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Abstract 

Root-lesion nematodes ( Pratylenchus spp.) are significant plant parasites, causing substantial crop damage w orldwide. T his study aimed to 
characteriz e P ratylenchus spp. in New Zealand maize fields using molecular techniques and map their prevalence. Soil sampling from 24 maize 
fields across the North and South Islands provided 381 composite samples. Root-lesion nematodes were extracted using the sieving-centrifugal- 
sugar flotation method and differentiated into five morphospecies. Molecular characterization involved direct partial sequencing of the D2/D3 
28S rDNA, ITS rDNA, and COX1 mtDNA regions using Sanger technology from a single nematode. Five Pratylenchus species were identified: 
P . neglectus , P . crenatus , P . thornei , P . penetrans , and P . pratensis , confirmed b y ph ylogenetic analy sis. P re v alence mapping sho w ed P. neglectus 
and P. crenatus in all sampled fields, while P. thornei , P. penetrans , and P. pratensis were more localized. This study is the first to report these 
Pratylenchus species on maize in New Zealand and provides the first partial sequences of the D2/D3, COX1, and ITS regions for these species 
on maize in New Zealand. The findings highlight the diversity of Pratylenchus populations in New Zealand maize fields and emphasize the need 
for region-specific management strategies to mitigate crop damage. 

Impact Statement 

This is the first comprehensive study to in v estigate the pre v alence and identification of Pratylenchus spp. in New Zealand, using molecular 
c haracterization tec hniques. Despite reports of se v en P ratylenchus spp. in v arious crops, no studies in Ne w Zealand ha v e used a molecular 
approach for its identification. Additionally, Pratylenchus spp. association in maize have not been examined. This study provides information 
for future research exploring the impact of Pratylenchus spp. on the production and sust ainabilit y of maize and offers inf ormation f or future 
nematode management strategies. 
Ke yw or ds: prevalence; maize; molecular identification; PCR; phylogenetic tree; Pratylenchus ; root-lesion nematode; sanger sequencing 
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Introduction 

Root-lesion nematodes, belonging to the genus Pratylenchus 
Filipjev 1936 , are recognized as important plant-parasitic ne- 
matodes (PPN) worldwide, causing considerable damage up 

to 20%–50% in cereal crops, including wheat and maize 
(Thompson et al. 2008 , Thompson et al. 2009 ). Pratylenchus 
spp. has a wide host range, including vegetables, beans, tu- 
bers, and orchard crops (Castillo and Vovlas 2007 , Chowd- 
hury et al. 2022 ). The Pratylenchus genus comprises over 100 

species, with P. neglectus being the most distributed and eco- 
nomically damaging species (Castillo and Vovlas 2007 , Ku- 
mari 2015 ). Pratylenchus spp. are migratory endoparasites 
that cause the third most destruction of crops after root-knot 
and cyst nematodes. Pratylenchus spp. occur in a wide range 
of climate zones, including tropical, subtropical, and temper- 
ate environments (Castillo and Vovlas 2007 , Jones et al. 2013 ,
Divsalar et al. 2018 ). The negative impact of P. neglectus (Ren- 
sch 1924 ) Filipjev and Schuurmans Stekhoven 1941 , P. pene- 
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© The Author(s) 2024. Published by Oxford University Press on behalf of Applie
under the terms of the Creative Commons Attribution License ( https:// creativecom
and reproduction in any medium, provided the original work is properly cited.
rans (Cobb 1917 ) Filipjev and Schuurmans Stekhoven 1941 ,
nd P. thornei Sher and Allen 1953 was documented in many
egions such as in Australia, the USA, Africa, and Asia (Riga
t al. 2008 , Yan et al. 2008 , Thompson et al. 2016 ). Recent
tudies have described several new Pratylenchus species, high- 
ighting the ongoing progression of identifying their diversity.
or example, researchers identified P. haiduongensis in Viet- 
am (Nguyen et al. 2017 ), P. rwandae in Rwanda (Singh et al.
018 ), and P. dakotaensis in the USA (Handoo et al. 2021 ). 
Pratylenchus spp. host selectivity and severity vary de- 

ending on the species present (Castillo and Vovlas 2007 ).
herefore, it requires the right identification methods for pre- 
ise identification to species level, which is crucial for man-
ging nematodes. Morphological variations among Praty- 
enchus species have been well-documented within and be- 
ween species (Handoo and Golden 1989 , Castillo and Vovlas
007 ). Morphological identification can be difficult and time- 
onsuming for this genus (Kumari 2015 ). Additionally, mor- 
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hological attributes may also be altered due to variations in
eographical location, host plant, nutrition, and other envi-
onmental factors (Bogale et al. 2020 ). 

