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Abstract

Root-lesion nematodes (Pratylenchus spp.) are significant plant parasites, causing substantial crop damage worldwide. This study aimed to
characterize Pratylenchus spp. in New Zealand maize fields using molecular techniques and map their prevalence. Soil sampling from 24 maize
fields across the North and South Islands provided 381 composite samples. Root-lesion nematodes were extracted using the sieving-centrifugal-
sugar flotation method and differentiated into five morphospecies. Molecular characterization involved direct partial sequencing of the D2/D3
28S rDNA, ITS rDNA, and COX1 mtDNA regions using Sanger technology from a single nematode. Five Pratylenchus species were identified:
P neglectus, R crenatus, F thornei, P penetrans, and R pratensis, confirmed by phylogenetic analysis. Prevalence mapping showed P neglectus
and P crenatus in all sampled fields, while P thornei, P penetrans, and P pratensis were more localized. This study is the first to report these
Pratylenchus species on maize in New Zealand and provides the first partial sequences of the D2/D3, COX1, and ITS regions for these species
on maize in New Zealand. The findings highlight the diversity of Pratylenchus populations in New Zealand maize fields and emphasize the need
for region-specific management strategies to mitigate crop damage.

Impact Statement

This is the first comprehensive study to investigate the prevalence and identification of Pratylenchus spp. in New Zealand, using molecular
characterization techniques. Despite reports of seven Pratylenchus spp. in various crops, no studies in New Zealand have used a molecular
approach for its identification. Additionally, Pratylenchus spp. association in maize have not been examined. This study provides information
for future research exploring the impact of Pratylenchus spp. on the production and sustainability of maize and offers information for future
nematode management strategies.
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Introduction trans (Cobb 1917) Filipjev and Schuurmans Stekhoven 1941,
and P. thornei Sher and Allen 1953 was documented in many
regions such as in Australia, the USA, Africa, and Asia (Riga
et al. 2008, Yan et al. 2008, Thompson et al. 2016). Recent
studies have described several new Pratylenchus species, high-
lighting the ongoing progression of identifying their diversity.
For example, researchers identified P. haiduongensis in Viet-
nam (Nguyen et al. 2017), P. rwandae in Rwanda (Singh et al.
2018), and P. dakotaensis in the USA (Handoo et al. 2021).
Pratylenchus spp. host selectivity and severity vary de-
pending on the species present (Castillo and Vovlas 2007).
Therefore, it requires the right identification methods for pre-
cise identification to species level, which is crucial for man-
aging nematodes. Morphological variations among Praty-
lenchus species have been well-documented within and be-
tween species (Handoo and Golden 1989, Castillo and Vovlas
2007). Morphological identification can be difficult and time-
consuming for this genus (Kumari 2015). Additionally, mor-

Root-lesion nematodes, belonging to the genus Pratylenchus
Filipjev 1936, are recognized as important plant-parasitic ne-
matodes (PPN) worldwide, causing considerable damage up
to 20%-50% in cereal crops, including wheat and maize
(Thompson et al. 2008, Thompson et al. 2009). Pratylenchus
spp- has a wide host range, including vegetables, beans, tu-
bers, and orchard crops (Castillo and Vovlas 2007, Chowd-
hury et al. 2022). The Pratylenchus genus comprises over 100
species, with P. neglectus being the most distributed and eco-
nomically damaging species (Castillo and Vovlas 2007, Ku-
mari 2015). Pratylenchus spp. are migratory endoparasites
that cause the third most destruction of crops after root-knot
and cyst nematodes. Pratylenchus spp. occur in a wide range
of climate zones, including tropical, subtropical, and temper-
ate environments (Castillo and Vovlas 2007, Jones et al. 2013,
Divsalar et al. 2018). The negative impact of P. neglectus (Ren-
sch 1924) Filipjev and Schuurmans Stekhoven 1941, P. pene-
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phological attributes may also be altered due to variations in
geographical location, host plant, nutrition, and other envi-
ronmental factors (Bogale et al. 2020).

