

#### **Lincoln University Digital Thesis**

#### **Copyright Statement**

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- you will use the copy only for the purposes of research or private study
- you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate
- you will obtain the author's permission before publishing any material from the thesis.

# Proteomic analysis of the cold stress response in Campylobacter jejuni

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science at Lincoln University, Canterbury, New Zealand

Zilun Shi

2014

# **Acknowledgements**

I am using this opportunity to express my gratitude to everyone who supported me throughout this master research project.

I am extremely grateful to my supervisors, Dr Malik A. Hussain, Mr Christpher Dawson and Dr Stephen On, for guiding me through this interesting, sometimes difficult research process. I am thankful for giving me the opportunity to work on this project. I sincerely appreciate our meetings, our discussions and your valuable pieces of advice.

My gratitude also goes to AgResearch proteomic laboratory in Lincoln, Lincoln University's Food Microbiology laboratory and ESR research laboratories in Christchurch. Thank you very much for technical support. Special thank you to Dr Stefan Clerens from AgResearch for iTRAQ labelling and collection of mass spectral data, and special thank you also to Omega Amoafo from Lincoln Universityand Angela Cornelius from ESR, the study would not happen without your assistance.

I would also like to thank Christopher Dawson and Janette Busch for editing and correcting my writing. Thank you to all the postgraduate students who have supported me at all times.

Finally, a very big thank you must go to my lovely wife, Yanping, for her understanding and encouragement right from the research project start to finish and also my parents for their support at all times.

i

# **Table of Contents**

| Table of Conte   | ents                                                                                                                                                                                             | ii                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| List of Tables.  |                                                                                                                                                                                                  | v                    |
| List of Figures  | S                                                                                                                                                                                                | vi                   |
| Abbreviations    | s Used                                                                                                                                                                                           | vii                  |
| Abstract         |                                                                                                                                                                                                  | ix                   |
| Chapter 1 li     | ntroduction                                                                                                                                                                                      | 1                    |
| Chapter 2 L      | iterature Review                                                                                                                                                                                 | 4                    |
| 2.2 N<br>2.3 C   | History and taxonomy of <i>Campylobacter</i> Morphological and biochemical characteristics of <i>C. jejuni C. jejuni</i> as a pathogen  Clinical significance of <i>Campylobacter</i> infections | 4<br>6<br>8          |
| 2.3.2 P          | Pathogenesis of <i>C. jejuni</i> 9                                                                                                                                                               |                      |
|                  | Epidemiological aspects of <i>C. jejuni</i> Prevalence of <i>Campylobacter</i> infections11                                                                                                      | 11                   |
| 2.4.2 T          | ransmission of <i>C. jejuni</i> 12                                                                                                                                                               |                      |
| 2.6              | Survival of <i>C. jejuni</i> outside of host<br>General survival mechanisms of <i>C. jejuni</i><br>Viable but non-culturable states of <i>C. jejuni</i> 18                                       | 14<br>17             |
| 2.6.2 T          | Two-component regulatory system of <i>C. jejuni</i> 19                                                                                                                                           |                      |
| 2.8 S<br>2.9 S   | Survival at low temperatures Strain dependence of cold tolerance for <i>C. jejuni</i> Searching for cold stress response mechanisms Transcriptomic approach24                                    | 20<br>22<br>24       |
| 2.9.2            | Genetic engineering approach27                                                                                                                                                                   |                      |
| 2.9.3 F          | Fatty acid composition analysis approach29                                                                                                                                                       |                      |
| 2.10 P<br>2.10.1 | Proteomic study of <i>Campylobacter</i> General microbial proteomic applications30                                                                                                               | 30                   |
| 2.10.2           | Development of microbial proteomic technology31                                                                                                                                                  |                      |
| 2.10.3           | Proteomic applications at <i>Campylobacter</i> 32                                                                                                                                                |                      |
| 2.10.4           | Searching for cold shock proteins in <i>C. jejuni</i> 34                                                                                                                                         |                      |
| Chapter 3 N      | Vaterials and Methods                                                                                                                                                                            | 36                   |
| 3.2 P<br>3.3 C   | Bacterial strains<br>Preparation of bacterial starter cultures<br>Cold stress exposure<br>Assessment of viability                                                                                | 36<br>36<br>37<br>39 |

| 3.5       | Preparation of protein sample                                                       | 39 |
|-----------|-------------------------------------------------------------------------------------|----|
| 3.6       | Protein quantification                                                              | 40 |
| 3.7       | Acetone precipitation of protein samples                                            | 40 |
| 3.8       | 1D electrophoresis for whole-cell proteins                                          | 41 |
| 3.9       | Gel staining                                                                        | 41 |
| 3.10      | Gel imaging and processing                                                          | 42 |
| 3.11      | Quantitative analysis of protein expression using iTRAQ labelling                   |    |
| protec    |                                                                                     | 42 |
| 3.11.1    | Sample protein quantitation and purification42                                      |    |
| 3.11.2    | Digestion and labelling of the samples42                                            |    |
| 3.11.3    | SCX (Strong Cationic Exchange) fraction43                                           |    |
| 3.11.4    | LC-MS/MS (liquid chromatography-mass spectrometry)43                                |    |
| 3.11.5    | iTRAQ data analysis44                                                               |    |
| Chapter 4 | Viability of Three <i>C. jejuni</i> Strains at 4°C                                  | 45 |
| 4.1       | Methods                                                                             | 45 |
| 4.2       | Viability assessment results                                                        | 45 |
| 4.3       | Discussion                                                                          | 48 |
| Chapter 5 | Proteomic Study Cold Shock and Adaptation in C. jejuni NCTC 11168                   | 50 |
| 5.1       | C. jejuni NCTC 11168 as a reference strain                                          | 50 |
| 5.2       | Proteomics analysis of <i>C. jejuni</i> NCTC 11168                                  | 50 |
| 5.2.1     | 1D protein profile of <i>C. jejuni</i> NCTC 11168 during cold shock and             |    |
| adapta    | tion51                                                                              |    |
| 5.2.2     | Proteomic alteration of <i>C. jejuni</i> 11168 during cold shock and                |    |
| adapta    | tion53                                                                              |    |
| 5.3       | Discussion                                                                          | 63 |
| 5.3.1     | Changes in 1D protein banding patterns under cold stress63                          |    |
| 5.3.2     | Comparative proteomic analysis of cold stress response in <i>C. jejuni</i>          |    |
|           | 116863                                                                              |    |
| 5.3.3     | Conclusion68                                                                        |    |
| Chapter 6 | Proteomic study of Cold Shock and Adaptation in Two Waterborne                      |    |
| •         | . jejuni strains                                                                    | 70 |
| 6.1       | C. jejuni SVS 5001 and SVS 5141                                                     | 70 |
| 6.2       | Proteomic analysis of <i>C. jejuni</i> SVS 5001 and SVS 5141                        | 70 |
| 6.2.1     | 1D profile of <i>C. jejuni</i> SVS 5001 and SVS 5141 during cold shock and          |    |
|           | tion71                                                                              |    |
| 6.2.2     | Different protein expression in <i>C. jejuni</i> SVS 5001 and SVS 5141 under        |    |
|           | ress                                                                                |    |
| 6.2.3     | Functional classification of significantly changed proteins in <i>C. jejuni</i> SVS |    |
|           | nd SVS 5141 under cold stress90                                                     |    |
| 6.3       | Discussion                                                                          | 95 |
|           |                                                                                     |    |

|            | 1D protein banding pattern changes in <i>C. jejuni</i> SVS 5001 and SVS 5141 cold stress95 | j        |
|------------|--------------------------------------------------------------------------------------------|----------|
| 6.3.2      | Comparative proteomic analysis of <i>C. jejuni</i> cold shock responses96                  | )        |
|            | Comparative analysis of two closely related <i>C. jejuni</i> strains' cold on102           | <u>.</u> |
| Chapter 7  | Final Remarks                                                                              | 111      |
| 7.1        | General discussion                                                                         | 111      |
| 7.2        | Conclusions                                                                                | 114      |
| 7.3        | Future directions                                                                          | 115      |
| References |                                                                                            | 117      |
| Appendix 1 | :Protein Quantification                                                                    | 132      |
| Δnnendix 2 | · One-way ANOVA Statistical Test Cell Death Rate                                           | 134      |

# **List of Tables**

| Table 2.1 Classification of the genus Campylobacter    5                                  |
|-------------------------------------------------------------------------------------------|
| Table 2.2 Prevalence of <i>C. jejuni</i> in retail poultry meat in various countries 16   |
| Table 3.1 Three C. jejuni strains used in the study    36                                 |
| Table 3.2 Timeline for viability assessment and preparation of cell protein extracts      |
|                                                                                           |
| Table 4.1 Cell death rate of the three strains at different time points 46                |
| Table 5.1 C. jejuni NCTC 11168 proteins significantly affected by cold stress         57  |
| Table 5.2 Functional grouping of proteins significantly changed in <i>C. jejuni</i> NCTC  |
| 11168 in response to cold temperatures                                                    |
| Table 6.1 C. jejuni SVS 5001 protein alteration as affected by cold stress                |
| Table 6.2 Protein in <i>C. jejuni</i> SVS 5141 affected by six days of cold storage 87    |
| Table 6.3 Functional grouping of significantly changed proteins in <i>C. jejuni</i> SVS   |
| 5001 in response to cold stress 92                                                        |
| Table 6.4 Functional grouping significantly changed proteins in <i>C. jejuni</i> SVS 5141 |
| in response to cold temperatures                                                          |
| Table 6.5 Difference in protein expression of <i>C. jejuni</i> NCTC 11168 and SVS 5001 in |
| response to cold shock                                                                    |
| Table 6.6 Difference in protein expression of <i>C. jejuni</i> SVS 5001 and SVS 5141 in   |
| response to 6 days cold exposure                                                          |

# **List of Figures**

| Figure 2.1 <i>C. jejuni</i> spiral (A) and coccoid (B) form                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.2 Possible sources of <i>C. jejuni</i> contamination                                                                                        |
| Figure 2.3 Survival curves of <i>C. jejuni</i> during incubation in PBS at 4°C (A) and 20°C (B)                                                      |
| Figure 2.4 Survival curves of representative clinical and poultry-derived <i>C. jejuni</i> strains at 4°C                                            |
| Figure 2.5 Survival of two <i>C. jejuni</i> wild types strains (F38 and 81Am) and their <i>pnp</i> mutant derivatives (F38pnp and 81Ampnp)           |
| Figure 4.1 Survival curve of three <i>C. jejuni</i> strains SVS 5141, SVS 5001 and NCTC 11168 at 4°C under microaerophilic conditions for eight days |
| Figure 5.1 1D protein profiles of <i>C. jejuni</i> NCTC 11168 collected at 0 h, 6 h, Day 1,  Day 2, Day 6 and Day 8                                  |
| Figure 5.2 236 proteins of <i>C. jejuni</i> NCTC 11168 identified by iTRAQ labelling proteomic analysisin the cold exposure experiment               |
| Figure 6.1 1D Protein profiles of <i>C. jejuni</i> SVS 5001 collected at 0 h, and Day 1, Day 2, Day 6 and Day 8                                      |
| Figure 6.2 1D Protein profiles of <i>C. jejuni</i> SVS 5141 collected at 0 h, 6 h and Day 1,  Day 2, Day 6 and Day 8                                 |
| Figure 6.3 227 proteins of <i>C. jejuni</i> SVS 5001 identified by iTRAQ labelling proteomic analysis in this cold exposure experiment               |
| Figure 6.4 235 proteins of <i>C. jejuni</i> SVS 5141 identified by iTRAQ labelling proteomic analysis in the cold exposure experiment                |

# **Abbreviations Used**

1D One-dimensional

2-D DIGE Two-dimensional differential gel electrophoresis

2DE Two-dimensional electrophoresis

ATP Adenosine triphosphate

BA Blood agar

BHI Brain-heart infusion

CDC Centers for Disease Control and Prevention

CDT Cytolethal distending toxins

CSD Cold shock domain

CSP Cold shock protein

Da Dalton

EFSA European Food Safety Authority

ESI Electrospray ionization

ESR Environmental Science and Research

EU European Union

G2/M Pre-mitotic and mitotic phase

GC Guanine-cytosine

iTRAQ Isobaric tag for relative and absolute quantitation

LC Liquid chromatography

mRNA Messenger ribonucleic acid

MALDI Matrix-assisted laser desorption/ionization

MLST Multilocus sequence typing

MS Mass spectrometry

MS/MS Tandem mass spectrometry

NCTC National Collection of Type Cultures

OD Optical density

PAGE Polyacrylamide gel electrophoresis

PBS Phosphate buffered saline

PNPase Polynucleotide Phosphorylase

rpm Round per minute

rRNA Ribosomal ribonucleic acid

RO Reverse osmosis

spp. Species (multiple)

SCX Strong Cationic Exchange

SDS Sodium dodecyl sulfate

SFA Saturated fatty acids

SVS Statens Veterin×re Serumlaboratorium (Danish

Veterinary Laboratory), Denmark

TCA Tricarboxylic acid cycle

TCS Two-component signal transduction system

TOF Time of flight

UFA Unsaturated fatty acids

UK United Kingdom

USA United States

UV Ultraviolet

VBNC Viable but non-culturable

### **Abstract**

Campylobacter jejuni is recognised as one of the most important food-borne pathogens, as it is responsible for causing more cases of gastroenteritis than any other identified bacterial pathogen. Despite the importance of C. jejuni as a human pathogen, little is known about how it copes with different stress factors and survives in the environment. To control the prevalence of food-borne pathogens in food, low temperatures have been widely applied as a practical intervention during food processing and storage. To ensure the cold temperature intervention works optimally, it is important to understand the cold stress response mechanisms employed by C. jejuni. There are a number of integrated genomic/transcriptomic studies that have made progress towards discovering the genes involved in C. jejuni cold tolerance and provided the first step to decodinge the mechanisms employed by C. jejuni to adapt to low temperatures. However, proteomic studies, which reflectthe main components of the physiological metabolic pathways of cells, in C. jejuni's cold shock and adaptation at refrigeration temperatures, are somewhat lacking. The aim of this study, therefore, was to investigate the cold stress responses of this pathogen using iTRAQ labelling comparative proteomic analysis. Through comparing the alterations in protein expression in three C. jejuni strains during cold shock and cold adaptation, the study found this pathogen dramatically altered its protein expression in response to cold shock. An increased level of ribosomal proteins and other proteins related to protein synthesis in cold-shocked C. Jejuni cells suggested that protein synthesis in C. jejuni was more active when it processed a cold shock response, compared with growing at an optimal temperature. Furthermore, the proteins involved in energy production were present at higher levels in cold-shocked cells. This suggested that C. Jejuni exhibited an enhanced demand for energy in response to cold shock. The comparative proteomic study also revealed the strategies used by different C. jejuni strains to respond to cold stress. This may provide an explanation for the strain-dependent variability of this pathogen for cold tolerance.