The taxonomy of the genus has been a subject of ongo-
ng research and there are pitfalls in Pratylenchus species-
evel identification reported (Janssen et al. 2017b ). However,
anssen et al. ( 2017b ) reported that Pratylenchus species.
dentification based solely on morphology is inconclusive for
his genus. Additionally, having a multi-gene phylogeny of
sing nuclear ribosomal and mitochondrial gene sequences
an provide reliable identification of the species belonging to
his genus (Kumari 2015 , Bogale et al. 2020 , Handoo et al.
021 ). The use of both morphological and molecular tech-
iques has become essential for the accurate identification of
pecies in the Pratylenchus genus (Subbotin et al. 2008 , Di-
salar et al. 2018 , Nguyen et al. 2023 ). Most studies indicated
hat morphological identification coupled with sequencing of
wo or more genes’ regions could be reliable, particularly for
he Pratylenchus species (Janssen et al. 2017a , Handoo et al.
021 ). 
Previous studies have shown that DNA sequencing, espe-

ially the 28S D2/D3 rDNA, ITS, and COI (COX1) mtDNA
ragments, is effective for characterizing Pratylenchus pop-
lations and conducting phylogenetic analyses (Subbotin et
l. 2008 , Kumari 2015 , Janssen et al. 2017a ,b , Handoo et
l. 2021 ). Therefore, Pratylenchus species in this study were
dentified by amplifying three gene regions: COX1 mtDNA,
SU D2/D3 28S rDNA, and ITS rDNA, and were compared
ith the morphological characters reported. Recent surveys

n New Zealand indicate a higher abundance of Pratylenchus
pp. in maize and wheat fields; however, these surveys lack
 detailed characterization of these nematodes (Thiellier and
ularathna 2023 , Thiruchchelvan et al. 2023 ). Therefore, the
resent study aimed to (1) characterize the Pratylenchus spp.
ased on the molecular analysis and (2) map the species preva-

ence in New Zealand maize. 

aterials and methods 

oil sampling and extraction of Pratylenchus 

pecies 

uring June–November 2022, soil sampling was conducted
n maize-growing regions of New Zealand. A total of 381
omposite soil samples were collected from 24 fields across
hree regions including Canterbury (South Island), Waikato,
nd Manawatu-Whanganui (North Island). Fields were di-
ided into 2 or 3 blocks ( > 5 ha 3 blocks) based on size,
ith 10–25 samples per field collected in a double or triple

igzag pattern. At each sampling point, 15 soil cores (30 cm
eep, 2 cm diameter) were taken using a soil sampler (OAK-
IELD Apparatus, USA) within a 4 m radius, averaging
50 g of soil per sample. From these, 24 composite sam-
les were created for Pratylenchus spp. extraction by mix-
ng ∼75–100 g subsamples from each field sample, result-
ng in ∼1–2 kg of composite soil per field. The sieving-
entrifugal-sugar flotation method (Jenkins 1964 ) was used
or nematode extraction. A 100 g of soil was mixed with 1 l
f tap water. The soil was settled, and the supernatant was
assed through nested sieves (150- μm and 38- μm apertures,
lenammer, UK). The process was repeated thrice, and the

oil from the 38- μm sieve was centrifuged at 576 g for 5
inutes. The supernatant was discarded, and the pellet was
ixed with 45% (w/v) sucrose solution before being cen-
rifuged for 1 minute at 576 g. The supernatant was then
ieved (38- μm aperture), washed, and the nematodes were col-
ected into 50 ml specimen bottles. The samples were stored
t 4 

◦C for morphological identification (Kularathna et al.
019 ). 

orphospecies differentiation 

ratylenchus spp. were identified to genus level based on mor-
hological characteristics such as head shape, stylet and stylet
nob shape, pharynx, gland lobe length, female tail terminus,
nd position of vulva (V-value) (Fortuner 1988 , Handoo and
olden 1989 , Mai et al. 1996 ). Nematodes were heat-killed on
 glass slide, observed at 40 ×, 100 ×, and/or 600 × magnifica-
ion using an inverted compound light microscope (Olympus-
KX53, Japan). Morphometric measurements were recorded

or females and available males using the Olympus cellSens
ntry system as per De Man Formulae (Nemaplex 2019 ). Five
orphospecies were differentiated with observed morpholog-

cal characteristics as shown in Figs 1 , 2 , and Table 1 . Each
orphospecies was identified at the species level using the
olecular analysis described below. 