The taxonomy of the genus has been a subject of ongo-
ing research and there are pitfalls in Pratylenchus species-
level identification reported (Janssen et al. 2017b). However,
Janssen et al. (2017b) reported that Pratylenchus species.
identification based solely on morphology is inconclusive for
this genus. Additionally, having a multi-gene phylogeny of
using nuclear ribosomal and mitochondrial gene sequences
can provide reliable identification of the species belonging to
this genus (Kumari 2015, Bogale et al. 2020, Handoo et al.
2021). The use of both morphological and molecular tech-
niques has become essential for the accurate identification of
species in the Pratylenchus genus (Subbotin et al. 2008, Di-
vsalar et al. 2018, Nguyen et al. 2023). Most studies indicated
that morphological identification coupled with sequencing of
two or more genes’ regions could be reliable, particularly for
the Pratylenchus species (Janssen et al. 2017a, Handoo et al.
2021).

Previous studies have shown that DNA sequencing, espe-
cially the 28S D2/D3 rDNA, ITS, and COI (COX1) mtDNA
fragments, is effective for characterizing Pratylenchus pop-
ulations and conducting phylogenetic analyses (Subbotin et
al. 2008, Kumari 2015, Janssen et al. 2017a,b, Handoo et
al. 2021). Therefore, Pratylenchus species in this study were
identified by amplifying three gene regions: COX1 mtDNA,
LSU D2/D3 28S rDNA, and ITS rDNA, and were compared
with the morphological characters reported. Recent surveys
in New Zealand indicate a higher abundance of Pratylenchus
spp. in maize and wheat fields; however, these surveys lack
a detailed characterization of these nematodes (Thiellier and
Kularathna 2023, Thiruchchelvan et al. 2023). Therefore, the
present study aimed to (1) characterize the Pratylenchus spp.
based on the molecular analysis and (2) map the species preva-
lence in New Zealand maize.

Materials and methods

Soil sampling and extraction of Pratylenchus
species

During June-November 2022, soil sampling was conducted
in maize-growing regions of New Zealand. A total of 381
composite soil samples were collected from 24 fields across
three regions including Canterbury (South Island), Waikato,
and Manawatu-Whanganui (North Island). Fields were di-
vided into 2 or 3 blocks (>5 ha 3 blocks) based on size,
with 10-25 samples per field collected in a double or triple
zigzag pattern. At each sampling point, 15 soil cores (30 cm
deep, 2 cm diameter) were taken using a soil sampler (OAK-
FIELD Apparatus, USA) within a 4 m radius, averaging
750 g of soil per sample. From these, 24 composite sam-
ples were created for Pratylenchus spp. extraction by mix-
ing ~75-100 g subsamples from each field sample, result-
ing in ~1-2 kg of composite soil per field. The sieving-
centrifugal-sugar flotation method (Jenkins 1964) was used
for nematode extraction. A 100 g of soil was mixed with 1 1
of tap water. The soil was settled, and the supernatant was
passed through nested sieves (150-um and 38-um apertures,
Glenammer, UK). The process was repeated thrice, and the
soil from the 38-um sieve was centrifuged at 576 g for 5
minutes. The supernatant was discarded, and the pellet was

Thiruchchelvan et al.

mixed with 45% (w/v) sucrose solution before being cen-
trifuged for 1 minute at 576 g. The supernatant was then
sieved (38-um aperture), washed, and the nematodes were col-
lected into 50 ml specimen bottles. The samples were stored
at 4°C for morphological identification (Kularathna et al.
2019).

Morphospecies differentiation

Pratylenchus spp. were identified to genus level based on mor-
phological characteristics such as head shape, stylet and stylet
knob shape, pharynx, gland lobe length, female tail terminus,
and position of vulva (V-value) (Fortuner 1988, Handoo and
Golden 1989, Mai et al. 1996). Nematodes were heat-killed on
a glass slide, observed at 40x, 100x, and/or 600 x magnifica-
tion using an inverted compound light microscope (Olympus-
CKX353, Japan). Morphometric measurements were recorded
for females and available males using the Olympus cellSens
Entry system as per De Man Formulae (Nemaplex 2019). Five
morphospecies were differentiated with observed morpholog-
ical characteristics as shown in Figs 1, 2, and Table 1. Each
morphospecies was identified at the species level using the
molecular analysis described below.

