantages. In 
this type of modeling, it is possible to obtain the parameters 
for each animal independently. This model has great 
ability to fit and explore a wide range of different statistical 
distributions for random intercept and slope effects. 

Variance–covariance structure used in this type of 
modeling could impose a wide range of communications 
between random coefficients in the model. As the number 
of the records increases, it takes too much time to get 
convergence. Depending on the model structure and 

the conditions under which the records are collected, 
fitting the model could be quite complex. Having a good 
pedigree, a genetic analysis of two traits (here the first trait 
is intercept and the second trait is slope) can be carried 
out and therefore, the amount of heritability and genetic 
correlation can be grasped. If the covariance is considered 
to be zero, it can be postulated that early-measured weight 
will not have any impact on other weight behaviors over 
time. As mentioned above, most of the models used in the 
growth pattern modeling have a nonlinear nature (16,23). 
However, further studies using hierarchical modeling can 

Table 4. Effects of model factors on parameter estimations ± standard error of the Brody and Gompertz models in Lori-Bakhtiari sheep.

Model parameters**

Brody Gompertz

Factors* A B K A B K
Sex: ** * ** ** ns ns
Male (521) 72.12 ± 0.73 5.44 ± 0.06 0.275 ± 0.004 54.15 ± 0.46 3.19 ± 0.04 0.443 ± 0.008
Female (889) 57.54 ± 0.62 5.85 ± 0.07 0.228 ± 0.005 66.43 ± 0.52 3.59 ± 0.04 0.445 ± 0.009
Birth type: * ** ** ns ns *
Single (1065) 62.24 ± 0.25 6.14 ± 0.05 0.249 ± 0.004 61.32 ± 0.57 3.40 ± 0.03 0.482 ± 0.007
Twin (345) 66.42 ± 0.77 5.52 ± 0.05 0.223 ± 0.005 58.26 ± 0.42 3.19 ± 0.05 0.406 ± 0.001
Age of dam (years) ** * * ** ns *
Birth year ** ** ** ** ** **

*The numbers within parentheses show the number of observations, **ns = not significant (P > 0.05), * = significant (P < 0.05), ** = 
significant (P < 0.01), A = the predicted asymptotic weight at maturity (kg), B = the integration constant to which initial weight is related 
or animal maturation rate at birth (kg), K = the rate of maturity.

Table 5. A small part of full hierarchical modeling results

Effect Sheep ID Estimate Pred DF Pr> |t|

Intercept 100154 −0.1318 0.0 9300 <0.0001
time 100154 −0.1344 0.3205 9300 0.6751
Intercept 100225 −1.6356 0.0 9300 <0.0001
time 100225 −1.1037 0.3205 9300 0.0006
Intercept 100229 −1.3137 0.0 9300 <0.0001
time 100229 −0.9041 0.3205 9300 0.0048
Intercept 100237 −1.2722 0.0 9300 <0.0001
time 100237 −0.9618 0.3205 9300 0.0027
Intercept 100241 −1.3452 0.0 9300 <0.0001
time 100241 −0.9392 0.3205 9300 0.0034
Intercept 100243 −0.6392 0.0 9300 <0.0001
time 100243 −0.5284 0.3205 9300 0.0993
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find a link between A, B, and K parameters in nonlinear 
functions, which may help in selecting the right animals 
for growth purposes.

Hierarchical models are powerful tools that can 
capture the undefined part of covariance among growth 
data. However, future growth research on animals or 
all living organisms should thoroughly be canalized to 
avoid mistaken inferences. In this regard, apart from the 
nature of character, adopting new intelligent machine 
learning algorithms and pure mathematical methods 
are of great importance. For example, a new algorithm 
has recently been introduced based on the combination 
of least square support vector machine and genetic 
algorithm (24). The algorithm outperformed all general 
functions of growth phenomenon modeling. However, 
there has not been any sign of grey system theory 
models in the context of animal growth modeling. Grey 
system theory as an interdisciplinary scientific area was 
introduced by Deng (14,25). This model is inherently 
suited for modeling positive variables explicitly. Growth 
phenomena lie in this area as well. Nowadays, growth 
is recorded over a limited number of times (as in the 
present study). Superiority of the grey models to the 
conventional statistical models is that with limited 

amount of information, a valid estimation of the behavior 
of an unknown growth system can be well achieved (26). 
As a suggestion for groundbreaking further research, 
the grey systems paradigm can be integrated with BLUP 
based concept. This integration would pave the way for 
new mainstream studies. 

One of the main advantages regarding the proposed 
method in comparison with the general growth modeling 
schemes is that it allows us to derive growth function 
solely based on data but not on presumptions about 
growth function (no fixed number of parameters). The 
proposed method can be integrated with pedigree data 
and, therefore, a BLUP estimation of growth over any 
single time can be grasped soundly. Moreover, a large 
amount information of different (co)variance functions 
across random affects can be well fitted, which cannot be 
done with general growth modeling paradigms (like the 
four models used in the present study).
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