# **Chapter 1 Introduction**

Campylobacter is a genus of Gram-negative bacteria that are microaerophillic, predominantly spiral-shaped and motile. Since the connection between Campylobacter and human diarrhoea was revealed in the 1970s, Campylobacter has emerged as a major food-borne pathogen and has rapidly became known as one of the most common causative agents of bacterial gastroenteritis in humans around the world. The symptoms of a Campylobacter infection normally start with cramping pain in the abdomen, followed by watery diarrhoea. Some cases may develop serious complications like septicaemia, meningitis and polyneuropathic disorders such as the Guillain-Barre syndrome (Skirrow, 1994).

Although a number of species in the genus *Campylobacter* are able to infect humans, the majority of human *Campylobacter* infections are caused by *Campylobacter jejuni*, which accounts for approximately 90% of campylobacteriosis cases (Healing et al., 1992). Similar to other species in the genus *Campylobacter*, *C. jejuni* is a microaerophile with a narrow range of growth temperatures, from 31 to 45°C (Hazeleger et al., 1998; Park, 2002). It is extremely sensitive to environmental conditions and cannot proliferate outside of a host.

Most food-borne pathogens are relatively robust organisms, since they need to be resistant to environmental stresses and survive harsh conditions before they reach the human gastrointestinal tract and cause an infection. In this context, *C. jejuni* presents an interesting conundrum: generally regarded as fragile bacterium, *C. jejuni* causes more cases of human gastroenteritis than any other enteric bacterial pathogens (USFDA, 2003).

It is important to understand the stress response mechanisms employed by *C. jejuni* to cope with various environmental stresses, since efficient interventions are reliant on knowledge of microbial stress response mechanisms. Major environmental stresses for *C. jejuni* are cold stress, heat stress, aerobic stress, Ultraviolet light (UV)

stress and acid stress. Among them, the cold stress response of *C. jejuni* is the one that has attracted many researchers' attention, as low temperature is a widely used intervention to control bacterial growth in foods. The ability of *C. jejuni*, a leading food-borne pathogen, to survive in cold temperatures is obviously of relevance to food safety and public health.

In comparison with other enteric bacteria, *C. jejuni* appears to have very limited capacity for regulating gene expression in response to environmental stresses (Park, 2002). What is more, many key regulators of stress defence systems found in other enteric bacteria are absent in this pathogen. These include the major cold-shock protein, CspA, which acts as an RNA chaperone to allow more efficient protein translation at cold temperatures (Qoronfleh et al., 2000), the oxidative stress defences, SoxRS and OxyR, and the sigma factor, RpoS, for stress-defence gene regulation under hostile environmental conditions (Schwab et al., 2005).

Despite lacking many of the classical bacterial stress responses, *C. jejuni* has been found it is widely distributed in the environment outside the host and survives for extended periods at low temperatures. This pathogen has been demonstrated to maintain its motility, oxygen consumption, protein synthesis and survival at 4°C (Lazaro et al., 1999). In addition, *C. jejuni* strains have also been found to exhibit a sudden decrease in growth rate from maximum to zero within a few degrees below the minimum growth temperature (Hazeleger et al., 1998). Survival, and a dramatic decrease in growth rate at low temperatures, suggests that *C. jejuni* does elicit a cold shock response that regulates gene expression.

Previous studies have also found there is substantial variability among *C. jejuni* strains for tolerance to cold (Jones et al., 1991; Terzieva et al., 1991; Chan et al., 2001; Xiong, 2009). However, it is still not fully understood what causes the strain-dependent variability of this pathogen for cold tolerance. Researchers have made progress in unravelling the cold stress response mechanisms of *C. jejuni* through discovering the genes involved incold tolerance (Stintzi and Whitworth, 2003; Moen et al., 2005). However, due to protein post transcriptional modification, genomics

and transcriptomics have their limitations in reflecting the expression of proteins, which are the actual functional molecules in the cell.

In order to analyze the protein abundance influenced by temperature downshift and to more precisely study cold stress response mechanisms in *C. jejuni*, we conducted a series of cold survival ability assessments and gel-free proteomic analysis. Our study focuses on how *C. jejuni* cold stress tolerance is affected in the different strains, which proteins are up- or down-expressed during processing a cellular cold stress response and whether the protein abundance under cold stress is correlated with the abundance of mRNA found in the previous transcriptomic studies (Stintzi and Whitworth, 2003; Moen et al., 2005)

#### This project was designed to:

- ❖ Evaluate the effect of refrigeration on the survival of three different strains of C. jejuni.
- ♦ Analyze and compare the cold stress response on a proteomic scale in three different strains of *C. jejuni* using iTRAQ labelling proteomic analysis.

## **Chapter 2** Literature Review

#### 2.1 History and taxonomy of *Campylobacter*

The first record concerning Campylobacter spp. was believed to be written in 1886 by Theodore Escherich who described non-culturable spiral-shaped or Vibrio-like bacteria in stool samples of children with diarrhoea (Kist, 1986). In 1913, these microorganisms were first isolated by McFadyean and Stockman from aborted bovine foetuses (Kist, 1986). They had been classified in the genus Vibrio at that time and they were believed to cause abortion in cattle. Later in 1927 and 1944, other species of this genus were isolated from the faeces of cattle and pig with diarrhoea, and named Vibrio jejuni and Vibrio coli, respectively (Vandamme, 2000; Vandamme et al., 2010). However, microbiologists found those microorganisms are different with true Vibrio spp. in DNA base GC content. These microorganisms have lower GC content (29-36 mol %) than Vibrio (40-53 mol %). In 1963, Sebald and Veron first proposed the genus Campylobacter based on this genus having a lower GC base composition, non-fermentative metabolism and microaerophilic growth requirements. Since then, the genus Campylobacter has been distinguished from the "true" Vibrio spp. (On, 2001).

Nowadays, it is generally accepted that the *Campylobacter* genus belongs to the epsilon subdivision of the *Proteobacteria* classification based on characterisation of its 16S rRNA sequences (Garrity et al., 2005). Other members of this subdivision include *Arcobacter*, *Helicobacter* and *Wolinella* genera. The classification of the genus *Campylobacter* is given in Table 2.1.

 Table 2.1 Classification of the genus Campylobacter

| Domain | Bacteria              |  |
|--------|-----------------------|--|
| Phylum | Proteobacteria        |  |
| Class  | Epsilonproteobacteria |  |
| Order  | Campylobacterales     |  |
| Family | Campylobacteraceae    |  |
| Genus  | Campylobacter         |  |

Since the inception of the genus *Campylobacter* in 1963, more and more *Campylobacter*-like organisms have been isolated from a variety of human, animal, and environmental sources and some of those species have been described and added to the *Campylobacter* genus. Currently, the genus consists of 21 species with a further seven subspecies (CDC, 2010, Dec 16) classified by comparing of the 16S rRNA gene sequences. *Campylobacter* spp. today were well known as bacteria pathogens causing the largest number of cases of diarrhoea in humans (Allos, 2001).

The first time a connection was made between this pathogen and human diarrhoea was in 1973 when Butzler et al. compared bacteria recovered from diarrhoea patients' stools and stools from people without diarrhoea. A total of 900 stools from diarrhoea patients and 1000 stools from people without diarrhoea had been examined. The "related vibrios" were recovered from 13 stools from 1000 people without diarrhoea, indicating a carrier state, as well as 56 stools from patients with diarrhoea, pointing to the link between the microorganism and the disease (Butzler et al., 1973). With the development of selective growth media in the 1970s, the correlation between this pathogen and human diarrhoea had been revealed. *Campylobacter* spp. have been generally been recognized as a cause of human disease since 1980, although they have been known to cause disease in animals since the early 1900s.

Among the 21 species and seven subspecies in the genus, *C. jejuni, C. jejuni* subsp. *jejuni, C. jejuni* subsp. *doylei, C. coli, C. lari, C. upsaliensis* and *C. helveticus* are most

commonly isolated from human and animal diarrheal specimens (On, 2001). In the case of human *Campylobacter* infections, *C. jejuni* and its subspecies are responsible for approximately 90% of the cases of campylobacteriosis (Frost et al., 1999). All the work described in this thesis focused on *C. jejuni* with the following lineage: Superkingdom: Bacteria, Phylum: proteobacteria, Subphylum:  $\delta/\epsilon$  subdivisions, Class: Epsilonproteobacteria, Order: *Campylobacterales*, Family: *Campylobacteraceae*, Genus: *Campylobacter*, Species: *Campylobacter jejuni*.

# 2.2 Morphological and biochemical characteristics of *C. jejuni*

*C. jejuni* is a Gram-negative, non-spore forming; slender spirally curved rod bacterium that is approximately 0.2 to 0.8 μm wide and about 0.5 to 5μm long (Vandamme, 2000). They also appear as S-shaped and V-shaped gull-wings when two or more cells form short chains. Although normally a curved-rod shape, other forms of *C. jejuni* such as spherical or coccoid occur and appear in response to stress or deleterious conditions (Fitzgerald et al., 2008; Debruyne et al., 2008) (Figure 1). Like most species in this genus, *C. jejuni* is motile and has a corkscrew-like motion, since it has a polar flagellum at each end of a cell.

The members of *Campylobacter* spp. are considered to be fastidious microorganisms, as they require a microaerophilic atmosphere for optimal growth (Prescott and Munroe, 1982; Fitzgerald et al., 2008). The optimal atmosphere for cultivation of *C. jejuni* contains 5-10% oxygen and 1-10% carbon dioxide (Luechtefeld et al., 1982; Bolton and Coates, 1983). Similar to all species in the genus, *C. jejuni* has a rather narrow range of growth temperatures, between 30°C and 45°C (Hazeleger et al., 1998; Park, 2002), with an optimal growth temperature of 42°C (Park, 2002). *Campylobacter* spp. neither ferment nor oxidize carbohydrates; instead, they obtain energy from amino acids, or tricarboxylic acid cycle intermediates (Vandamme, 2000). Therefore, nutrient-rich media are often used for culturing *Campylobacter*. Oxidase activity is present in all species in the genus except for *C. gracilis*. Most species cannot hydrolyse hippurate, except for *C. jejuni*, *C. jejuni subsp. Doylei* and *C. avium* (Vandamme and Goossens, 1992; Rossi et al., 2009). Therefore, hippurate

hydrolysis has become the most widely used biochemical test to identify *C. jejuni* and differentiate it from other similar species (Hwang and Ederer, 1975).



Figure 2.1 *C. jejuni* spiral (A) and coccoid (B) form

Under transmission electron microscopy, adapted from Lazaro et al., 1999.

## 2.3 C. jejuni as a pathogen

#### 2.3.1 Clinical significance of *Campylobacter* infections

Campylobacter species are regarded as the most important zoonotic enteric bacterial pathogens of humans in developed countries, since they cause more cases of food-borne gastroenteritis each year than any other bacterial pathogen (Silva et al., 2011). Although there are a number of species in the genus Campylobacter, such as C. jejuni, C. coli, C. upsaliensis, C. lari and C. fetus, that are able to cause human campylobacteriosis, the majority of reported human campylobacteriosis cases in developed countries are attributed primarily to C. jejuni. It is responsible for 90% of human Campylobacter infections (Sheppard et al., 2009; Healing et al., 1992).

Campylobacter infections can be initiated by the consumption of as few as 500 bacterial cells (Blaser and Engberg, 2008). The average incubation period of campylobacteriosis is longer than for most other intestinal bacterial infections. The mean incubation period of campylobacteriosis is 3.2 days and the range can be from one to eight days (Blaser, 1997; Butzler, 2004; Blaser and Engberg, 2008). The range of severity of a Campylobacter infection is variable from asymptomatic to severe. The majority of Campylobacter infections are confined to local acute gastroenteritis characterized by nausea, abdominal cramps, diarrhoea and fatigue. Some patients may also vomit.

The symptoms of campylobacteriosis in developed countries are usually more severe than in developing countries (Oberhelman and Taylor, 2000). In developed countries, the typical clinical features of *Campylobacter* infection are acute gastroenteritis with diarrhoea, fever and abdominal cramps (Allos, 2001). The acute gastroenteritis normally lasts 2-3 days, but it may persist for one week or longer. In developing countries, the common symptom of campylobacteriosis is a milder form of gastroenteritis which is characterized by watery, non-bloody, non-inflammatory diarrhoea. Since people in developing countries have earlier exposure to *Campylobacter* that results in higher *Campylobacter*-specific antibody levels, the

clinical symptoms of campylobacteriosis in developing countries are less severe and asymptomatic infections are common (Padungton and Kaneene, 2003).

A *Campylobacter* infection is generally self-limiting and resolves within three to four days after the initial onset (Seal et al., 2007). Fifteen to twenty-five percent of patients may have longer relapses, which can last for several weeks (Allos, 2001; Blaser, 1997; Blaser and Engberg, 2008). After the clinical symptoms disappear, *Campylobacter* cells can still be found from patients' faeces if the patients did not receive antibiotic treatment (Blaser and Engberg, 2008).

Complications of *Campylobacter* infections in humans are rare. However, the complications can be serious and fatal (Skirrow and Blaser, 2000). Based on the site, complications can be divided into two groups: gastrointestinal tract complications and those complications arising secondary to the gastroenteritis. The gastrointestinal tract complications include cholecystitis, pancreatitis and massive gastrointestinal haemorrhages (Allos, 2001; Butzer, 2004). The latter group of complications, which is more frequently reported in the literature, includes bacteraemia, meningitis, endocarditis, septic arthritis, osteomyelitis, abortion and neuromuscular paralysis (Denton and Clarke, 1992; Allos, 2001; Blaser and Engberg, 2008). The most important post-infectious complication of campylobacteriosis is Guillain-Barre Syndrome (GBS), an acute immune-mediated neuromuscular paralysis that may lead to respiratory muscle compromise and death (Seal et al., 2007). Infection with *Campylobacter* commonly precedes GBS. An estimated 20 to 50% of patients with GBS symptoms have had a preceding *Campylobacter* infection (Bart et al., 2008).

#### 2.3.2 Pathogenesis of *C. jejuni*

The pathogenesis of a *C. jejuni* infection involves both host- and pathogen-specific factors. The health status and age of the host and *Campylobacter* specific humoral immunity from previous exposure affect the clinical outcome of a *Campylobacter* infection. Despite its importance as a human pathogen, many virulence determinants of *C. jejuni* have not yet been clearly elucidated. This is partly due to

the lack of an ideal animal model to evaluate the pathogenesis and virulence of this pathogen (Young et al., 2007)

As a food-borne bacterial pathogen, *C. jejuni* has to survive in human stomach acid and highly alkaline bile secretions before it colonizes the distal ileum and colon. Following colonization of the mucus blanket and adhesion to the intestinal cell surfaces, *Campylobacter* reduces the normal absorptive capacity of the intestine by damaging epithelial cell function through direct cell invasion and/or toxin production or, indirectly, by inducing inflammatory reactions in the host (Wooldridge and Ketley, 1997). Thus, flagella-mediated motility, bacterial adherence to intestinal mucosa, invasive capability and the ability to produce toxins have been identified as virulence factors for this pathogen.