olecular identification: DNA extraction, PCR, and 

hylogenetic analysis 

enomic DNA was extracted from individual nematodes us-
ng the worm lysis buffer method (Chowdhury et al. 2020 ,
andoo et al. 2021 ). Female nematodes were initially washed

n double distilled water (ddH 2 O) on a glass slide, followed by
urface sterilization in 1% NaOCl, and then subjected to three
dditional washes with ddH 2 O. The sterilized nematodes were
hopped in a cavity slide with a sterile surgical blade and
ransferred to a centrifuge tube containing worm lysis buffer
2 μl Proteinase K enzyme (600 μg ml −1 ), 2 μl PCR buffer
ith MgCl 2 (10 ×), and 6 μl Millipore water). The tubes were

ncubated at −20 

◦C for 30 minutes, followed by 65 

◦C for 1
our and 95 

◦C for 10 minutes to terminate the reaction. The
xtracted DNA was either used immediately for PCR or stored
t −20 

◦C (Huang and Yan 2017 ). 
PCR amplification targeted D2/D3 fragments of 28S rDNA,

TS rDNA, and COX1 gene from mtDNA (Handoo et al.
021 ) using primers D2A/D3B, ITS5/ITS4, and JB3/JB4.5
 Supplementary Table S1 ). Reactions were carried out in 20 μl
olumes, consisting of 2 μl DNA template, 1 μl each of
orward and reverse primers (10 μmol l −1 ), 10 μl Dream-
aq Green PCR Master Mix (2 ×), and 6 μl Millipore water.
hermocycling conditions were as follows: for D2A/D3B and

TS5/ITS4 primers, initial denaturing at 95 

◦C for 3 minutes,
ollowed by 30 cycles of 95 

◦C for 30 seconds, annealing at
2 

◦C (D2A/D3B) or 55 

◦C (ITS4/ITS5) for 30 seconds, and ex-
ension at 72 

◦C for 1 minute, with a final extension at 72 

◦C
or 10 minutes (Subbotin et al. 2006 ). For the COX1 primers
B3/JB4.5, conditions included an initial denaturation at 95 

◦C
or 5 minutes, followed by 5 cycles of 95 

◦C for 30 seconds,
4 

◦C decreasing by 1 

◦C per cycle for 30 seconds, 72 

◦C for
0 seconds, and 35 cycles of 95 

◦C for 30 seconds, 50 

◦C for
0 seconds, and 72 

◦C for 30 seconds, with a final extension
t 72 

◦C for 10 minutes (Bowles et al. 1992 , Derycke et al.
010 ). PCR products were confirmed by electrophoresis on a
% agarose gel stained with GelRed, visualized, using the Gel-
oc Go imaging system (Bio-Rad). The amplified DNA was

equenced at the Lincoln University sequencing facility using

https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
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Sanger dideoxy sequencing technology (Applied Biosystems,
HITACHI, 3500 XL, Genetic Analyzer, New Zealand). 

Consensus sequences were generated using forward and re- 
verse sequences in Geneious Prime 2023.2.1. Sequences were 
deposited in GenBank if they had over 98% similarity and 

90% query coverage during blasting. Phylogenetic trees were 
constructed using Bayesian inference with MAFFT multiple 
sequence alignment (Katoh and Standley 2013 ) and MrBayes 
v.3.2.6 (Ronquist et al. 2012 ), selecting the GTR + G model 
for COX1 and ITS and GTR + G + I model for LSU D2/D3 

sequences based on jModelTest (Posada 2008 , Darriba et al.
2012 ). Bayesian analysis involved 4 Markov chains for 10 

6 

generations, sampling every 200 generations, with burn-in 

samples discarded to generate a 50% majority rule consensus 
tree (Xia et al. 2021 ). 

Prevalence of Pratylenchus sp. in New Zealand 

maize fields 

The prevalence of the five different species of Pratylenchus sp.
in the presence or absence data matrix was mapped using Ar- 
cGIS (ArcMap) 10.8.1 software. 