Molecular identification: DNA extraction, PCR, and
phylogenetic analysis

Genomic DNA was extracted from individual nematodes us-
ing the worm lysis buffer method (Chowdhury et al. 2020,
Handoo et al. 2021). Female nematodes were initially washed
in double distilled water (ddH,O) on a glass slide, followed by
surface sterilization in 1% NaOCI, and then subjected to three
additional washes with ddH, O. The sterilized nematodes were
chopped in a cavity slide with a sterile surgical blade and
transferred to a centrifuge tube containing worm lysis buffer
(2 ul Proteinase K enzyme (600 pg ml~'), 2 ul PCR buffer
with MgCl, (10x), and 6 ul Millipore water). The tubes were
incubated at —20°C for 30 minutes, followed by 65°C for 1
hour and 95°C for 10 minutes to terminate the reaction. The
extracted DNA was either used immediately for PCR or stored
at —20°C (Huang and Yan 2017).

PCR amplification targeted D2/D3 fragments of 28S rDNA,
ITS rDNA, and COX1 gene from mtDNA (Handoo et al.
2021) using primers D2A/D3B, ITS5/ITS4, and JB3/JB4.5
(Supplementary Table S1). Reactions were carried out in 20 pl
volumes, consisting of 2 ul DNA template, 1 ul each of
forward and reverse primers (10 wmol 171), 10 ul Dream-
Taq Green PCR Master Mix (2x), and 6 ul Millipore water.
Thermocycling conditions were as follows: for D2A/D3B and
ITSS/ITS4 primers, initial denaturing at 95°C for 3 minutes,
followed by 30 cycles of 95°C for 30 seconds, annealing at
52°C (D2A/D3B) or 55°C (ITS4/ITSS5) for 30 seconds, and ex-
tension at 72°C for 1 minute, with a final extension at 72°C
for 10 minutes (Subbotin et al. 2006). For the COX1 primers
JB3/JB4.5, conditions included an initial denaturation at 95°C
for 5 minutes, followed by 5 cycles of 95°C for 30 seconds,
54°C decreasing by 1°C per cycle for 30 seconds, 72°C for
30 seconds, and 35 cycles of 95°C for 30 seconds, 50°C for
30 seconds, and 72°C for 30 seconds, with a final extension
at 72°C for 10 minutes (Bowles et al. 1992, Derycke et al.
2010). PCR products were confirmed by electrophoresis on a
1% agarose gel stained with GelRed, visualized, using the Gel-
Doc Go imaging system (Bio-Rad). The amplified DNA was
sequenced at the Lincoln University sequencing facility using
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Sanger dideoxy sequencing technology (Applied Biosystems,
HITACHI, 3500 XL, Genetic Analyzer, New Zealand).

Consensus sequences were generated using forward and re-
verse sequences in Geneious Prime 2023.2.1. Sequences were
deposited in GenBank if they had over 98% similarity and
90% query coverage during blasting. Phylogenetic trees were
constructed using Bayesian inference with MAFFT multiple
sequence alignment (Katoh and Standley 2013) and MrBayes
v.3.2.6 (Ronquist et al. 2012), selecting the GTR + G model
for COX1 and ITS and GTR + G + I model for LSU D2/D3
sequences based on jModelTest (Posada 2008, Darriba et al.
2012). Bayesian analysis involved 4 Markov chains for 10°
generations, sampling every 200 generations, with burn-in
samples discarded to generate a 50% majority rule consensus
tree (Xia et al. 2021).

Prevalence of Pratylenchus sp. in New Zealand
maize fields

The prevalence of the five different species of Pratylenchus sp.
in the presence or absence data matrix was mapped using Ar-
cGIS (ArcMap) 10.8.1 software.