The flagellum is an important virulence determinant, which not only provides motility for colonization of *C. jejuni* on the small intestine, but also plays different roles under different chemotactic conditions. Having flagella is essential for this pathogen to survive in the various ecological niches encountered in the gastrointestinal tract. The *Campylobacter* flagellum is composed of two highly homologous flagellins, FlaA, which is the major one and, FlaB, the minor one. They are encoded by two flagellin genes, *fla*A and *fla*B. The *fla*A gene seems to be essential for the invasion of epithelial cells and is responsible for the expression of adherence, colonization of the gastrointestinal tract and invasion of the host cells, consequently, arresting the immune response (Guerry, 2007).

Another important virulence factors of *C. jejuni*, the cytolethal distending toxin (CDT), which is widely distributed among Gram-negative bacteria and the best characterized of the toxins produced by *Campylobacter* CDT holotoxin; it comprises three subunits encoded by the *cdt*A, *cdt*B and *cdt*C genes and causes eukaryotic cells to arrest in the G2/M phase of the cell cycle, preventing them from entering mitosis and, consequently, leading to cell death (Ge et al., 2008). In contrast to CdtB, the roles of CdtA and CdtC are still rather unclear and require further investigation. CdtA and CdtC are thought to be essential for CdtB delivery into the host cell, being responsible for binding the CDT holotoxin to the cell membrane (Lara-Tejero and

Galan, 2001). Subsequently, the CdtB active subunit, which has DNaseI-like activity, induces DNA damage in the host by breaking its double strand (Ge et al., 2008). In fact, to be functionally active, all three *cdt* gene products must be present.

#### 2.4 Epidemiological aspects of *C. jejuni*

#### 2.4.1 Prevalence of *Campylobacter* infections

Although *Campylobacter* spp. have been generally recognized as a cause of human disease only since 1980, they soon became the leading bacterial cause of food-borne illness in industrialized countries. Based on the Community Zoonosis Reports of the European Food Safety Authority (EFSA), since *Campylobacter* overtook *Salmonella* as the main cause of food poisoning in Europe in 2005, campylobacteriosis has been the most commonly reported zoonosis in the European Union (EU). In 2011, campylobacteriosis was the principal cause of zoonotic disease in humans, with 220,209 reported confirmed cases in the EU and with an EU notification rate of 44.2 cases per 100,000 inhabitants (EFSA and ECDC, 2013).

Food-borne campylobacteriosis is the third most common food-borne disease and accounts for 9% of a total of 9.4 million episodes of food-borne illness in the USA in 2010 (Scallan et al., 2011). The Centres for Disease Control and Prevention (CDC) in the USA used data from active and passive surveillance and other sources to estimate that there were 845,000 cases food-borne illness every year. In 2010, alone, there were 8460 hospitalizations and 76 deaths caused by *Campylobacter* (Scallan et al., 2011).

In the UK, *Campylobacter* is considered the most common cause of food borne illness, responsible for 321,000 estimated cases in England and Wales in 2008, with more than 15,000 hospitalizations and 76 deaths (Silva et al., 2011). Due to the huge health burden caused by campylobacteriosis, the UK Government increased the priority of "innovation strategy for *Campylobacter*" to tackle this food-borne disease (Food Standards Agency, 2010).

In New Zealand, since campylobacteriosis first became notifiable in 1980, there has been a steady annual increase in the number of reported cases up until 2007. In May 2006, New Zealand's campylobacteriosis epidemic reached the highest point when the annualized national notification rate exceeded 400 per 100,000 for the first time, based on 15,553 cases in the preceding 12 months (Baker et al., 2006a). The rate was one of the highest reported by any country, being more than three times higher than in Australia and 30 times higher than in the USA over the same period (Baker et al., 2006b). Although the campaign to reduce contamination of *Campylobacter* in food has resulted in campylobacteriosis trending down nation-widein last five years, the incidence rate of human campylobacteriosis in New Zealand still remains one of the highest in industrialized countries. There were still 6, 692 notified cases in 2011 in New Zealand, equal to 151.9 cases per 100,000 population (ESR, 2012), which is 10 times higher than the USA with 14.3 reported cases per 100,000 population in 2011 (CDC, 2012).

#### 2.4.2 Transmission of *C. jejuni*

Despite very specific growth requirements, *C. jejuni* is widespread in the environment. *C. jejuni* is a commensal organism found in avian species including domestic poultry, as well as cattle and sheep (Newell, 2002; Devane et al., 2005). The most common hosts of *C. jejuni* are avian species. It is believed that the higher body temperature of avian species provides optimum growing conditions for this pathogen. *C. jejuni* also can be found in river water and causes water-associated outbreaks (Alary and Nadeau, 1990; Hanninen et al., 2003; Richardson et al., 2007). As this organism is unable to grow outside an animal host, the sources of *C. jejuni* in water are believed to be from animals' faeces and sewage effluent (Wong et al., 2006).

There are many potential transmission routes leading to *Campylobacter* infections in humans. The main three routes are ingestion of contaminated food, direct contact with pets or other animals, and drinking contaminated milk and water. Before 1990, raw milk and water were considered to be the main sources for human campylobacteriosis (Mohan, 2011). With more epidemiological studies revealing the

strong correlation between the consumption of chicken meat and *Campylobacter* infections in the 1990s and early 2000s (Butzler and Oosterom, 1991; Tauxe et al., 1997; Corry and Atabay, 2001; Nadeau et al., 2002), the role of chicken in the transmission of human campylobacteriosis have been brought to light. Now, it is generally accepted that ingestion of undercooked meat, especially poultry and poultry products, is the main source of campylobacteriosis in humans (Kwan et al., 2008). An overview of possible sources and transmission routes of *C. jejuni* is illustrated in Figure 2.2.



Figure 2.2 Possible sources of *C. jejuni* contamination

This figure is adapted from Young et al., 2007.

Epidemiological evidence suggests that 50 to 70% of human *Campylobacter* infections are related to consumption of contaminated poultry and poultry products (Altekruse et al., 1999; Allos, 2001). Poultry, as the main source of campylobacteriosis, has not only been identified by traditional epidemiological case control studies, but has also been confirmed by modern molecular epidemiological methods. In New Zealand, attribution models were adapted to MultiLocus Sequence Typing (MLST) surveillance data to quantify the contribution of selected sources to the human *Campylobacter* infection burden. These studies revealed that, between 2005 and 2008, poultry was the leading source of human campylobacteriosis, causing an estimated 58–76%, of notified cases (Mullner et al., 2009). A Scottish study compared genotypes of 5674 clinical isolates of *C. jejuni* with 5837 isolates from potential human infectious sources to quantify the attribution of different sources to human campylobacteriosis. It was confirmed that chicken meat was the principal source of *Campylobacter* infection in humans, which accounted for 58% and 78% of *C. jejuni* infections (Sheppard et al., 2009).

Although *Campylobacter* infection is one of the most common food-borne illnesses in developed countries, outbreaks of *Campylobacter* infections are infrequent (Friedman, 2000). The majority of human campylobacteriosis cases are sporadic. Outbreak of *Campylobacter* infection has different epidemiological characteristics from sporadic cases. While the majority of sporadic cases of campylobacteriosis are related to ingestion of undercooked meat, most of the reported outbreaks have been associated with contaminated water (Jacobs-Reitsma, 2000).

#### 2.5 Survival of *C. jejuni* outside of host

*C. jejuni* colonizes the gastrointestinal tract of birds, animal and humans. In order to survive and cause infection, the bacterium needs to overcome challenges that occur in the environment between the animal and the human hosts. Those challenges include high oxygen exposure, below minimum growth temperature, desiccation and other stress factors (Murphy el al., 2006). Unlike other food-borne pathogens, *C. jejuni* is a fragile organism that is unable to grow at the levels of oxygen found in the air and hence unable to multiply outside the animal host. Despite its inability to grow

outside the host and its apparent sensitivity to stress conditions, this pathogen survives an environment external to the host and is regarded as the most frequent bacterial agent causing gastrointestinal illness in the industrialized world (CDC, 2000).

Food is now recognized as the most frequently implicated vehicle in the transmission of *C. jejuni* to humans in developed countries. Poultry and poultry products are generally accepted as a primary source of human *C. jejuni* infections. Poultry flocks are infected with *C. jejuni*, presumably from the environment, within the first weeks of life and become colonized at high levels of 10<sup>6</sup>-10<sup>7</sup> CFU/g in the caecum (Corry and Atabay, 2001). Contamination of chicken meat with bacteria from the intestines can occur during routine procedures at the slaughter house such as defeathering, evisceration or carcass chilling. These activities were found to be responsible for contamination of the meat with this pathogen (Bashor et al., 2004). The levels of *C. jejuni* isolated from retail poultry products vary greatly in different countries, from 14.8% in Belgium to 87.6% in New Zealand (Table 2.2).

Table 2.2 Prevalence of *C. jejuni* in retail poultry meat in various countries

(Molecular biologically determined only) (Adapted from Suzuki and Yamamoto, 2009)

| Countries   | No. of references | No. of samples | Prevalence<br>of <i>C. jejuni</i><br>(%) | References                                                                         |
|-------------|-------------------|----------------|------------------------------------------|------------------------------------------------------------------------------------|
| New Zealand | 1                 | 205            | 87.6                                     | Wang et al., 2007                                                                  |
| Australia   | 1                 | 30             | 83.3                                     | Abu-Halaweh et al., 2005                                                           |
| Italy       | 1                 | 30             | 74.6                                     | Parisi et al.,2007                                                                 |
| Canada      | 1                 | 749            | 52.4                                     | Valdivieso-Garcia et al., 2007                                                     |
| UK          | 2                 | 120            | 50.7                                     | Bolton et al., 2002                                                                |
| Japan       | 1                 | 424            | 49.1                                     | Suzuki and Yamamoto, 2008                                                          |
| Senegal     | 1                 | 168            | 48.3                                     | Cardinale et al., 2003                                                             |
| Barbados    | 1                 | 94             | 46.6                                     | Workman et al., 2005                                                               |
| USA         | 4                 | 797            | 46.3                                     | Cui et al., 2005; Dickins et al., 2002; Fitch et al., 2005; Oyarzabal et al., 2007 |
| Germany     | 3                 | 221            | 32.3                                     | Adam et al., 2006; Alter et al., 2004; Kullmann and Hager, 2002                    |
| Korea       | 2                 | 552            | 32.0                                     | Han et al., 2007; Hong et al., 2007                                                |
| Spain       | 1                 | 51             | 30.1                                     | Mateo et al., 2005                                                                 |
| Thailand    | 2                 | 87             | 15.7                                     | Meeyam et al., 2004;<br>Padungtod and Kaneene,<br>2005                             |
| Belgium     | 1                 | 612            | 14.8                                     | Ghafir et al., 2007                                                                |

The reported prevalence of *C. jejuni* on raw meat products from other food animal species tended to be lower than those reported on poultry. The prevalence of *C. jejuni* in retail beef has ranged from 0–20% worldwide on the basis of culture and biochemical or molecular identification of species; the average isolated rate from retail beef samples is less than 5% (Bohaychuk et al., 2006; Cloak et al., 2001; US FDA, 2006; Wong et al., 2007). The frequency of *C. jejuni* isolated from retail pork is 9.1%, and from lamb is 6.9% (Wong et al., 2007). This pathogen has also been found to survive in seafood and vegetables, as there have been a number of *Campylobacter* outbreak cases related to seafood and vegetable consumption (Wilson and Moore, 1996; Jacobs-Reitsma, 2000), but such outbreaks are rare.

Aquatic environments are reservoirs for *C. jejuni* (Bolton et al., 1982; Thomas et al., 1999; Levin, 2007). Studies worldwide examining rivers and waterways show that there is significant contamination by *C. jejuni* in water, with sources being sewage outflows, direct faecal deposition and pasture runoff (Eyles et al., 2006; Jones, 2001; Obiri-Danso and Jones, 1999; Savill el al., 2001; Sopwith et al., 2008). This pathogen has also been found to survive in raw milk where it has caused outbreaks (Korlath et al., 1985; Hutchinson et al., 1985).

## 2.6 General survival mechanisms of *C. jejuni*

*C. jejuni* is generally considered to be fragile compared to other food-borne pathogens (Cason and Berrang, 2002), as this organism requires special growing conditions, like microaerobic conditions, and has a narrow growth temperature, ranging from 30°C to 45°C. It is also sensitive to other stress factors, such as sunlight and desiccation.

Compared to *Campylobacter*, most other enteric pathogens, such as *Salmonella* spp. and *Escherichia coli*, have more comprehensive survival mechanisms that help these bacteria survive outside the host before they enter human gastrointestinal tract to cause an infection. Compared with those bacteria, *C. jejuni* lacks many key regulators in its stress defence systems. The key regulators found in *Salmonella* spp. and *E. coli*, but absent in *C. jejuni*, include the oxidative stress defence SoxRS and OxyR, the

osmoprotectants BetAB, GbsAB, OtsAB and ProP, the rpoS-encoded sigma factor stationary phase responsive genes, the major cold shock protein, CspA, the leucine-responsive regulator (Lrp) and the alternative sigma factor, RpoH, that regulates the heat-shock response in *E. coli* (Murphy et al., 2006).

Absence of the commonly occurring survival mechanisms would seem to make it harder for this pathogen to survive and pose a threat to humans. However, *C. jejuni* has been reported to survive in food, such as poultry products and red meat, milk, water and in the environment (Park, 2002). Therefore, survival mechanisms other than those commonly found in other bacteria may be important for *C. jejuni*.

#### 2.6.1 Viable but non-culturable states of *C. jejuni*

When encountering environmental stresses, such as low nutrient availability, fluctuations in temperature and pH or upon entry into the stationary phase, many bacteria can enter a viable but non-culturable (VBNC) state. It has been proposed that *Campylobacter* cells can enter the VBNC state under stress conditions (Rollins and Colwell, 1986). In the VBNC state, a *C. jejuni* cell can change its morphology from a motile curved-rod shape to a coccoid form.

The VBNC state is a survival mechanism used by many bacteria in response to environmental stresses (Oliver, 1993; Colwell and Huq, 1994; Kell et al., 1998; Barer and harwood, 1999). In the VBNC state, pathogens are alive and capable of initiating an infection in humans or colonizing the gut of warm-blooded animals and birds, but its ability to grow in nutrient media is lost.

However, the VBNC state in *Campylobacter* remains the subject of controversy. Many studies found the reversion from coccoid to spiral form occurs in *C. jejuni* following animal passage (Rollins and Colwell, 1986; Saha et al., 1991; Pearson et al., 1993; Tholozan et al., 1999). The morphological reversion in *Campylobacter* cells means infection or colonizing occurs. In contrast, some studies have shown that these results are not always reproducible (Medema et al., 1992; Hazeleger et al., 1995). This conflict may result from strain differences and animal variation (Jones et al., 1991; Medema et al., 1992).

Regardless of the VBNC state of *C. jejuni*to maintain its ability to infectan animal or not, the proposed VBNC state is physiologically important for survival. As proposed by Rollins and Colwell (1986), the VBNC state allows a *Campylobacter* cell to maintain its physical activities until environmental conditions become favourable for growth and cell division. It plays an important role in *C. jejuni*'s survival in the environment.

#### 2.6.2 Two-component regulatory system of C. jejuni

*C. jejuni* has several two-component regulatory systems that are not generally found in other enteric bacteria (Murphy et al., 2006). Those two-component regulatory systems appear to be involved in stress defences through regulating sets of genes to respond to changing environments.