Results and discussion 

Molecular identification and phylogenetic analysis 

This study focused on the molecular identification of five mor- 
phospecies belonging to the Pratylenchus genus collected from 

New Zealand maize fields and was complemented by some 
morphological observations. Using the LSU and COX1 gene 
regions, the molecular data strongly supported the identifi- 
cation of Pratylenchus neglectus , P. crenatus Loof ( 1960 ), P.
thornei, and P. penetrans . The identified Pratylenchus mor- 
phospecies showed sequence similarities ranging from 98% 

to 100% when compared to species in the NCBI database.
The D2/D3 sequences for all five species showed 98%–100% 

similarity, while the COX1 sequences for four species exhib- 
ited 99%–100% similarity. The COX1 region of P. pratensis 
was not successfully amplified, and ITS fragment amplifica- 
tions were only successful for P . thornei, P . neglectus , and P .
pratensis De Man 1880 . The poor-quality sequences obtained 

for P. penetrans and P. crenatus in the ITS region may be at- 
tributed to several factors. One possible reason is the lack of 
primer specificity, as the primers used may not have been suf- 
ficiently optimized for these nematode species (Blok and Pow- 
ers 2009 ). Additionally, background noise or contamination 

could have contributed to the poor-quality sequences, poten- 
tially due to the co-amplification of non-target DNA, as re- 
ported by De Ley et al. ( 2002 ). 

The best sequence match for each identified species is de- 
tailed in Supplementary Table S2 , while the deposited se- 
quences in GenBank, along with the generated accession 

numbers, are listed in Supplementary Table S3 . Phylogenetic 
trees generated from LSU D2/D3 28S rDNA (Fig. 3 ) include 
70 ingroups and an outgroup taxon; the ITS rDNA tree 
( Supplementary Fig. S1 ) includes 24 ingroups and an out- 
group taxon; and the COX1 mtDNA tree (Fig. 4 ) comprises 
72 ingroups and an outgroup taxon. All three trees indicate 
that the newly identified Pratylenchus species are distinct from 

one another, each forming 100% supported clades with the re- 
spective species already available in the database. 

The amplification success and sequence similarities ob- 
served in this study are consistent with findings from other 
ematode research, where the D2/D3 28S rDNA and COX1 

tDNA regions are commonly used for species identification 

nd phylogenetic analysis (Holterman et al. 2009 , Janssen et
l. 2017a ,b , Handoo et al. 2021 ). However, the ITS region
as been reported to be more variable, with amplification suc-
ess often depending on the species and the quality of the
xtracted DNA (Powers et al. 2011 ). In comparison, other
tudies using different primers or alternative regions, such as
8S rDNA, have reported varying degrees of success in am-
lifying ITS regions (Subbotin et al. 2001 , Subbotin et al.
023 ). 
Some minor morphometric deviations were observed com- 

ared to type populations, highlighting the potential influence 
f geographic and environmental factors on nematode mor- 
hology (Bogale et al. 2020 ). Morphospecies 1 ( P. neglectus ):
olecular analysis confirmed the identity of P. neglectus . Mor-
hologically, the New Zealand population exhibited minor 
ariations in body length and tail shape, but these differences
all within the expected range for this species ( Supplementary
able S4 ). Similar to the findings of Handoo and Golden
 1989 ) and Xia et al. ( 2021 ), these minor deviations suggest
hat environmental conditions or local adaptation may influ- 
nce certain morphological traits (Bogale et al. 2020 ). Mor-
hospecies 2 ( P. crenatus ): the molecular data matched with
. crenatus sequences in the NCBI database; however, minor 
orphometric discrepancies were noted, particularly in stylet 

ength ( Supplementary Table S5 ). The New Zealand popula-
ion showed slightly longer stylets (17.1–18.7 μm) compared 

o previous reports, such as Kumari ( 2015 ) (13–15 μm) but
ligned with Loof ( 1960 ) (14–18 μm). These differences could
e due to natural variability within the species or local adapta-
ions in New Zealand’s environmental conditions as reported 

y Bogale et al. ( 2020 ). Morphospecies 3 ( P. thornei ): molec-
lar identification of P. thornei was confirmed by the gene
equencing. While most morphological traits aligned with 

nown descriptions (Handoo and Golden 1989 , Movahedi- 
ar and Azimi 2020 ), slight differences in stylet length were
bserved. These minor discrepancies are not uncommon and 