Results and discussion

Molecular identification and phylogenetic analysis

This study focused on the molecular identification of five mor-
phospecies belonging to the Pratylenchus genus collected from
New Zealand maize fields and was complemented by some
morphological observations. Using the LSU and COX1 gene
regions, the molecular data strongly supported the identifi-
cation of Pratylenchus neglectus, P. crenatus Loof (1960), P.
thornei, and P. penetrans. The identified Pratylenchus mor-
phospecies showed sequence similarities ranging from 98%
to 100% when compared to species in the NCBI database.
The D2/D3 sequences for all five species showed 98%-100%
similarity, while the COX1 sequences for four species exhib-
ited 99%-100% similarity. The COX1 region of P. pratensis
was not successfully amplified, and ITS fragment amplifica-
tions were only successful for P. thornei, P. neglectus, and P.
pratensis De Man 1880. The poor-quality sequences obtained
for P. penetrans and P. crenatus in the ITS region may be at-
tributed to several factors. One possible reason is the lack of
primer specificity, as the primers used may not have been suf-
ficiently optimized for these nematode species (Blok and Pow-
ers 2009). Additionally, background noise or contamination
could have contributed to the poor-quality sequences, poten-
tially due to the co-amplification of non-target DNA, as re-
ported by De Ley et al. (2002).

The best sequence match for each identified species is de-
tailed in Supplementary Table S2, while the deposited se-
quences in GenBank, along with the generated accession
numbers, are listed in Supplementary Table S3. Phylogenetic
trees generated from LSU D2/D3 28S rDNA (Fig. 3) include
70 ingroups and an outgroup taxon; the ITS rDNA tree
(Supplementary Fig. S1) includes 24 ingroups and an out-
group taxon; and the COX1 mtDNA tree (Fig. 4) comprises
72 ingroups and an outgroup taxon. All three trees indicate
that the newly identified Pratylenchus species are distinct from
one another, each forming 100% supported clades with the re-
spective species already available in the database.

The amplification success and sequence similarities ob-
served in this study are consistent with findings from other

nematode research, where the D2/D3 28S rDNA and COX1
mtDNA regions are commonly used for species identification
and phylogenetic analysis (Holterman et al. 2009, Janssen et
al. 2017a,b, Handoo et al. 2021). However, the ITS region
has been reported to be more variable, with amplification suc-
cess often depending on the species and the quality of the
extracted DNA (Powers et al. 2011). In comparison, other
studies using different primers or alternative regions, such as
18S rDNA, have reported varying degrees of success in am-
plifying ITS regions (Subbotin et al. 2001, Subbotin et al.
2023).

Some minor morphometric deviations were observed com-
pared to type populations, highlighting the potential influence
of geographic and environmental factors on nematode mor-
phology (Bogale et al. 2020). Morphospecies 1 (P. neglectus):
molecular analysis confirmed the identity of P. neglectus. Mor-
phologically, the New Zealand population exhibited minor
variations in body length and tail shape, but these differences
fall within the expected range for this species (Supplementary
Table S4). Similar to the findings of Handoo and Golden
(1989) and Xia et al. (2021), these minor deviations suggest
that environmental conditions or local adaptation may influ-
ence certain morphological traits (Bogale et al. 2020). Mor-
phospecies 2 (P. crenatus): the molecular data matched with
P. crenatus sequences in the NCBI database; however, minor
morphometric discrepancies were noted, particularly in stylet
length (Supplementary Table S5). The New Zealand popula-
tion showed slightly longer stylets (17.1-18.7 um) compared
to previous reports, such as Kumari (2015) (13-15 pwm) but
aligned with Loof (1960) (14-18 um). These differences could
be due to natural variability within the species or local adapta-
tions in New Zealand’s environmental conditions as reported
by Bogale et al. (2020). Morphospecies 3 (P. thornei): molec-
ular identification of P. thornei was confirmed by the gene
sequencing. While most morphological traits aligned with
known descriptions (Handoo and Golden 1989, Movahedi-
far and Azimi 2020), slight differences in stylet length were
observed. These minor discrepancies are not uncommon and
have been previously noted in studies of global populations
(Fayazi et al. 2012) (Supplementary Table S6). The observed
variations may be influenced by factors such as sampling lo-
cation, host plant differences, or local environmental condi-
tions as suggested by Fayazi et al. (2012). Morphospecies 4
(P. penetrans): both molecular and morphological data con-
firmed the identification of P. penetrans in the New Zealand
populations. The morphometric traits were consistent with
previous descriptions (Bogale et al. 2021, Gil et al. 2021). Al-
though slight variations in stylet length were recorded in the
New Zealand populations, these differences are within an ac-
ceptable range and are not expected to impact species identi-
fication (Supplementary Tables S7 and S8).