The two-component signal transduction system (TCS) is made of a sensory histidine kinase, located in the cytoplasm with a response regulator located in the cytoplasmic membrane. There are nine response regulators, six histidine kinases and five two-component regulator systems in the genome of *C. jejuni* 11168 (Parkhill et al., 2000). The two-component regulatory system starts when histidine kinase senses a specific environmental stimulus and phosphorylates the response regulators. Phosphorylation causes the response regulator's conformation to change, usually by activating an attached output domain, which then leads to the stimulation (or repression) of expression in the target genes (Stock et al., 1989).

Three of the five TCSs in *C. jejuni* are associated with colonization (Murphy et al., 2006). The RacR-RacS system is responsive to temperature changes. Bras et al. (1999) found that racR mutants and wild type *C. jejuni* have the same growth rate at 37 °C, but the racR mutant demonstrated a decreased growth rate when the temperature increased to 42°C. A TCS involved in oxidative stress resistance in *C. jejuni* has been proposed to involve the genes Cj0889c (histidine kinase) and Cj0890c (response regulator). Mutants of this TCS system have increased sensitivity to peroxide and paraquat stress and showed sensitivity to atmospheric levels of oxygen (Garosi et al., 2003). Although how two-component regulators being involved in

*Campylobacter* stress global response is still waiting to be revealed, the importance of the two-component regulators in *Campylobacter* survival is undoubtable.

#### 2.7 Survival at low temperatures

C. jejuni has a relatively narrow growth temperature, ranging from 30°C to 45°C (Hazeleger et al., 1998; Park, 2002). In the natural environment outside a host, it can be assumed that C. jejuni survives, rather than grows. It was determined that C. jejuni survived for only a few days when incubated at 20°C in surface water, but survival was prolonged to several weeks and months at 4°C in the dark (Buswell et al., 1998; Terzieva and McFeters, 1991; Rollins and Colwell, 1986). The motility, oxygen consumption and protein synthesis of C. jejuni still occurs during its long term survival at low temperatures (Hazeleger et al., 1998). Due to refrigeration and freezing being widely used for food preservation, the ability of C. jejuni to survive at low temperature is of obvious relevance to food safety and public health. The cold stress response in Campylobacter has attracted many researchers' attention. A number of studies have investigated how C. jejuni responds to low temperatures, and several cold stress response factors in this pathogen have been proposed. The main findings of these studies follow.

To examine the importance of the VBNC state in *C. jejuni* survival at low temperatures, Lazaro and co-workers (1999) investigated morphological changes in *C. jejuni* after long-term exposure to low temperatures. The study used an electron fluorescence microscope combined with cell metabolic activity detective methods and a DNA maintenance assay to observe morphological changes and investigate the correlation between morphological changes and the availability of *C. jejuni* during long-term cold exposure.



Figure 2.3 Survival curves of *C. jejuni* during incubation in PBS at 4°C (A) and 20°C (B)

The figure is adapted from Lazaro et al., 1999. In the paragraph, ◊ indicates spiral cell; ○ represents respiring cell and • indicate the culturable cell.

As shown in Figure 2.3, the study found the *C. jejuni* used in the study survived much longer at 4°C than at 20°C. At 4°C, *C. jejuni* was able to remain culturable for up to 50 days, while the culturability only remained for seven days at 20°C. The cell integrity and respiratory activity of *C. jejuni* were maintained much longer than their culturability. In fact, survival continued for up to seven months at 4°C based on signs of viability other than its culturability. The study also found there was no association between culturability and the morphological change from a spiral to coccal shape in *C. jejuni*. Both the spiral and coccal forms contain VBNC cells. The study also observed that *C. jejuni* cells became spheroid more quickly when kept at room temperature rather than at 4°C. Two-dimensional (2D) gel electrophoresis was conducted in this study to compare the protein profile of the culturable and VBNC cells. The comparison showed both up- and down expression of proteins in these two different states, which suggests the transition to nonculturable cells is an active process, instead of a degenerative response without protein synthesis (Hazeleger et al., 1995).

This study revealed that the VBNC is an important state to maintainthe survival of *C. jejuni* at low temperatures. At 4°C, survival of this pathogen continued for up to five months after the cell lost its culturability. However, the transition to a nonculturable cell was not associated with a morphological change from a spiral to a coccal shape.

#### 2.8 Strain dependence of cold tolerance for C. jejuni

A wide range of phenotypic and genotypic diversity at strain level has been reported for *C. jejuni*. In terms of cold tolerance, studies found survival of this pathogen in water varies markedly among the different strains (Jones et al., 1991; Terzieva et al., 1991). To examine the impact of strain variability in cold tolerance of this pathogen, Chan et al. (2001) placed different strains of *C. jejuni* at 4°C for two weeks to compare their viability.



Figure 2.4 Survival curves of representative clinical and poultry-derived C. jejuni strains at  $4^{\circ}C$ 

The figure is adapted from Chan et al., 2001. Five poultry isolates were  $\Delta$ ,  $\Diamond$ , x, o and  $\Box$ . Four clinical isolates were  $\blacksquare \bullet \bullet$  and  $\blacktriangle$ .

As presented in Figure 2.4 by Chan et al. (2001), *C. jejuni* strains vary noticeably in terms of their cold tolerance. Chan et al. found four clinical isolates had only limited viability losses during the 14-day survey period. Conversely, five poultry-derived strains had a marked or intermediate loss of viability. Based on this observation, Chan et al. suggested that environmental stress conditions, such as low temperature, may act as a selective filter, in which only those stress tolerant strains that were able to survive with an adequate numbers can infect human. This hypothesis was supported by On et al. (2006), who found a correlation between the genomic content of *C. jejuni* and its capacity for environmental survival and suggested the correlation may help to explain why most strains with a higher survival potential are commonly found from human diarrhoea. In addition, as *Campylobacter* strains exhibited pronounced variation in cold tolerance, cold stress response studies should choose their strain carefully.

#### 2.9 Searching for cold stress response mechanisms

#### 2.9.1 Transcriptomic approach

Although many studies observed survival of *C. jejuni* after long-term cold exposure and maintenance of its physiological activity in the form of oxygen consumption, catalase activity, protein synthesis and ATP generation (Hazeleger et al., 1998; Lazaro et al., 1999), the mechanisms used by this pathogen to adapt to cold temperature remain unrevealed.

In order to address this question, Stintzi and Whitworth (2003) conducted a genome-wide transcriptomic analysis to investigate the response of *C. jejuni* to a temperature downshift from the optimal growth temperature of 42°C to 37°C, 32°C, 10°C and 4°C. The transcriptomic analysis results showed that the transcript abundance of 218 genes, a total 13% of the genome, was significantly altered when the temperature went down. Among them, 55 genes had their transcript abundance increased when the temperature dropped from 42°C to 10°C and 5°C. The proteins decoded by those 55 genes were likely required for the response of *C. jejuni* to low temperatures. These 55 genes can be divided into four different groups based on the function of

the proteins they encode for. Group 1 genes are involved in energy metabolism. Group 2 genes are associated with oxidative defence. The genes in the Group 3 encode for the transporters of amino-acids, carbohydrates and organic acids, which work as crytoprotectant molecules. Group 4 genes encode for proteins with unknown functions.

At 4°C, *C. jejuni* had been found to strengthen its aerobic respiration and the tricarboxylic acid cycle for a higher energy demand. The Group 1 genes involved in energy metabolism were up-regulated. The proteins encoded by these up-regulated energy metabolism genes are responsible for the cell's tricarboxylic acid cycle, oxidative phosphorylation, glycolysis and gluconeogenesis (Moen et al., 2005). Those up-regulated genes are *gltA* (citrate sythase), *acnB* (aconitase hydratase), *icd* (isocitrate dehydrogenase), *oorABC* (2-oxoglutarate: acceptor oxido-reductase), *sucC* (succinyl CoA synthase), *sdhABC* (succinate dehydrogenase), *fumC* (fumarate hydratase), and *mdh* (malate dehydrogenase) (Stintzi and Whitworth, 2003).

The Group 2 genes related to oxidative defences have been found up-regulated at 4 °C. The reason may be that *Campylobacter* cells face severe aerobic stress in cold temperatures. Since oxygen solubility increases with decreasing temperature, a liquid medium at 4°C contains more dissolved oxygen than at 42°C. Moreover, at low temperatures, aerobic respiration and the tricarboxylic acid cycle in *Campylobacter* cells will be favoured and be used to produce energy. As the result, free radicals are assumed to be abundant in the cells during cold shock. The up-regulated oxidative defence genes are cytochrome C551 peroxidase gene (CJo358) and the superoxide dismutase (*sodB*), both which are responsible for the removal of free radicals.

The study also found that Group 3 genes which encoded for amino acids, carbohydrates and organic acid transporters were up-regulated at 4°C. These genes are pebC (ABC-type amino acid transporter ATP-binding protein), Cj0919c-Cj0920c (putative ABC-type amino acid transporter permease protein), sdaC (serine transporter), Cj0903c (putative amino acid transport protein), peb1A (probable ABC-type amino acid transporter periplasmic solute-binding protein), dctA (putative C4-dicarboxylate transport protein), dcuB (putative anaerobic C4-dicarboxylate

transporter), *kgtP* (alpha-ketoglutarate permease), *dcuA* (putative anaerobic C4-dicarboxylate transporter) and *lctP* (L-lactate permease). Amino acids, carbohydrates and organic acids can function as cryoprotectant molecules in *E. coli* to protect cell viability at low temperatures. It is assumed that the transporters with increasing transcription are involved in the acquisition and uptake of cryoprotectant molecules that play an essential role in *C. jejuni* survival at low temperature (Stintizi and Whitworth, 2003).

Stintizi and Whitworth also found that, except for these 55 genes that increased expression at 10°C and 5°C in the study, there were another 27 genes that increased transcript abundance significantly in response to a temperature decrease from 42°C to the four colder temperatures. The abundance of the transcripts from those 27 genes suggests an essential role for their product in the bacteria's adaptation to lower temperatures. In addition to genes of unknown function, these 27 genes include three signal transduction proteins (Cj1189c, Cj1223c and Cj1492c), five membrane proteins and transporters (Peb4, p19, Cj0175c, Cj0982c and Cj0654c) and two protein PssA (CDP-diacylglycerol-serine O-phosphatidyltransferase) and SodB (superoxide dismutase). The increasing gene expression of the three sets of twocomponent regulatory system (Cj1189c, Cj1492c and Cj1223c) suggests that they have an important role in C. jejuni cold adaption. The specific role in cold adaption of Peb4, p19 and Cjo175 has not yet been revealed. As Peb4 is a major antigen and p19 and Cj0175c are iron acquisition proteins, the increased level of transcripts encoding for these three proteins suggest this antigen and iron may play an important role in adaptation to cold temperature. The Ci0982c gene and the Ci0981 gene are both involved in the acquisition of cryoprotectants.

The study conducted by Stintizi and Whitworth (2003) identified potential mechanisms that could contribute to the cold adaptation of *C. jejuni*. These included acquisition or biosynthesis of cryoprotectant molecules, strengthening of aerobic respiration for energy needs, enhancement of the oxidative defence system and upregulation of several two-component systems, which could be useful for sensing environmental changes and eliciting a proper response. This genome-wide

transcriptomic analysis of *C. jejuni* cold adaption provided a global gene expression profile at the transcriptional level, but this is only the first step in elucidating the survival mechanisms of *C. jejuni* at low temperatures. Further study of those cold upregulated genes and their encoding proteins will be necessary for gaining a better understanding the cold survival mechanisms of this pathogen.

#### 2.9.2 Genetic engineering approach

Genetic engineering technologies, that introduce mutations at a target gene to generate a knockout gene, have been used to investigate the role of certain factors in *C. jejuni* cold shock adaption and cold survival mechanisms. Haddad et al. (2009) proposed that long-term survival of *C. jejuni* at low temperatures is dependent on polynucleotide phosphorylase (PNPase) activity. PNPase is a major component of *E. coli* degradosome, which degrades RNA from 3 to 5 (Carpousis, 2007; Regonesi et al., 2004). In other bacteria, it has shown multiple biological functions including adaption to low temperatures (Stintzi and Whitworth, 2003). PNPase selectively degrades the mRNAs of stress-response proteins when cells process stress adaptations. The selective degradation of stress-response proteins mRNAs can prevent over production of these proteins, which is deleterious to cells (Yamanaka and Inouye, 2001).

To analyse the role of PNPase in the survival of *C. jejuni* at low temperatures, two deletion-derivative strains with the *pnp* gene inactivated have been created to compare their growth characteristics with the wild-type strains at different temperatures. The study found that the derived strains had a lower viability at 4°C, of up to 3 log cfu/ml (Figure 2.5). The difference in viability clearly demonstrated the involvement of PNPase in the long-term survival of *C. jejuni* at 4°C.



Figure 2.5 Survival of two *C. jejuni* wild types strains (F38 and 81Am) and their *pnp* mutant derivatives (F38pnp and 81Ampnp)

At 37°C (A) and 4°C (B) in the ambient atmosphere (modified from Haddad et al., 2009). The values plotted are means  $\pm$  standard deviations (error bar).

#### 2.9.3 Fatty acid composition analysis approach

As well as the transcriptomic and genetic approaches, fatty acid composition analysis has also been applied to search for potential *C. jejuni* cold-shock adaption and cold survival mechanisms. One of the most important cold exposure tolerance mechanisms for a wide range of mesophilic bacteria is a change in fatty acid composition, particularly in the outer membrane (Sinensky, 1974). Maintaining membrane homoviscosity is critical for maintaining cell integrity and viability.

Hugheset al. (2009) conducted a fatty acid composition analysis to examine the effects of 24 h exposure to refrigeration conditions on the whole-cell fatty acid compostion of *C. jejuni*. The study found cold exposure had a very small effect on the ratio of unsaturated fatty acids (UFA)/ saturated fatty acids (SFA) in *C. jejuni*, and thus, is unlikely to affect the membrane fluidity. A common bacterial response to a reduction in temperature is to change the composition of membrane fatty acids, for example, by increasing the amount of UFA and cyclic fatty acids, to increase the fluidity of the cell membrane. However, a change in the amount of UFA and cyclic fatty acids did not occur in *C. jejuni* during cold exposure.

Hughes et al. (2009) suggested that *C. jejuni* may not be required to increase the amount of UFA and cyclic fatty acids for cold adaption, as *Campylobacter* cells contain large amounts of cyclic fatty acids that increase in fluidity at low temperatures and increase membrane stability at higher temperatures (Dufourc et al., 1984). The presence of a large amount of cyclic fatty acids within the cell membrane suggests that *C. jejuni* may use this distinct mechanism to allow fluidity to be maintained in the cell membrane without altering its composition.