ave been previously noted in studies of global populations 
Fayazi et al. 2012 ) ( Supplementary Table S6 ). The observed
ariations may be influenced by factors such as sampling lo-
ation, host plant differences, or local environmental condi- 
ions as suggested by Fayazi et al. ( 2012 ). Morphospecies 4
 P. penetrans ): both molecular and morphological data con-
rmed the identification of P. penetrans in the New Zealand
opulations. The morphometric traits were consistent with 

revious descriptions (Bogale et al. 2021 , Gil et al. 2021 ). Al-
hough slight variations in stylet length were recorded in the
ew Zealand populations, these differences are within an ac- 

eptable range and are not expected to impact species identi-
cation ( Supplementary Tables S7 and S8 ). 
Morphospecies 5 ( P. pratensis ): The population of P. praten-

is described in this study shares several key morphologi- 
al and molecular features with the populations reported by 
anssen et al. ( 2017a ) ( Supplementary Tables S9 and S10 ).

orphometrically, the individuals in our study exhibit a body 
ength of 458–556 μm in females and 469–512.9 μm in males,
ith lip regions containing three annules and well-separated 

asal knobs on a robust stylet. The vulva in females is located
t 77.6%–80.9% of the body length, and the tail tips are sym-
etrically conoid, with lengths ranging from 20 to 26.6 μm.
ales have spicules that are curved, measuring 14.4–19.3 μm 

n length, with a bursa enveloping the tail. However, a slight

https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
https://academic.oup.com/lambio/article-lookup/doi/10.1093/lambio/ovae140#supplementary-data
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Figure 1. Photomicrographs of the Pratylenchus spp. identified in New Zealand maize fields; (A) heat-killed female of morphospecies 1 (slightly ventrally 
curved); (B) heat-killed female of morphospecies 2 (almost straight); (C) live female of morphospecies 3 (heat-killed females are C shape); (D) heat-killed 
female of morphospecies 4 (moderately slender, or straight); (E) heat-killed male of morphospecies 4 (moderately slender, or straight); (F) heat-killed 
female of morphospecies 5 (almost straight); and (G) heat-killed male of morphospecies 5 (almost straight) (scale bars = 100 μm). 

Table 1. Morphological characteristics used for the differentiation of morphospecies of the Pratylenchus spp. in New Zealand maize fields. 

Characteristics Morphospecies 1 Morphospecies 2 Morphospecies 3 Morphospecies 4 Morphospecies 5 

n 10 10 7 9 8 
Body length ( μm) 474.0 (402.4–556.4) 454.0 (382.8–514.9) 526.1 (503.6–548.9) 417.4 (393.8–435.4) 531.2 (458.8–556.4) 
a (L/W) 23.8 (19.7–28.8) 24.7 (21.6–27.7) 26.6 (25.2–28.4) 23.6 (19.9–25) 25.2 (22–29) 
b (L/I) 4.3 (3.5–4.9) 4.3 (3.7–4.6) 4.7 (4.7–4.8) 4.2 (3.9–4.5) 4.3 (3.5–5.2) 
c (L/T) 19.7 (16.7–22.1) 20.7 (19–22.2) 20.5 (19.3–21.7) 16.6 (13.6–20.8) 22.3 (20.1–25.5) 
c’ (T/ABD) 1.9 (1.4–2.5) 2.0 (1.7–2.3) 2.3 (2.2–2.5) 2.3 (1.8–2.8) 1.9 (1.3–2.4) 
V% (V/L ∗100) 79.8 (72–82.6) 81.2 (76.6–83.5) 76.4 (75.6–77.4) 78.2 (76.4–80) 79.1 (77.6–80.9) 
Stylet ( μm) 17.6 (15.8–19.7) 17.7 (17.1–18.7) 18.6 (18–19.2) 16.6 (15.7–17.5) 17.8 (16.2–19.9) 
Heat-killed female Slightly ventrally 

curved or straight 
Moderately ventrally 

curved or straight 
C-shaped curved Moderately slender, 

or straight 
Almost straight 

Lip annuli Two Three Three Three Three 
Stylet knob Rounded, anteriorly 

intended 
Rounded Broadly rounded, 

anteriorly flattened 
Broadly rounded Well-separated 

Tail terminus Round, no 
annulation 

Crenate with 
annulation 

Truncated, phasmid 
in mid tails 

Rounded with a 
smooth tip 

Symmetrically conoid 

Males Absence Absence Absence Presence Presence 
Spicule - - - 16.5–16.9 14.4–19.3 