Morphospecies S (P. pratensis): The population of P. praten-
sis described in this study shares several key morphologi-
cal and molecular features with the populations reported by
Janssen et al. (2017a) (Supplementary Tables S9 and S10).
Morphometrically, the individuals in our study exhibit a body
length of 458-556 pwm in females and 469-512.9 pum in males,
with lip regions containing three annules and well-separated
basal knobs on a robust stylet. The vulva in females is located
at 77.6%-80.9% of the body length, and the tail tips are sym-
metrically conoid, with lengths ranging from 20 to 26.6 um.
Males have spicules that are curved, measuring 14.4-19.3 pm
in length, with a bursa enveloping the tail. However, a slight
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Figure 1. Photomicrographs of the Pratylenchus spp. identified in New Zealand maize fields; (A) heat-killed female of morphospecies 1 (slightly ventrally
curved); (B) heat-killed female of morphospecies 2 (almost straight); (C) live female of morphospecies 3 (heat-killed females are C shape); (D) heat-killed
female of morphospecies 4 (moderately slender, or straight); (E) heat-killed male of morphospecies 4 (moderately slender, or straight); (F) heat-killed
female of morphospecies 5 (almost straight); and (G) heat-killed male of morphospecies 5 (almost straight) (scale bars = 100 um).

Table 1. Morphological characteristics used for the differentiation of morphospecies of the Pratylenchus spp. in New Zealand maize fields.

Characteristics Morphospecies 1 Morphospecies 2 Morphospecies 3 Morphospecies 4 Morphospecies 5
n 10 10 7 9 8

Body length (m) 474.0 (402.4-556.4)  454.0 (382.8-514.9)  526.1 (503.6-548.9)  417.4 (393.8-435.4)  531.2 (458.8-556.4)
a (L/W) 23.8 (19.7-28.8) 24.7 (21.6-27.7) 26.6 (25.2-28.4) 23.6 (19.9-25) 25.2 (22-29)

b (L) 4.3 (3.5-4.9) 4.3 (3.7-4.6) 4.7 (4.7-4.8) 4.2 (3.9-4.5) 4.3 (3.5-5.2)

¢ (L/T) 19.7 (16.7-22.1) 20.7 (19-22.2) 20.5 (19.3-21.7) 16.6 (13.6-20.8) 22.3 (20.1-25.5)
¢’ (T/ABD) 1.9 (1.4-2.5) 2.0 (1.7-2.3) 2.3 (2.2-2.5) 2.3 (1.8-2.8) 1.9 (1.3-2.4)

V% (V/L %100)
Stylet (um)
Heat-killed female

Lip annuli
Stylet knob

Tail terminus

Males
Spicule

79.8 (72-82.6)
17.6 (15.8-19.7)
Slightly ventrally
curved or straight
Two
Rounded, anteriorly
intended
Round, no
annulation
Absence

81.2 (76.6-83.5)
17.7 (17.1-18.7)
Moderately ventrally
curved or straight
Three
Rounded

Crenate with
annulation
Absence

76.4 (75.6-77.4)
18.6 (18-19.2)
C-shaped curved

Three
Broadly rounded,
anteriorly flattened
Truncated, phasmid
in mid tails
Absence

78.2 (76.4-80)
16.6 (15.7-17.5)
Moderately slender,
or straight
Three
Broadly rounded