Through the three different approaches above, a number of potential mechanisms that could contribute to the cold adaptation and long term cold survival have been identified. Transcriptomic analysis, genetic engineering and fatty acid composition analysis all have exhibited their usefulness as tools to elucidate the potential mechanisms employed by *C. jejuni* to respond to cold stress. However, limitations are also obvious in these three approaches. Transcriptomic analysis study of mRNA,

which serves as an intermediate between DNA and proteins rarely take part in physiological metabolic activities. Alteration of fatty acids in membranes may play important role in the *Campylobacter* cold shock response, but lipids only count for a very small percentage of cell contents and have very limited biological functions. Genetic engineering technology is very useful to confirm functions of a gene but is unable to search for potential global stress response mechanisms.

# 2.10 Proteomic study of *Campylobacter*

#### 2.10.1 General microbial proteomic applications

Proteomics is the large-scale study of the proteome; "a full complement of expressed proteins from the genome of a given cell, tissue or organism at a particular point of time" (Mitton and Kranias, 2003). Proteomics provides a comprehensive approach to separate, identify, characterize and quantify proteins and provide information about protein abundance, location, modification and protein-protein interactions in a given biological system (He and Chiu, 2003; Stoughton and Friend, 2005). After genomics and transcriptomics, proteomics is considered as the next step in the study of biological systems. As proteins are the main components of the physiological metabolic pathways of cells and their composition is positively correlated with changes of cellular functions, proteomics is considered as a better method than genomics for cellular bio-physiological studies. Furthermore, the proteomic method is able to determine the time course of protein behaviour and describe the dynamics of protein alteration. In addition, proteomics has an advantage over genomics because post translational modification of proteins can only be studied by proteomics. Due to these advantages, proteomics has been used in a wide range of biological system studies.

Microbiology is considered as an important pillar of biological science. Microorganisms have relatively reduced genomes, but they also represent biological complexity and exquisite diversity (Burg et al., 2011). Most new biotechnologies have their first application in microbiology and use microorganisms as interesting experimental models to develop their strategies (Armngaud, 2012). In proteomics,

new tools and strategies are developing through several model microorganisms. Meantime, the ongoing progress in proteomic tools and strategies is opening new perspectives in the study of microbial biophysiology. Nowadays, proteomics has been widely applied to search for key cellular players, virulence factors, stress response mechanisms and vaccine target proteins in microbiology.

#### 2.10.2 Development of microbial proteomic technology

A typical microbial proteomic experiment includes three steps: (i) the separation and isolation of proteins from a cell line; (ii) the acquisition of protein structural information to identify and characterze proteins; and (iii) database use (Graves and Haystead, 2002). Protein separation can be divided into protein-centric (gel-based) approaches, such as two-dimensional electrophoresis (2DE); peptide-centric strategies, based upon liquid chromatography (LC); and hybrid approaches, such as 'slice and dice' SDS-PAGE/LC, that incorporates elements of both (Issaq et al., 2002).

The final separation method determines the method used for the identification of proteins. For gel-based approaches, single protein bands or spots are generally excised and subjected to peptide mass mapping/fingerprinting, where the individual protein is digested with a protease and the resulting mixture analysed by MALDI-TOF and ESI-TOF mass spectrometry (MS). For peptide-centric approaches, which convert an entire protein mixture to peptides by tryptin digestion and then separate those peptides by LC, protein identification is achieved by the identification of those separated peptides through MS (Issaq et al., 2002).

In the 1990s, 2DE was the mainstream protein separation method for microbial proteomic study. With several important technological breakthroughs in mass spectrometry in the first decade of this century, protein quantification through MS then became possible. These developments in MS made gel-free shotgun proteomics increasingly used and is pushing out 2DE proteomics.

The shotgun concept refers to a gel-free method consisting of a high-pressure LC coupled to tandem mass spectrometry and database searching software. The advantages of the shotgun gel-free proteomics approach over 2DE are: i) shotgun

proteomics can not only identify proteins on proteome scale but also is able to quantify proteins at the same time; ii) shotgun proteomics has a higher resolution power to resolve the proteins with extreme isoelectric point and masses, which cannot be resolved with 2DE; iii) a complex mixture containing hundreds different proteins can be comprehensively analysed by shotgun proteomics, as the shotgun approach has higher resolution power to cope with larger dynamic ranges of protein mixtures; and iv) membrane-associated proteins, which are under-represented in 2DE, can be readily detected by the shotgun approach. Due to the advantages over 2DE, the shotgun gel-free approach has increasingly gained popularity in the study of microbial proteome.

#### 2.10.3 Proteomic applications at *Campylobacter*

The central issues of *Campylobacter* proteomic analysis are unravelling the pathogenic mechanisms and stress response mechanisms of this pathogen. Current proteomic research method in the study of *Campylobacter's* stress response mostly rely on fluorescence two-dimensional differential gel electrophoresis (2-D DIGE) to quantify the variation of bacterial proteins in an electrophoresis process, and then establish statistically valid thresholds for assigning quantitative changes between cells growing in different conditions.

To gain a better understanding of the mechanisms employed by *Campylobacter* to colonize chickens' small intestines and to determine colonization-associated factors at the process of *C. jejuni* colonization, Seal et al. (2007) had used a proteomic approach, which combines 2D DIGE with MALDI TOF/TOF, to identify differences in protein synthesis between two *C. jejuni* isolates. One was a robust chicken gastrointestinal colonizing *C. jejuni* isolate, and the other was a poor colonizing strain. The comparative proteomic analysis detected several potentially important proteins involved in the colonization of this pathogen in chicken. They included several metabolism-related proteins and three potential virulence factors: a putative serine protease, a putative amino peptidase P and a branched outer membrane-fibronectin binding protein. The identification of those proteins was, potentially,

involved with *Campylobacter* colonization in chicken, facilitating the deciphering of colonization mechanisms of this pathogen in chicken.

A similar proteomic analysis was applied to detect the temperature-dependent virulence factors of *C. jejuni* (Zhang et al., 2009). *Campylobacter* behaves differently in different environments. This organism colonizes asymptomatically in chickens, at a temperature of 42°C, but causes diarrheal diseases in humans, at a temperature of 37°C. It is presumed that there is a subset of proteins regulated by temperature that may be virulence factors and be responsible for pathogenicity. Zhang et al. utilized 2D DIGE with MALDI TOF/TOF to investigate the difference ofprotein expressionin *Campylobacter* at 37°C and 42°C. The comparative proteomic analysis found 18 proteins with different expression at the two temperatures; 13 proteins were upregulated and five proteins were down-regulated at 37°C. The difference expression of these proteins in the two different temperatures provided the basis for further investigation into the pathogencity roles of these proteins in *C. jejuni*.

As well as pathogenesis, a stress response is the other central issue of *Campylobacter* proteomic study. To evaluate the response of *Campylobacter* to high pressure and subsequent recovery at the molecular level, Bieche and colleagues conducted comparative proteomic analysis to detect alterations in protein expression caused by an ultra-high pressure treatment and subsequent recovery. The 2D protein profile of *Campylobacter* cells without ultra-high pressure treatment was used as a control to compare with the other three protein profiles, which were from the cells after being treated with ultra-high pressure 0 hour, 1 hour and 2 hours. Through comparing the protein profiles, the study identified the 22 proteins being repressed by the high pressure treatment and 23 proteins appeared in higher abundance and so might play an important role in protecting and the recovery from the high pressure treatment (Bieche et al., 2012). Those high pressure repressed proteins are mostly involved in energy metabolism and chemotaxis. Those higher abundance proteins are related to oxidative, cold-, heat- and NaCl-stress responses of *Campylobacter*. This finding provides an insight into how ultra-high pressure

treatment injures *Campylobacter* and how this pathogen recovers from injuries caused by the high pressure.

#### 2.10.4 Searching for cold shock proteins in *C. jejuni*

To ensure their survival, mesophilic bacteria process cold shock responses to react to rapid temperature downshifts. During the cold shock response, cells stop growing and the protein production machinery of bulk proteins in the cell becomes transiently inhibited. Meanwhile, a specific set of genes is induced by the temperature downshift and results in high levels of newly synthesized cold-induced proteins, which are also called cold shock proteins (Csps). Csps have been shown to be essential for the efficient adaptation to low temperatures and they help the cell survive in temperatures lower than optimum growth temperature by a reorganisation of the bacterial DNA transcription and mRNA translation (Thieringer et al., 1998).

Csps form a highly conserved family of structurally related nucleic acid-binding proteins. These small proteins with a molecular mass of approximately 7.4 KDa comprise the typical cold shock domain (CSD). Since the first cold-induced protein, CspA, found in *E. coli* (Goldstein et al., 1990), there have been eight homologous proteins revealed in *E. coli*, named in alphabetical order from CspB to Cspl. In *Bacillus subtilis*, three proteins homologous to *E. coli* CspA have been found to be induced upon a temperature downshift (Willimsky et al., 1992; Graumann et al., 1996). As the CSD is the most evolutionary conserved nucleic acid-binding domain within prokaryotes and eukaryotes (Wolffe, 1994; Graumann and Marahiel, 1998), Csps which contain CSD have been found in more than 50 Gram-negative and Grampositive bacteria species (Graumann and Marahiel, 1998).

There have been a number of attempts to search for Csps in *C. jejuni* through different methods including the proteomic approach. Hazeleger et al. (1998) compared cold exposure (4°C and 20°C) *C. jejuni* protein profiles with protein profile from the cells without cold exposure to find cold-induced proteins. This comparison showed the total numbers of protein bands produced seemed to be similar for all

temperatures, and no cold induction of a specific protein was observed. Hazeleger et al. (1998) used low molecular protein separation gels to research cold-induced protein band in the 7 kDa region, which is the expected size for Csps homologues. However, there was no cold-induced band observed in the cold exposure *C. jejuni* protein profiles. The other proteomic approach launched by Lazaro et al. (1999) also failed to find any cold induced protein in the 7 kDa region.

The main reasons for previous proteomics attempts failing to find major cold induced proteins in C. jejuni are that these studies (Hazeleger et al., 1998; Lazaro et al., 1999) mainly focused on the 7 kDa area. With more cold-induced proteins being revealed from different organisms, the range in molecular weight of these coldinduced proteins has been extended greatly (Ferhan, 2000), so cold shock protein research should not only focus on the low molecular proteins but also on other proteins as well. What is more, these previous proteomicstudies relied on 2DE, which has a number of limitations for protein separation. For example, when a protein mixture has large range of proteins in the same molecule weight, 2DE will not be able to identify low abundant proteins, which are masked by the most abundant proteins. Moreover, the sub-sequenced protein identification and comparisons with 2DE are relatively time-consuming and labour intense. Lazaro et al. (1999) found the differences in protein synthesis in C. jejuni under cold stress, but there were no further comparative studies about the differences in protein synthesis in C. jejuni processing cold stress response, presumably due to the time constraints of 2DE proteomics analysis.

With developments in microbial proteomics technology, gel-free shotgun proteomics with higher resolution power provides a better chance to illustrate the protein biosynthesis alteration in *C. jejuni* influenced by temperature downshifts. Although gel-free proteomics has gained its popularity in microbiology, there have still been no gel-free proteomic approaches applied in the study of *C. jejuni*. To my knowledge, the present iTRAQ labelling proteomic analysis is the first to apply gel-free proteomics in the study of *C. jejuni*.

# **Chapter 3** Materials and Methods

#### 3.1 Bacterial strains

All *C. jejuni* strains used in this study were supplied by ESR, New Zealand. Three *C. jejuni* strains were selected for this comparative proteomic analysis, namely: *C. jejuni* NCTC 11168, SVS 5001 and SVS 5141 (Table 3.1). In this study, *C. jejuni* NCTC 11168 was used as a reference strain, as this strain has been fully sequenced and extensively studied. Both *C. jejuni* SVS 5001 and SVS 5141strains are associated with a Danish waterborne outbreak; the former is a human diarrhoeal isolate and the latter was recovered from the water that was the source of the outbreak. Previous genomics studies based on DNA microarray technology suggested that these two Danish waterborne outbreak strainsdeserved further investigation, in particular their cold tolerance (On et al., 2006).

Table 3.1 Three C. jejuni strains used in the study

| Strain               | Description                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------|
| C. jejuni NCTC 11168 | The first C. jejuni strain which was sequenced and annotated in 2000 (Parkhill et al., 2000). |
| C. jejuni SVS 5001   | Danish waterborne outbreak strain, isolated from human faeces.                                |
| C. jejuni SVS 5141   | Same Danish waterborne outbreak strain, isolated from water.                                  |

## 3.2 Preparation of bacterial starter cultures

The protocol used in this study to grow the bacterial culture was modified from the method used by Bieche et al. (2012). The three strains were stored in glycerol broths at -80°C. Prior to the experiment, all strains were inoculated onto Columbia base agar containing 5% defibrinated sheep blood (Oxoid) and incubated at  $42^{\circ}$ C for 48 hours in a microaerobic incubator (10% CO<sub>2</sub>, 5% O<sub>2</sub> and 85% N<sub>2</sub>) to recover from frozen storage.

After 48 h incubation for recovery, the bacterial growths of each strain on the plates were washed by 20 ml of Brain-Heart Infusion Broth (BHI) broth and harvested into individual bottles. The optical density (OD) of the 20 ml suspension was measured using a spectrophotometer. To prepare an inoculum broth, the 20 ml suspension was adjusted to OD 1.0 (or its equivalent) at 540 nm by adding sterile BHI broth. A 5 ml sample of the adjusted suspension was taken and inoculated into duplicate BHI broth bottles (500 ml each). The starter cultures were then incubated for 24 h at 42°C in arotary shaker set at 120 rpm under microaerobic conditions to promote log phase cultured cells as a starter culture. The starter cultures of the three *C. jejuni* strains were prepared using a similar method.

#### 3.3 Cold stress exposure

For each strain, the two 500 ml bottle starter cultures were separated into twenty 50ml sterilized tubes. Two tubes of 50 ml starter cultures were used immediately for viability assessment and cell protein extraction after separation. The protein extracts from the liquid cultures without cold exposure were used as non-stressed references (0 h) to compare with protein samples extracted from cold stressed cells.

The remaining 18 tubes of liquid culture for each strain were placed in a rotary shaker set at 15 rpm at 4°C under microaerobic conditions for up to 8 days. During the 8 days of cold incubation, viability assessment and cell protein extractions were performed by sampling at 5 different time points, i.e. after 6h, 1 day, 2 days, 6 days and 8 days. The experimental plan for the viability assessment and cell protein extraction is shown in Table 3.2. At each time point, duplicate cultures of each strain were removed out from the 4°C incubator and viable cell counts undertaken and whole cell protein extracts were prepared.