n - number of nematodes measured; L- body length, W- maximum body diameter; I- intestine length from the anterior end; T-tail length; ABD- body diameter 
at anus; V- distance to vulva from the anterior end 
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ariation is observed in the stylet length of the specimens ex-
mined. The stylet length in females from New Zealand popu-
ation ranges from 16 to 19.9 μm, and in males, it ranges from
5.8 to 17.1 μm. This contrasts with the type locality of P.
ratensis in The Netherlands, where the stylet length is consis-
ently 14–15 μm (Loof 1974 in CIH Descriptions of PPNs, 4,
 52). The stylet length in Pratylenchus species has been noted
s a stable morphological character (Roman and Hirschmann
969 , Janssen et al. 2017a ). The larger stylet measurements
bserved in the New Zealand specimens, therefore, are un-
ikely to be the result of environmental variability. This sug-
ests that the population may represent a distinct morpholog-
cal variant within the known species boundaries. Given that
pecies such as P. penetrans and P. pratensis are currently re-
arded as species complexes, it is probable that the specimens
ncountered in this study belong to cryptic species within these
omplexes. These differences in stylet length, along with vari-
tions in tail morphology, suggest that while the population in
ur study falls within the P. pratensis species complex, it may
epresent a distinct taxon within this group. Future studies
eed to be done to clarify this issue. 
Additionally, the ecological context of the populations de-

cribed in this study differs from that of the original type lo-
ality of P. pratensis , which is typically found in moist mead-
ws or swampy areas of Europe (Loof 1960 ). In contrast,
he specimens examined in this study were collected from

art/ovae140_f1.eps


Molecular characterization of root-lesion nematode, Pratylenchus species 5 

Figure 2. Photomicrographs of the Pratylenchus spp. identified in New Zealand maize fields; A-anterior part (rounded stylet knobs indented on the 
anterior surfaces), H-posterior part (rounded tail terminus has no annulation) of morphospecies 1 female; B-anterior part (rounded stylet knobs), 
I-posterior part (crenated tail terminus with annulation) of morphospecies 2 female; C-anterior part (broadly rounded almost anteriorly flattened basal 
knob), J, K-posterior part (slightly conical to w ards the end and truncated terminus). A phasmid in mid-tail of morphospecies 3 female; D-anterior part 
(basal knob broadly rounded), L-posterior part (tail is a long-rounded shape with a smooth tip) of morphospecies 4 (female); E-anterior part (basal knob 
broadly rounded), M-posterior part (with bursa irregularly crenate and en v eloping tail tip) of morphospecies 4 male; F-anterior part (well-separated basal 
knobs), N-posterior part (symmetrically conoid tail terminus) of morphospecies 5 female; and G-anterior part (well-separated basal knobs.), O-posterior 
part (bursa en v eloping the tail) of morphospecies 5 male (scale bars = 20 μm). 
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cultivated maize fields, suggesting potential ecological diver- 
gence. Given the rarity of P. pratensis in Europe and Asia and 

its typical association with wild grasses in natural environ- 
ments, the population described here might be more closely 
related to or represent another species within the P. pratensis 
complex. 

The molecular evidence from the LSU (Fig. 3 ) and ITS gene 
( Supplementary Fig. S1 ) regions shows a close relationship 

with P. pratensis populations, but the subtle morphological 
differences, particularly in stylet length and tail shape, could 

reflect intraspecific variation or, alternatively, indicate that this 
population belongs to a yet undescribed species within the 
Pratensis group. Further investigations, including more exten- 
sive molecular and morphological analyses, would be neces- 
sary to clarify the taxonomic status of this population and 
o determine whether it represents a new species within the
ratylenchus genus. 

revalence of Pratylenchus species in New Zealand 

aize 

he prevalence of Pratylenchus spp. across sampled maize 
elds in New Zealand revealed differences in prevalence 
Fig. 5 ). Pratylenchus neglectus and P. crenatus were the most
idely distributed species (Fig. 5 A). Conversely, P. thornei and