Rounded with a
smooth tip
Presence
16.5-16.9

79.1 (77.6-80.9)
17.8 (16.2-19.9)
Almost straight

Three
Well-separated

Symmetrically conoid

Presence
14.4-19.3

n- number of nematodes measured; L- body length, W- maximum body diameter; I- intestine length from the anterior end; T-tail length; ABD- body diameter

at anus; V- distance to vulva from the anterior end

variation is observed in the stylet length of the specimens ex-
amined. The stylet length in females from New Zealand popu-
lation ranges from 16 to 19.9 um, and in males, it ranges from
15.8 to 17.1 um. This contrasts with the type locality of P.
pratensis in The Netherlands, where the stylet length is consis-
tently 14-15 um (Loof 1974 in CIH Descriptions of PPNs, 4,
# 52). The stylet length in Pratylenchus species has been noted
as a stable morphological character (Roman and Hirschmann
1969, Janssen et al. 2017a). The larger stylet measurements
observed in the New Zealand specimens, therefore, are un-
likely to be the result of environmental variability. This sug-
gests that the population may represent a distinct morpholog-
ical variant within the known species boundaries. Given that

species such as P. penetrans and P. pratensis are currently re-
garded as species complexes, it is probable that the specimens
encountered in this study belong to cryptic species within these
complexes. These differences in stylet length, along with vari-
ations in tail morphology, suggest that while the population in
our study falls within the P. pratensis species complex, it may
represent a distinct taxon within this group. Future studies
need to be done to clarify this issue.

Additionally, the ecological context of the populations de-
scribed in this study differs from that of the original type lo-
cality of P. pratensis, which is typically found in moist mead-
ows or swampy areas of Europe (Loof 1960). In contrast,
the specimens examined in this study were collected from
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Figure 2. Photomicrographs of the Pratylenchus spp. identified in New Zealand maize fields; A-anterior part (rounded stylet knobs indented on the
anterior surfaces), H-posterior part (rounded tail terminus has no annulation) of morphospecies 1 female; B-anterior part (rounded stylet knobs),
|-posterior part (crenated tail terminus with annulation) of morphospecies 2 female; C-anterior part (broadly rounded almost anteriorly flattened basal
knob), J, K-posterior part (slightly conical towards the end and truncated terminus). A phasmid in mid-tail of morphospecies 3 female; D-anterior part
(basal knob broadly rounded), L-posterior part (tail is a long-rounded shape with a smooth tip) of morphospecies 4 (female); E-anterior part (basal knob
broadly rounded), M-posterior part (with bursa irregularly crenate and enveloping tail tip) of morphospecies 4 male; F-anterior part (well-separated basal
knobs), N-posterior part (symmetrically conoid tail terminus) of morphospecies 5 female; and G-anterior part (well-separated basal knobs.), O-posterior
part (bursa enveloping the tail) of morphospecies 5 male (scale bars = 20 um).

cultivated maize fields, suggesting potential ecological diver-
gence. Given the rarity of P. pratensis in Europe and Asia and
its typical association with wild grasses in natural environ-
ments, the population described here might be more closely
related to or represent another species within the P. pratensis
complex.

The molecular evidence from the LSU (Fig. 3) and ITS gene
(Supplementary Fig. S1) regions shows a close relationship
with P. pratensis populations, but the subtle morphological
differences, particularly in stylet length and tail shape, could
reflect intraspecific variation or, alternatively, indicate that this
population belongs to a yet undescribed species within the
Pratensis group. Further investigations, including more exten-
sive molecular and morphological analyses, would be neces-
sary to clarify the taxonomic status of this population and

to determine whether it represents a new species within the
Pratylenchus genus.

Prevalence of Pratylenchus species in New Zealand
maize

The prevalence of Pratylenchus spp. across sampled maize
fields in New Zealand revealed differences in prevalence
(Fig. 5). Pratylenchus neglectus and P. crenatus were the most
widely distributed species (Fig. SA). Conversely, P. thornei and
P. pratensis were found in the Canterbury region, while P.
penetrans was detected only in the Waikato region. In this
study, the prevalence of Pratylenchus species could be influ-
enced by soil types and cropping history. Pratylenchus thornei
was detected in three locations, characterized by loamy soils
but different soil orders. In Lincoln, with Pallic (40%) and
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Figure 3. Bayesian tree inferred of Pratylenchus sequences LSU D2/D3 fragment of 28S rDNA under GTR + G + | model. The posterior probabilities of
>50% are given in appropriate clades. Newly obtained sequences from New Zealand maize fields are indicated with arrows.