Table 3.2 Timeline for viability assessment and preparation of cell protein extracts

| Time                | Experiments                                                    |
|---------------------|----------------------------------------------------------------|
| Two days for the    | Took the three strains out of -80°C storage and recovered      |
| strains recover     | them on BA at 42°C for 48h.                                    |
| One day for starter | Harvested the bacterial growths and inoculated them to BHI     |
| culture preparation | for 24h incubation.                                            |
| 0 h and 6 hour cold | 1. Liquid cultures separation for the three strains and start  |
| exposure cultures   | cold exposure.                                                 |
| sampling            | 2. Viability assessment of 0 h and 6 h samples of the three    |
|                     | strains.                                                       |
|                     | 3. Protein extraction for 0 h and 6 h samples of the three     |
|                     | strains.                                                       |
| Day 1 sampling of   | 1. Viability assessment of day 1 samples of the three strains. |
| cold exposure       | 2. Protein extraction of day 1 samples of the three strains.   |
| cultures            |                                                                |
| Day 2 sampling of   | 1. Viability assessment of day 2 samples of the three strains. |
| cold exposure       | 2. Protein extraction of day 2 samples of the three strains.   |
| cultures            |                                                                |
| Day 6 sampling of   | 1. Viability assessment of day 6 samples of the three strains. |
| cold exposure       | 2. Protein extraction of day 6 samples of the three strains.   |
| cultures            |                                                                |
| Day 8 sampling of   | 1. Viability assessment of day 8 samples of the three strains. |
| cold exposure       | 2. Protein extraction of day 8 samples of the three strains.   |
| cultures            |                                                                |

### 3.4 Assessment of viability

The viability assessment was conducted using the method of Miles and Misra (1938). The procedure of viability assessment in this study is as follows: Viable cells in the cultures were enumerated by serial dilution (10<sup>-8</sup>) using BHI broth as the diluent and plating in triplicate on Blood Agar (BA) plates. Three BA (Oxoid) plates were divided into eight equal sectors, and 20µl of the appropriate dilutions were dropped into each sector (Miles and Misra, 1938). After 48h of microaerobic incubation at 42°C, colonies were counted in the sector where the highest number of full-size discrete colonies can be seen (usually sectors containing 2-20 colonies were counted).

The viability assessments were performed using the above described method for the starter culture and the cultures sampled after 6 h, 1 day, 2 days, 6 days and 8 days of cold (4°C) exposure. The starter liquid culture without cold exposure is regarded as 0 h sample (non-stressed cells sample).

The purity of the starter culture and each aliquot of cold exposure culture were examined by Gram staining and streaking on plates. All cultures used in this study had been confirmed without contamination.

# 3.5 Preparation of protein sample

The protein extraction method described by Kalmokoff et al. (2006) was used in this study. For each *C. jejuni* strain, two 50 ml liquid cultures were used for whole-cell protein extraction at each time point. The procedure of protein extraction in this study was as follows: the cultures in the broth were centrifuged at 4,000g at 4°C for 10 min and washed two times in Phosphate Buffered Saline (PBS) buffer (pH 7.4). After the washed cells were recovered by centrifugation, the bacterial pellet was suspended in 1 ml of lysis buffer ((Protease inhibitor cocktail of aprotinin, 7 M urea, 2 M thiourea, 4.0% w/v CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 1% DTT (Dithiothreitol) and 0.2% Biolytes)) and sonicated on ice six times for 20 s at 20 s intervals until the suspension became clear. Following sonication, the protein samples were solubilised by incubation of the lysate on ice for 1 h. Thecell debris wasthen discarded after centrifugation at 12,000g at 4°C for

15 min. The supernatants containing the total protein were stored at -80°C until further analysis.

Protein extraction was performed on these three strains immediately after viability assessment at each time point. Similar to viability assessments sampling, the starter liquid culture was regarded as 0 h sample. The protein extractions from cold exposure cultures for each strain were completed after cold incubation 6 h, one day, two days, six days and eight days.

# 3.6 Protein quantification

After obtaining protein extracts from *C. jejuni* cells, the protein concentrations of the protein samples were assayed using a modified Bradford assay (Ramagli, 1999). Please refer to Appendix 1 for the *C. jejuni* cells protein extract quantification.

# 3.7 Acetone precipitation of protein samples

Acetone precipitation of protein samples was performed after the protein quantification assay. As the lysis buffer used in this study contains a high concentration of urea that disturbs the following 1D electrophoresis analysis, a protein precipitation needs to be done to get rid of urea from the protein extraction samples. In addition, protein precipitation can be useful to adjust the samples protein concentration.

According to the protein concentration of samples, different amounts of protein extracts that contained 20  $\mu g$  proteins were added to a 1ml tube, and then a four times the sample volume of cold (-20°C) acetone were added to each sample. The tube with acetone and sample mixture was vortexed gently, and then incubated at -20°C for more than two hours. After incubation at -20°C, the samples were centrifuged for 20 min at 15,000g at 4°C. The supernatant in the tube was discarded without dislodging the protein pellet. The protein pellet was then air dried for 30 min at room temperature. Next, 20  $\mu$ l of 40mM Tris buffer (pH 7.0) was added to each tube to resuspend the 20  $\mu$ g protein pellet resulting in a 20  $\mu$ l solution of protein sample with a protein concentration of approximately 1mg/ml.

### 3.8 1D electrophoresis for whole-cell proteins

1D PAGE electrophoresis was performed to obtain 1D protein profiles for all samples. The NuPAGE electrophoresis system (Invitrogen Life Technologies, 2010) was used in this study according to manufacturer's instructions.

The protein samples containing 20  $\mu g$  of proteins were mixed with 6  $\mu l$  of 4× loading buffer (Invitrogen), and then were heated at 95°C for 10 min. After 10 minof protein heat denaturation, the protein mixtures were loaded into the wells of a NuPAGE Novex 4-12% Bis-Tris gel (10 wells). Each gel needed to have one separate well to load 5  $\mu l$  protein molecular weight standards (Invitrogen). After loading samples and standards, the gels were run in NuPAGE MES Running buffer (Invitogen) at 200 volts for 50 min. After electrophoresis was complete, the gels were taken out from cassette and were ready for staining.

# 3.9 Gel staining

The gel Coomassie staining method used in the study was modified from the NuPAGE Technical Guide (Invitrogen Life Technologies, 2010). After electrophoresis, the precast gel was opened by a gel knife then washed by reverse osmosis (RO) water. After washing, the gel was transferred in to a container that contained 80 ml of protein fixing solution (40% methanol and 10% acetic acid) and the gel was kept in the fixing solution for 30 min. The gel was then carefully transferred to a staining container that contained 80ml of Coomassie blue dying reagent solution (0.1% Coomassie blue G-250, 40% methanol and 10% acetic acid). The gel in the staining container was heated by microwave full-power three times for 15 s at 15 s intervals. After heating, the staining container with the gel was removed from the microwave and shaken on an orbital shaker for 30 min at room temperature. The gel was kept in the container while the Coomassie blue dying reagent solution was discarded. After decanting the Coomassie blue, the gel was rinsed once by RO water then 80 ml of destaining solution (10% ethanol and 7.5% acetic acid) was added. The gel with destaining solution was then heated three times in a microwave on full-power for 15

s at 15 s intervals. After microwaving, the gel with destaining solution was shaken overnight at room temperature on an orbital shaker.

# 3.10 Gel imaging and processing

After gel staining, the 1D SDS gels were scanned. The protein banding patterns from different samples in the same gel were then compared by naked eye to check the density of the protein bands.

# 3.11 Quantitative analysis of protein expression using iTRAQ labelling proteomics

The iTRAQ labelling proteomic analysis was carried out in the AgResearch proteomic laboratory, Lincoln, New Zealand. The procedure of iTRAQ proteomic analysis of *C. jejuni* cold stress responses included sample protein quantitation and purification, digestion of samples, labelling the protein digest, Strong Cationic Exchange fraction, liquid chromatography-mass spectrometry and iTRAQ data analysis.

#### 3.11.1 Sample protein quantitation and purification

Protein quantification of the extracts was carried out using a 2D Quant kit. After obtaining the correct concentration of cell extracts, 80  $\mu$ g of proteinwas taken from each sample for MeOH/CHCl<sub>3</sub> precipitation. After obtaining the protein pellets, they were resuspended in 60  $\mu$ l 0.5M TEAB (triethylammonium bicarbonate buffer), then reduced with 20 $\mu$ l 100 mM TCEP (tris 2-carboxyethyl phosphine hydrochloride) in 0.5M TEAB. After reduction, the samples were alkylated with 20 $\mu$ l 150mM IAM (iodoacetamide) in 0.5M TEAB.

# 3.11.2 Digestion and labelling of the samples

Trypsin (10  $\mu$ g) was added to each alkylated sample for protein digestion and then the samples were incubated at 37°C overnight. After incubation, the digests were driedand each was resuspended in 20  $\mu$ l 0.5M TEAB. iTRAQ labelling was followed the iTRAQ labelling protocol provided with the iTRAQ reagents-8plex kit (AB Sciex Pte. Ltd).

#### 3.11.3 SCX (Strong Cationic Exchange) fraction

After iTRAQ labelling, a small amount of iTRAQ labelled and dried digest was transferred into a new Eppendorf tube and resuspended in 0.1% TFA (trifluoroacetic acid). The tube was then put into a conditioned C18 empore disc for shaking for 3 h. After shaking, the empore disc was washed with 0.1% TFA containing 5% ACN (acetonitrile). After washing, 50% ACN in 0.1% TFA was used to elute the peptides from the empore disc. Then, dried down the empore disc and prepared 40  $\mu$ l 0.1% formic acid for SCX fractionation. The SCX fractionation was performed using high-pressure liquid chromatography. Empore-purified each fraction from the SCX fractionation step (flow through, 1%, 5%, 10%, 20%, 30%, 40%, 60%, 80% and 100%) as mentioned above.

# 3.11.4 LC-MS/MS (liquid chromatography-mass spectrometry)

LC-MS/MS was performed on a nanoAdvance UPLC coupled to a maXis impact mass spectrometer equipped with a CaptiveSpray source (Bruker Daltonik, Bremen, Germany). Samples (2 $\mu$ l) were loaded on a C18AQ nano trap (Bruker, 75  $\mu$ m × 2 cm, C18AQ, 3  $\mu$ m particles, 200 Å pore size). The trap column was then switched in line with the analytical column (Bruker Magic C18AQ, 100  $\mu$ m × 15 cm C18AQ, 3  $\mu$ m particles, 200 Å pore size). The column oven temperature was 50°C. The elution gradient was from 0% to 40% in 90 min at a flow rate of 800 nl/min. Solvent A was LCMS-grade water with 0.1% FA and 1% ACN; solvent B was LCMS-grade ACN with 0.1% FA and 1% water.

Samples were measured in auto MS/MS mode, with a mass range of m/z 50-2200. One MS was followed by 10 MS/MS of the most intense ions. The acquisition speed was 2 Hz in MS and 10 or 5 Hz in MS/MS mode depending on precursor intensity. Precursors were selected in the m/z 400-1400 range; with charge states of 2-5 (singly charge ions were excluded). Active exclusion was activated after one spectrum for 0.3 min.

#### 3.11.5 iTRAQ data analysis

Peak list files (mgf format) were generated using DataAnalysis (Bruker), concatenated and submitted to an in-house Mascot server (v2.4) (Matrix Science, UK). The following search parameters were used: Taxonomy *Campylobacter jejuni*; Enzyme semitrypsin; Cysteine modification carbamidomethyl; MS tolerance 0.02 Da; MS/MS tolerance 0.1 Da; one missed cleavage; instrument specificity ESI-QUAD-TOF. Mascot iTRAQ parameters included variable iTRAQ8plex (N-term, K, Y), with reporter ions defined as appropriate for the experiment.

Peptides with Mascot score below 20, and proteins with fewer than two peptides were discarded. Only unique peptides were used for quantitation. Normalization was based on division by channel sum.

The ratio for each protein in a sample was calculated as the signal of that sample divided by the average signal for that protein across all samples from that strain. Specifically, for each protein in these samples, the formula is as follows:

$$S1 = \frac{Spl1}{\left(\frac{Spl1 + Spl2}{2}\right)}$$

Where S1 is the quantitative ratio of a protein in Sample 1, and Spl1, 2 are the intensity signals of that protein in Samples 1, 2.

$$S2 = \frac{Spl2}{\left(\frac{Spl1 + Spl2}{2}\right)}$$

# Chapter 4 Viability of Three *C. jejuni*Strains at 4°C

#### 4.1 Methods

Previous studies have found refrigeration storage leads to prolonged survival of *C. jejuni* (Buswell et al., 1998; Terzieva and McFeters, 1991; Rollins and Colwell, 1986) and the survival ability of *C. jejuni* at 4°C is strain-dependant (Chan et al., 2001). To investigate the strain-dependant cold tolerance, two Danish waterborne outbreak *C. jejuni* strains (SVS 5141 and SVS 5001) and one *C. jejuni* reference strain (NCTC 11168) were exposed to 4°C (recommended food storage temperature) to examine their survival ability under cold stress.

The three *C. jejuni* strains were grown in BHI broth at 42°C under microaerobic conditions for 24 h. These cultures were transferred into fresh BHI broths and placed in an incubator set at 4°C for eight days and microaerophilic conditions were maintained. During cold exposure, a conventional microbial viability assessment (Miles and Misra, 1938) was performed at 0 h, 6 h, day 1, day 2, day 6 and day 8.

# 4.2 Viability assessment results

The 4°C cold storage caused the number of culturable cells to decline at all the three *C. jejuni* strains. The percentage of cell death rates of each strain at different time points and their average cell death rates during cold exposure are shown in Table 4.1 (Day 2 *C. jejuni* NCTC 11168 viability data is missing).

Table 4.1 Cell death rate of the three strains at different time points

| Strain      | NCTC 11168 | SVS 5001 | SVS 5141 |
|-------------|------------|----------|----------|
|             |            |          |          |
| Time points |            |          |          |
| 6 h         | 53.5%      | 28.1%    | 41.9%    |
| 24 h        | 55%        | 26.1%    | 53.5%    |
| 48 h        |            | 54.2%    | 61.6%    |
| 6 day       | 57%        | 52.3%    | 50%      |
| 8 day       | 55%        | 52.3%    | 50%      |
| Average     | 55.1%      | 42.6%    | 51.4%    |

The viability assessment results showed that there was no appreciable decrease in the number of viable cells following eight days of incubation at 4°C for all three strains of *C. jejuni* used in this study. Although the three strains had nearly forty to fifty percent of decline in viable cell count during cold storage, the viable cell counts of all strains still remained around 108cfu/ml during the low temperature incubation period. To better display the dynamics of the viable count changes for the three strains, a survival curve figure (Figure 4.2) was created basing on viable cell count of these strains at the different time points.



Figure 4.1 Survival curve of three *C. jejuni* strains SVS 5141, SVS 5001 and NCTC 11168 at 4°C under microaerophilic conditions for eight days

The values plotted are means ± standard deviation (error bars).

Figure 4.2 shows that NCTC 11168 and SVS 5141 has a relatively steep decrease in cell viability during the first 6 h of incubation at 4°C. The cell death rates of the two strains after 6 h cold exposure were 53.5% and 41.9%, respectively. After the first 6 h decrease in cell viability, the viable cell count of *C. jejuni* NCTC 11168 became stable. Its death cell rate remained between 53.5% and 57% during the eight days of cold exposure. The viability of *C. jejuni* SVS 5141 continued to decline for 48 h and the cell death rate reached its highest point of 61.6%, after 48 h cold exposure. Theviable cell count of SVS 5141 then increased at Day 6 and remained stable until Day 8. The cell viability of *C. jejuni* SVS 5001 fluctuated for the first two days. The death cell rate of SVS 5001 in the first 6 h was relatively low when compared with the other two

strains that suffered a large loss in their cell viablility in the first six hours of cold exposure. The viable cell count of this strain remained at a similar level after 24 h cold exposure, and then had the other clear decrease in viable cell count at 48 h when the death cell rate reached 54.2%. After the clear decrease in viable cell count at 48 h, there was no obvious change in viable cell count over the following six days.