. pratensis were found in the Canterbury region, while P.
enetrans was detected only in the Waikato region. In this
tudy, the prevalence of Pratylenchus species could be influ- 
nced by soil types and cropping history. Pratylenchus thornei 
as detected in three locations, characterized by loamy soils
ut different soil orders. In Lincoln, with Pallic (40%) and

art/ovae140_f2.eps
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Figure 3. B a y esian tree inferred of P ratylenchus sequences LSU D2/D3 fragment of 28S rDNA under GTR + G + I model. T he posterior probabilities of 
> 50% are given in appropriate clades. Newly obtained sequences from New Zealand maize fields are indicated with arrows. 
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ecent (60%) soils, continuous maize cropping likely con-
ributed to its persistence. In Darfield, where Pallic soils are
ominant with stony loamy textures, P. thornei was found
fter maize cropping, followed by oat seedlings. In Lesston,
here Pallic (75%) and Gley (25%) soils with loamy-clay tex-

ures are present, P. thornei thrived, particularly with crop
otations like maize and winter oats. In Dorie, P. pratensis
as found in loamy Pallic soil, highlighting its adaptability

o maize fields, especially after grass. Although less studied,
ts presence in loamy soils aligns with known patterns of
ematode distribution. Pratylenchus penetrans was observed
n Cambridge, Matamata, and Otorohanga, areas with al-
ophanic soils and continuous maize cropping, which likely
upported its establishment. However, P. crenatus and P. ne-
lectus prevailed in all fields that were sampled, except in
ahuna, where the organic soil order (peat soil) is present
nd no Pratylenchus was detected. The absence of root sam-
ling in this study limits the understanding of Pratylenchus
pecies in the root systems of maize. Future studies should in-
lude root data, alongside soil samples, for a more comprehen-
ive understanding of their distribution. The co-occurrence
f species and their abundance were not detailed but iden-

art/ovae140_f3.eps
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Figure 4. B a y esian tree inferred of P ratylenchus sequences COX1 of mtDNA under GTR + G model. T he posterior probabilities of > 50% are giv en in 
appropriate clades. Newly obtained sequences from New Zealand maize fields are indicated with arrows. 
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tified and confirmed through molecular and morphological 
analyses. 

All these identified species are also reported in maize fields 
in different countries such as the USA, Australia, China, and 

the UK (Beane 1985 , Thompson et al. 2008 , Thompson et 
al. 2010 , Simon et al. 2018 , Xia et al. 2021 , Simon et al.
2023 , Thapa et al. 2023 ). Reported Pratylenchus species are 
polyphagous and can infect a range of other crops such as 
cereals, fruits, vegetables, forage crops, industrial crops, cot- 
on, coffee, potatoes, and ornamental plants, as well as weed
pecies (Castillo and Vovlas 2007 , Stirling 2023 ). In this study,
 . neglectus and P . crenatus species were observed to be dis-

ributed within the New Zealand maize fields studied, and 

heir abundance was also higher above 1000 kg −1 of soil in
any locations. 
Both nematode species, P. neglectus and P. crenatus were 

dentified as potential pathogens and were associated with re- 
uced growth in cereal crops, especially in maize and wheat

art/ovae140_f4.eps
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Figure 5. P re v alence of P ratylenchus species in sampled maiz e fields of Ne w Zealand (A) circles indicate the P . neglectus and P . crenatus pre v alence; (B) 
star indicate P. penetrans , rectamgles indicate P. thornei , and triangles indicate P. pratensis . In (A) star; (B) circles indicate the species that did not pre v ail. 
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Castillo and Vovlas 2007 , Simon et al. 2023 ). The New
ealand crop production sector is potentially at risk with
PN. Particularly Pratylenchus species reported in this study
ince they can infest multiple hosts (Stirling 2023 ). For in-
tance, P. penetrans is associated with < 400 different plant
pecies (Ozbayrak et al. 2019 ). Pratylenchus thornei was re-
orted in many countries as a significant pathogen to cere-
ls, especially in wheat; for example, in Australia it is caus-
ng up to 85% yield losses in cereals (Knight 1996 , Nicol
t al. 1999 ). Additionally, P. thornei was reported in Canter-
ury wheat fields with a higher abundance (above 2000 kg −1 

f soil) in New Zealand (Thiellier and Kularathna 2023 ),
hich is the threshold in Australian wheat (Thompson et al.
010 ). 

onclusions 

n conclusion, the findings of the study confirm that the Praty-
enchus species associated with New Zealand maize are P. ne-
lectus , P. crenatus , P. thornei , P. penetrans , and P. pratensis .
he species distribution of P. crenatus and P. neglectus as the
ost prevalent species, along with localized distributions of
 . thornei , P . pratensis , and P . penetrans , suggests potential re-
ional variations in nematode populations, emphasizing the
eed for tailored management approaches based on local con-
itions. 
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