Recent (60%) soils, continuous maize cropping likely con-
tributed to its persistence. In Darfield, where Pallic soils are
dominant with stony loamy textures, P. thornei was found
after maize cropping, followed by oat seedlings. In Lesston,
where Pallic (75%) and Gley (25%) soils with loamy-clay tex-
tures are present, P. thornei thrived, particularly with crop
rotations like maize and winter oats. In Dorie, P. pratensis
was found in loamy Pallic soil, highlighting its adaptability
to maize fields, especially after grass. Although less studied,
its presence in loamy soils aligns with known patterns of
nematode distribution. Pratylenchus penetrans was observed

in Cambridge, Matamata, and Otorohanga, areas with al-
lophanic soils and continuous maize cropping, which likely
supported its establishment. However, P. crenatus and P. ne-
glectus prevailed in all fields that were sampled, except in
Tahuna, where the organic soil order (peat soil) is present
and no Pratylenchus was detected. The absence of root sam-
pling in this study limits the understanding of Pratylenchus
species in the root systems of maize. Future studies should in-
clude root data, alongside soil samples, for a more comprehen-
sive understanding of their distribution. The co-occurrence
of species and their abundance were not detailed but iden-
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Figure 4. Bayesian tree inferred of Pratylenchus sequences COX1 of mtDNA under GTR + G model. The posterior probabilities of >50% are given in
appropriate clades. Newly obtained sequences from New Zealand maize fields are indicated with arrows.

tified and confirmed through molecular and morphological
analyses.

All these identified species are also reported in maize fields
in different countries such as the USA, Australia, China, and
the UK (Beane 1985, Thompson et al. 2008, Thompson et
al. 2010, Simon et al. 2018, Xia et al. 2021, Simon et al.
2023, Thapa et al. 2023). Reported Pratylenchus species are
polyphagous and can infect a range of other crops such as
cereals, fruits, vegetables, forage crops, industrial crops, cot-

ton, coffee, potatoes, and ornamental plants, as well as weed
species (Castillo and Vovlas 2007, Stirling 2023). In this study,
P. neglectus and P. crenatus species were observed to be dis-
tributed within the New Zealand maize fields studied, and
their abundance was also higher above 1000 kg~! of soil in
many locations.

Both nematode species, P. neglectus and P. crenatus were
identified as potential pathogens and were associated with re-
duced growth in cereal crops, especially in maize and wheat
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Figure 5. Prevalence of Pratylenchus species in sampled maize fields of New Zealand (A) circles indicate the P neglectus and P crenatus prevalence; (B)
star indicate P penetrans, rectamgles indicate P thornei, and triangles indicate P pratensis. In (A) star; (B) circles indicate the species that did not prevail.

(Castillo and Vovlas 2007, Simon et al. 2023). The New
Zealand crop production sector is potentially at risk with
PPN. Particularly Pratylenchus species reported in this study
since they can infest multiple hosts (Stirling 2023). For in-
stance, P. penetrans is associated with <400 different plant
species (Ozbayrak et al. 2019). Pratylenchus thornei was re-
ported in many countries as a significant pathogen to cere-
als, especially in wheat; for example, in Australia it is caus-
ing up to 85% yield losses in cereals (Knight 1996, Nicol
et al. 1999). Additionally, P. thornei was reported in Canter-
bury wheat fields with a higher abundance (above 2000 kg~!
of soil) in New Zealand (Thiellier and Kularathna 2023),
which is the threshold in Australian wheat (Thompson et al.
2010).

Conclusions

In conclusion, the findings of the study confirm that the Prazy-
lenchus species associated with New Zealand maize are P. ne-
glectus, P. crenatus, P. thornei, P. penetrans, and P. pratensis.
The species distribution of P. crenatus and P. neglectus as the
most prevalent species, along with localized distributions of
P. thornei, P. pratensis, and P. penetrans, suggests potential re-
gional variations in nematode populations, emphasizing the
need for tailored management approaches based on local con-
ditions.
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