#### 4.3 Discussion

The cold survival ability of *C. jejuni* varied noticeably between strains (Chan et al., 2001). The differences in the cold survival ability of *C. jejuni* had been found to be related to variation in the genomic content. Generally, clinical isolates strains are more tolerant to cold stress than food-derived strains (Chan et al., 2001). In this study, two clinically isolated strains, *C. jejuni* NCTC 11168 and SVS 5001, appeared tolerant to 4°C and had only limited viability loss during the eight days of cold exposure. A previous survival study had also found these two strains appeared to have a long survival at room temperature under aerobic conditions than the other chicken isolated strains (On et al., 2006). The information obtained from these two studies suggested the two clinical strains, NCTC 11168 and SVS 5001, have high survival potential.

Previous epidemiological studies had found *C. jejuni* strains with higher survival potential were more commonly isolated from human diarrhoea than those strains that were sensitive to environmental stresses. The connection between virulence determinant and survival potential in *C. jejuni* has not been elucidated. It was presumed that these strains with high survival potential were able to survive in adequate number unders multiple environmental stresses and reach the human gastroenteritis tract to cause infection.

The viability assessment found *C. jejuni* SVS 5141, hada lower average rate of cell death during eight days of cold storage compared withthe other two strains. The average rate of cell death for SVS 5001 during eight days cold storage was 42.6%, while SVS 5141 had 51.4% and NCTC 11168 had 55.1% average death cell rate in this eight days cold stress response experiment. There were no statistically significant

differences between the group means of cell death rates between the three strains, as determined by one-way ANOVA (F=2.07, P=0.17) (Appendix 2). SVS 5001 was isolated from a waterborne outbreak patient's diarrhoeal faeces; SVS 5141 was recovered from the water that was the source of the same outbreak. It was presumed these two strains have very similar genomic content and phenotype characters. Hence, It was not surprising to see these two strains appeared to have similar longevity at 4°C under microaerobic conditions. The only difference between SVS 5141 and SVS 5001 was that SVS 5001 had infected a human. It will be interesting to compare cold survival ability and cold response in proteome scale for these two closely-related strains.

The survival curve showed the steepest decrease in cell viability for these three strains all happened at the first six hours of cold exposure. This indicated that the first six hours of cold exposure has a more significant impact on cell cultivability in the culture medium. In *E. coli*, the most frequently studied cold stress response Gram-negative bacteria model, synthesis of housekeeping proteins and cell division ceased after the first four hours of cold exposure. Meantime, the synthesis of cold-induced proteins in *E. coli* dramatically increased. At the end of four hours of cold exposure, the synthesis of the cold-induced proteins in *E. coli* decreased; cells become acclimated to low temperature and growth resumed (Jones et al., 1987). The influence of cold shock at cellar protein synthesis of *C. jejuni* has not been elucidated. However, from angle of viability assessment, a cold shock had a profound impact on cell function which, remarkably, reduced this pathogen's ability to be cultivated on nutritional medium.

# Chapter 5 Proteomic Study Cold Shock and Adaptation in *C. jejuni* NCTC 11168

# 5.1 *C. jejuni* NCTC 11168 as a reference strain

*C. jejuni* NCTC 11168 was originally isolated from a clinical faeces sample in 1977 (Skirrow, 1977). In 2000 it became the first fully sequenced genome in the *C. jejuni* species (Parkhill et al., 2000). The genome of *C. jejuni* NCTC 11168 is 1.64 million base pairs long and contains approximately 1699 predicted genes, which are predicted to encode for 1654 proteins and 54 stable RNA species (Parkhill et al., 2000).

The genomic sequence of *C. jejuni* NCTC 11168 has provided a valuable resource for *Campylobacter* post-genomic study. Many transcriptomic and proteomic studies have used *C. jejuni* NCTC 11168 as a reference strain for comparative analysis (Stintzi and Whitworth, 2003; On et al., 2006; Kalmokoff et al., 2006; Birk et al., 2012; Zhang et al., 2012).

Previous studies have found there was substantial variability among *C. jejuni* strains in cold tolerance and clinical isolates, such as *C. jejuni* NCTC 11168, tended to have more tolerance to cold stress than environmental isolates (Chan et al., 2001; On et al., 2006). In this proteomic study, *C. jejuni* NCTC 11168 was used as the reference strain to study what caused the strain-dependent variability of this pathogen under cold conditions.

# 5.2 Proteomics analysis of C. jejuni NCTC 11168

This section reports the proteomics analysis completed to explore the cold stress responses in *C. jejuni* NCTC 11168. 1DE and iTRAQ labelling proteomics analyses that were conducted according to the methods described in Sections 3.8 and 3.11, respectively.

# 5.2.1 1D protein profile of *C. jejuni* NCTC 11168 during cold shock and adaptation

1D electrophoresis protein profiles of *C. jejuni* NCTC 11168 cells collected at different time-points are shown in Figure 5.1. In this study, six hours of cold exposure is considered as cold shock to *C. jejuni* NCTC 11168. All the other longer periods of cold exposure, such as one day, two days, six days and eight days of cold exposure, were considered as a cold adaptation period for this pathogen.

Cold-shocked *C. jejuni* NCTC 11168 cells have a unique 1D protein profile, which were different from the protein profile of cold adapted cells and cells without cold exposure. As shown in the Figure 5.1, two red circles in the 6 h cold shock protein banding pattern contained two down-regulated protein bands with molecular weights  $\sim$ 10 kDa and  $\sim$ 23 kDa. Two 6 h cold shock protein bands in black circles were up-regulated proteins with molecular weights  $\sim$ 40 kDa and  $\sim$ 55 kDa. The four protein bands, above, in the six-hour cold shock protein profile were different from all other protein banding patterns. Except for the four unique protein bands, the six-hour cold shock protein banding pattern had two protein bands that appeared different from the 0 h protein profile but were similar to all cold adapted protein profiles. As shown in Figure 5.1, two cold shock protein bands, in yellow circles, were up-regulated compared with the 0 h 1D protein banding pattern; however, those two yellow circled protein bands, whose molecular weights were  $\sim$ 11 kDa and  $\sim$ 19 kDa, had similar densities to their counterparts in the cold adapted cells.

The Day 1, Day2, Day 6 and Day 8 cold adapted *C. jejuni* NCTC 11168 cells have similar 1D protein banding patterns. Compared with 6h cold shock cells' protein profile, those cold adapted cell protein profiles shared more similarities with the 0h cell protein profile. There were only two bands in the cold adapted cell protein profiles that appeared different from 0 h cell protein profile. They were the  $\sim$ 11 kDa and  $\sim$ 19 kDa protein bands, circled by a yellow line, as shown in Figure 5.1. Those two bands appeared up-regulated in all cold adapted cells (Day 1, Day 2, Day 6 and Day 8), but their intensity decreased successively with longer cold exposure times.

# 0h 6h D1 D2 D6 **D8** М 250kD 100kD 150kD 75kD 50kD 37kD 25kD 20kD 15kD 10kD

**NCTC 11168** 

Figure 5.1 1D protein profiles of *C. jejuni* NCTC 11168 collected at 0 h, 6 h, Day 1, Day 2, Day 6 and Day 8

M is the marker.

# 5.2.2 Proteomic alteration of *C. jejuni* 11168 during cold shock and adaptation

#### 5.2.2.1 A proteome map of C. jejuni NCTC 11168

In the present study, three *C. jejuni* NCTC 11168 cell protein extracts collected at 0 h, 6 h and after 6days of cold storage were analyzed using iTRAQ labelling proteomic approach, as described in Section 3.11. The iTRAQ labelling proteomic analysis identified 236 proteins in *C. jejuni* NCTC 11168 in this cold stress response experiment. Those 236 proteins found at NCTC 11168 with 0 h, 6 h and 6 days of cold exposure are shown in Figure 5.2. All identified proteins are shown by number and different colours. As shown in Figure 5.2, the red colour indicates those proteins' ratios are greater than the unity. The green colour indicates those proteins' ratios are less than unity. The blank indicates protein that could not be identified at that time point.

*C. jejuni* NCTC 11168 cells without cold exposure had 235 proteins identified. Protein extracted from this strain after 6 days of cold storage had the same number of proteins. The number of proteins in *C. jejuni* NCTC 11168 with 6 h cold shock was 214, which included one cold-induced protein (aspartyl/glutamyl-tRNA amidotransferase, A subunit) that was not found in cells without cold exposure.

| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 h                                                                                                                                                                                                           | 6 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 h                                                                                                                                                                                                                                                                                                                       | 6 h                                                                                                 | 6 day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12   1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1985   1987   1987   1988   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.821                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flagellin subunit protein FlaA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inosine 5'-monophosphate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.567                                                                                                                                                                                                                                                                                                                     | 1.495                                                                                               | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ribosomal protein L21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.97   Selfs   1.07   Company of the company of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.128                                                                                                                                                                                                         | 0.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flagellin B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FKBP-type peptidyl-prolyl cis-trans isomera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.478                                                                                                                                                                                                                                                                                                                     | 1.432                                                                                               | 1.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.912                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flagellin protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.478                                                                                                                                                                                                                                                                                                                     | 0.489                                                                                               | 1.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aspartyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.787                                                                                                                                                                                                         | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flagellin A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNA-binding response regulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.761                                                                                                                                                                                                                                                                                                                     | 1.345                                                                                               | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | polynucleotide phosphorylase/polyadenylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.673                                                                                                                                                                                                         | 0.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | elongation factor Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.853                                                                                                                                                                                                                                                                                                                     | 1.151                                                                                               | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-oxoglutarate-acceptor oxidoreductase subuni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.699                                                                                                                                                                                                         | 1.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nitrate reductase catalytic subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | isocitrate dehydrogenase, NADP-depender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.793                                                                                                                                                                                                                                                                                                                     |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.853                                                                                                                                                                                                         | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alkyl hydroperoxide reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.807                                                                                                                                                                                                         | 1.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chemotaxis protein CheA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.989                                                                                                                                                                                                         | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | protease DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           | _                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.713                                                                                                                                                                                                         | 1.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.367                                                                                                                                                                                                         | 1.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | methyl-accepting chemotaxis protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.58   1.58   1.59   0.59   methy-incorporation protection prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.341                                                                                                                                                                                                         | 1.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | methyl-accepting chemotaxis signal trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           | 1.146                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.11   1.12   1.12   1.12   1.13   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               | 1.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.488                                                                                                                                                                                                         | 1.528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.411                                                                                                                                                                                                         | 1.289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           | 1.594                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               | 1.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           | -                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               | 1.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.50   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.40   6.64   1.27   2.04   Color processing of the color of the col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00   1.01   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.10   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.682   0.027   Program are manufaces pretent in New York   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1985   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATP-dependent Clp protease proteolytic su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.989                                                                                                                                                                                                                                                                                                                     | 1.009                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 124   0.32   Delta billance   Delta protection   144   0.52   Delta   Delta protection   145   0.52   Delta   Delta protection   145   0.52   Delta   Delta protection   145   0.52   Delta   155   Delta   Delta protection   145   Delta   Delta protection   145   Delta   Delta protection   145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-methyl-2-oxobutanoate hydroxymethyltr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.653                                                                                                                                                                                                                                                                                                                     | _                                                                                                   | 1.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CTP synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1449   0.099   1.16   bittle-citorial accordate hydratase 2/2-mail   1440   0.709   1.009   hash shock protein httpd   1.001   1.007   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008   1.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glutamate-1-semialdehyde aminotransfer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.434                                                                                                                                                                                                                                                                                                                     | 0.627                                                                                               | 1.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hypothetical protein CJE0806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.01   0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | heat shock protein HtpG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.641                                                                                                                                                                                                                                                                                                                     | 1.532                                                                                               | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | peptidyl-prolyl cis-trans isomerase D,-like prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.652   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.657   1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | putative phospho-sugar mutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.431                                                                                                                                                                                                                                                                                                                     | 1.605                                                                                               | 0.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50S ribosomal protein L15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52   1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ribosomal protein L22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.289                                                                                                                                                                                                                                                                                                                     | 1.307                                                                                               | 1.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | preprotein translocase subunit SecA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chain A, Crystal Structure Of Peb3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.989                                                                                                                                                                                                                                                                                                                     | 0.758                                                                                               | 1.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 508 ribosomal protein L9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.276   1.29   0.276   1.29   0.276   1.29   0.276   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   1.20   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-methyl-5(B-hydroxyethyl)-thiazole monor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.866                                                                                                                                                                                                                                                                                                                     | 1.158                                                                                               | 0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hypothetical protein CJE0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glucosaminefructose-6-phosphate amino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.879                                                                                                                                                                                                                                                                                                                     | 1.214                                                                                               | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | threonyl-tRNA ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.476   0.78   1.15   0.78   1.15   0.99   1.10   proteins of DP-glucose 4-spinerase   1.17   0.05   1.15   0.79   1.15   0.78   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   1.15   0.79   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.15   0.70   0.70   0.15   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ribosomal protein L13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.395                                                                                                                                                                                                                                                                                                                     | 0.656                                                                                               | 1.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | superoxide dismutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.752   1.976   0.731   0.735   0.737   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.735   0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | galE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.14                                                                                                                                                                                                                                                                                                                      | 0.665                                                                                               | 1.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hypothetical protein CJE1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.520   0.597   1.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.597   0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.221 (287 ) 1.116 trigger factor 1.221 (287 ) 1.116 trigger factor 1.221 (287 ) 1.139 (alogation factor Ts 0.784 1.394 (0.87) (1.984 ) 1.094 (0.87) (1.984 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874 ) 1.095 (0.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           | -                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.784   1.159   clongation factor Ts     0.984   0.984   0.984   0.985   0.985   0.987   0.987   0.987   0.985   0.985   0.987   0.987   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.985   0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729                                                                                                                                                                                                         | 1.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DNA-directed RNA polymerase subunit be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50S ribosomal protein L24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.816                                                                                                                                                                                                                                                                                                                     |                                                                                                     | 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acetyl-CoA carboxylase, carboxyl transferase, be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.745   1.294   0.867   0.104-directed RNA polymerase aubunit all   0.751   1.295   0.896   0.725   1.297   0.117   inbosomal protein Inc.   1.017   1.018   0.895   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.729<br>0.514                                                                                                                                                                                                | 1.395<br>1.552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DNA-directed RNA polymerase subunit be<br>508 ribosomal protein L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.634<br>0.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.375<br>1.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.994<br>0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50S ribosomal protein L24<br>30S ribosomal protein S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.816<br>0.693                                                                                                                                                                                                                                                                                                            |                                                                                                     | 0.985<br>0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acetyl-CoA carboxylase, carboxyl transferase, b<br>hypothetical protein C414_000290003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.752   1.267   1.011   mitosomal protein 1.7/1.12   0.751   1.162   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1.05   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232                                                                                                                                                                                       | 1.395<br>1.552<br>0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.911<br>0.937<br>1.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNA-directed RNA polymerase subunit be<br>50S ribosomal protein L1<br>trigger factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.634<br>0.522<br>0.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.375<br>1.584<br>1.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.994<br>0.896<br>0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50S ribosomal protein L24<br>30S ribosomal protein S4<br>50 kDa outer membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.816<br>0.693<br>1.385                                                                                                                                                                                                                                                                                                   | 1.345                                                                                               | 0.985<br>0.966<br>1.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acetyl-CoA carboxylase, carboxyl transferase, bo<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.851   1.435   0.698   1.452   0.695   0.849   1.660   0.835   0.859   0.849   1.660   0.835   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.845   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.855   0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232<br>1.291                                                                                                                                                                              | 1.395<br>1.552<br>0.987<br>0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.911<br>0.937<br>1.116<br>1.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DNA-directed RNA polymerase subunit be<br>50S ribosomal protein L1<br>trigger factor<br>elongation factor Ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.634<br>0.522<br>0.424<br>0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.375<br>1.584<br>1.676<br>0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.994<br>0.896<br>0.903<br>1.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 505 ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.816<br>0.693<br>1.385<br>0.875                                                                                                                                                                                                                                                                                          | 1.345<br><br>1.162                                                                                  | 0.985<br>0.966<br>1.618<br>0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acetyl-CoA carboxylase, carboxyl transferase, bu<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA<br>transketolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.686   1.452   0.685   DNA-directed RNA polymerase subunit be   1971   - 1.023   highly acidic protein, partial   1.513   - 1.113   highly acidic protein partial   1.513   - 1.113   highly acidic protein partial   1.514   - 1.113   highly acidic protein partial   1.514   - 1.113   highly acidic protein partial   1.514   - 1.113   highly acidic protein partial   1.515   - 1.515   highly acidic protein partial   1.515   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232<br>1.291<br>0.743                                                                                                                                                                     | 1.395<br>1.552<br>0.987<br>0.787<br>1.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.911<br>0.937<br>1.116<br>1.189<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit ali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.634<br>0.522<br>0.424<br>0.984<br>0.659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.375<br>1.584<br>1.676<br>0.984<br>1.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.994<br>0.896<br>0.903<br>1.035<br>0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SOS ribosomal protein L24 30S ribosomal protein S4 SO kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CJE0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.816<br>0.693<br>1.385<br>0.875<br>0.752                                                                                                                                                                                                                                                                                 | 1.345<br><br>1.162<br>1.314                                                                         | 0.985<br>0.966<br>1.618<br>0.966<br>0.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acetyl-CoA carboxylase, carboxyl transferase, bi<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA<br>transketolase<br>NADH dehydrogenase subunit G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725                                                                                                                                                            | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DNA-directed RNA polymerase subunit be 50S ribosomal protein L1 trigger factor elongation factor T5 DNA-directed RNA polymerase subunit all ribosomal protein L7/L12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50\$ ribosomal protein L24 30\$ ribosomal protein 64 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CI50033 acetyl-CoA carboxylase subunit A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812                                                                                                                                                                                                                                                                        | 1.345<br><br>1.162<br>1.314<br>1.275                                                                | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acetyl-CoA carboxylase, carboxyl transferase, bi<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA<br>transketolase<br>NADH dehydrogenase subunit G<br>UTP-glucose-1-phosphate uridylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885                                                                                                                                                   | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-aufur subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505 ribosomal protein L24 305 ribosomal protein 54 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569                                                                                                                                                                                                                                                               | 1.345<br>                                                                                           | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acetyl-CoA carboxylase, carboxyl transferase, bi<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA<br>transketolase<br>NADH dehydrogenase subunit G<br>UTP-glucose-1-phosphate uridylyltransferase<br>305 ribosomal protein S17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.625   1.631   0.86   50S ribosomal protein I.5   1.631   1.031   1.632   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1.032   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.881<br>0.686                                                                                                                                 | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyi-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOS ribosomal protein L24 30S ribosomal protein 64 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA-carboxylase subunit A cJaC-protein conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569                                                                                                                                                                                                                                                               | 1.345<br>                                                                                           | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acetyl-CoA carboxylase, carboxyl transferase, bi<br>hypothetical protein C414_000290003<br>transcription elongation factor GreA<br>transkatolase<br>NADH dehydrogenase subunit G<br>UTP-glucose-1-phosphate uridylyltransferase<br>305 ribosomal protein S17<br>molybdenum cofactor biosynthesis protein Mog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.881<br>0.686                                                                                                                                 | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-polymerase ill beta subunit, central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOS ribosomal protein L24 30S ribosomal protein S4 SO kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CJE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006                                                                                                                                                                                                                                                      | 1.345<br><br>1.162<br>1.314<br>1.275<br>1.509<br>0.84                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transkatolase NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.881<br>0.686<br>1.126                                                                                                                        | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-directed RNA polymerase subunit be DNA-directed RNA polymerase ill beta subunit, central asparti//glutamyl-tRNA(Asn/GIn) amidotr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162<br>1.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOS ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998                                                                                                                                                                                                                                    | 1.345<br><br>1.162<br>1.314<br>1.275<br>1.509<br>0.84                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylyltransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein This aspartate aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.172 0.804 1.254 bfunctional adhesin/ABC transporter as f 1.104 0.862 1.037 a spartae kinase, monofunctional class 0.458 1.625 0.919 305 ribosomal protein iS 1.104 0.862 1.037 a spartae kinase, monofunctional class 0.458 1.625 0.919 305 ribosomal protein iS 1.054 0.874 0.914 0.910 0.869 1.198 accetate kinase 0.755 1.045 1.198 1.198 0.866 periplasmic nitrate reductase, small subi 0.369 1.199 0.862 1.199 1.049 formate dehydrogenase, inon-sulfur subu 0.759 1.045 1.105 0.750 ribosomal protein iS 1.050 rib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.881<br>0.686<br>1.126                                                                                                                        | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts  DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyi-CoA synthetase subunit beta  DNA-directed RNA polymerase subunit be DNA polymerase III beta subunit, central asparty/glutamyi-RNA(Asn/Gln) amidotr SOS ribosomal protein L5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162<br>1.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 505 ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445                                                                                                                                                                                                                           | 1.345<br><br>1.162<br>1.314<br>1.275<br>1.509<br>0.84                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  305 ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate animotransferase  iron ABC transporter periplasmic iron-binding pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.746 1.091 1.184 enolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.686<br>1.126<br>                                                                                                                             | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-polymerase ill beta subunit, central asparty/[glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824<br>1.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162<br>1.606<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOS ribosomal protein L24 30S ribosomal protein 64 50 kDa outer membrane protein L-Sarine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 -dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445                                                                                                                                                                                                                           | 1.345<br>                                                                                           | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transcription elongation factor GreA transkatolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate aminotransferase iron ABC transporter periplasmic iron-binding prisoleucyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.92   1.85   periplasmic nitrate reductase, small subinarial control of the periplasmic nitrate reductase, statement nitrate, scale nitrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.881<br>0.686<br>1.126<br>                                                                                                                    | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>0.86<br>1.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts  DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta  DNA-directed RNA polymerase subunit bet  DNA-directed RNA polymerase subunit be  DNA-polymerase ill beta subunit, central asparty//glutamyl-tRNA(Asn/Gln) amidotr  SOS ribosomal protein L5  thioredoxin glutamine synthetase, type I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824<br>1.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375<br>1.584<br>1.676<br>0.984<br>1.378<br>1.397<br>1.162<br>1.606<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOS ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855                                                                                                                                                                                                         | 1.345<br>                                                                                           | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515<br>1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase 30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein ThiF  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthetase  twin-arginine translocation pathway signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.789   0.89   1.196   acetate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.686<br>1.126<br><br>0.525<br>1.38<br>0.825<br>1.172                                                                                          | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>0.86<br>1.519<br>0.872<br>1.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyi-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit 50 SOS ribosomal protein L5 thioredoxin glutamiyi-RNA[Asn/Gin] amidotr SOS ribosomal protein L5 thioredoxin glutamiyi-synthetase, type I bifunctional adhesin/ABC transporter asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 908 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 2-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855                                                                                                                                                                                                         | 1.345 1.162 1.314 1.275 1.509 0.84 1.016 1.146 0.973                                                | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515<br>1.001<br>1.015<br>0.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription blongation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase iron ABC transporter periplasmic iron-binding prison BCC transporter periplasmic iron-binding prisoleucyl-tRNA synthetase  twin-arginine translocation pathway signal histodyl-tRNA synthetase 305 ribosomal protein S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.29   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045   1.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729<br>0.514<br>1.232<br>1.291<br>0.743<br>0.725<br>0.885<br>0.686<br>1.126<br>                                                                                                                             | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-polymerase ill beta subunit, central asparty/[glutamyl-RNA[Asn/Gln] amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I blfunctional adhesin/ABC transporter aspenoise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.282 1.001 0.66 0.881 0.862 1.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOS ribosomal protein L24 305 ribosomal protein S4 505 NB outer membrane protein L-Serine ammonia-lysse, partial hypothetical protein CLE0033 acetyl-CoA-carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-onoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014                                                                                                                                                                                                | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515<br>1.001<br>1.015<br>0.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthetase  twin-arginine translocation pathway signal  histidyl-RNA synthetase  30S ribosomal protein S5  prolyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126 0.525 1.38 0.825 1.172 1.746 0.526                                                                                                                | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804<br>1.091<br>1.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>0.86<br>1.519<br>0.872<br>1.254<br>1.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts  DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta  DNA-directed RNA polymerase subunit be DNA polymerase III beta subunit, central aspartyl/glutamyl-tRNA(Asn/Gin) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I  Difunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.037<br>0.866<br>1.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOS ribosomal protein L24 305 ribosomal protein S4 505 N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-avoglutarate-acceptor oxidoreductase si hypothetical protein (p3770 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014<br>0.458<br>1.57                                                                                                                                                                               | 1.345 1.162 1.314 1.275 1.509 0.84 1.016 1.146 0.973 1.625 0.785                                    | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515<br>1.001<br>1.015<br>0.919<br>1.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transcription elongation factor GreA  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  305 ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thir  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  isoleucyl-tRNA synthetase  trivin-arginine translocation pathway signal  histidyl-tRNA synthetase  305 ribosomal protein S5  prolyl-tRNA synthetase  Chain A, Crystal Structure Of Adenylosuccinate S  Chain A, Crystal Structure Of Adenylosuccinate S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126 0.525 1.38 0.825 1.172 1.746 0.526                                                                                                                | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804<br>1.091<br>1.293<br>0.893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>0.86<br>1.519<br>0.872<br>1.254<br>1.184<br>1.186<br>1.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts  DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta  DNA-directed RNA polymerase subunit beta  SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I  bifunctional adhesin/ABC transporter as  enolase  periplasmic nitrate reductase, small subi  acetate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.634<br>0.522<br>0.424<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439 1.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>0.866<br>1.195<br>1.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 908 ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLEO033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein L23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014<br>0.458<br>1.52<br>1.53                                                                                                                                                                       | 1.345 1.162 1.314 1.275 1.509 0.84 1.016 1.146 0.973 1.625 0.785 1.293                              | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.515<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription being acetylate a |
| 1.053 0.872 1.078 hypothetical protein CIEO298 1.299 0.808 1.113 saccharopine dehydrogenase 0.663 1.408 0.932 3.decaye-\$phosphosotoulonate ynthase 1.219 0.808 1.113 saccharopine dehydrogenase 0.663 1.408 0.932 3.decaye-\$phosphosotoulonate ynthase 1.219 0.808 1.113 saccharopine dehydrogenase 0.663 1.408 0.932 3.decaye-\$phosphosotoulonate ynthase 1.219 0.808 1.113 saccharopine dehydrogenase 0.663 1.408 0.932 3.decaye-\$phosphosotoulonate ynthase 1.219 0.808 1.113 saccharopine dehydrogenase 0.663 1.408 0.932 decaye-\$phosphosotoulonate ynthase 1.219 0.808 0.819 1.115 dTPP-4-dehydrofhamnose 3,5-epimerase 1.211 0.83 0.866 1.08 0.932 dehydrogenase 0.839 1.134 0.836 0.839 1.134 bittaidini dehydrogenase 0.839 1.134 bittaidini dehydrogenase 0.839 1.134 bittaidini dehydrogenase 0.839 1.134 bittaidini dehydrogenase 0.839 1.134 0.836 0.839 1.134 bittaidini dehydrogenase 0.839 0.975 1.131 bittaidini dehydrogenase 0.839 1.134 bittaidini dehydrogenase 0.839 0.975 1.131 bittaidini dehydrogenase 0.839 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.885 1.126                                                                                                                                                         | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804<br>1.091<br>1.293<br>0.893<br>1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-polymerase III beta subunit, central asparty/[glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subunicated kinase formate dehydrogenase, iron-sulfur subunifur s | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439 1.045 0.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>1.039<br>1.153<br>1.297<br>1.197<br>0.866<br>1.195<br>1.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 505 ribosomal protein L24 305 ribosomal protein S4 505 NBo outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA-carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic paptide PEB2 sapartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S12 scarboxyl-terminal protease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.85                                                                                                                                                                                                                 | 1.345 1.162 1.314 1.275 1.509 0.84 1.016 1.146 0.973 1.625 0.785 1.293 0.888                        | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  305 ribosomal protein 517  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthetisse  twin-arginine translocation pathway signal  histidyl-RNA synthetisse  305 ribosomal protein 55  prolyl-RNA synthetise  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-phosphate synthase large chain  3-oxoacyl-ACP synthase II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.34 0.774 1.21 multi-sensor signal transduction histidini 1.845 1.15 dTDP4-dephydropamnosa 3,5-epimerase 1.71 1.23 dtDp4-dephydropamnosa 3,5-epimerase 1.71 1.75 dTDP4-dephydropamnosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126 0.525 1.38 0.825 1.172 1.746 0.526 1.789 0.67                                                                                                     | 1.395 1.552 0.987 0.787 1.394 1.267 1.435 0.992 1.452 0.931 1.607 1.631 0.486 1.361 0.804 1.091 1.293 0.893 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 ribosomal protein L9/L12 subunit succiny-LCA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA polymerase III beta subunit, central asparty//glutamyl-tRNA(Asn/Gin) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subiacetate kinase formate dehydrogenase, iron-sulfur subu 30S ribosomal protein S10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.634<br>0.522<br>0.424<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.795<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 1.112 1.001 0.6 0.881 0.062 1.294 1.439 1.045 0.954 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.159<br>1.197<br>1.197<br>1.197<br>1.197<br>1.193<br>1.163<br>1.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 505 ribosomal protein L24 305 ribosomal protein S4 505 N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein CJITO major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-RNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014<br>0.458<br>1.57<br>1.082<br>0.85                                                                                                                                                              | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86<br>1.129<br>0.899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  305 ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thir  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthetase  trivin-arginine translocation pathway signal  histidyl-tRNA synthetase  305 ribosomal protein S5  probyl-RNA synthetase  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-phosphate synthase large chain  3-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.116 1.451 1.185 chemotaxis protein CheY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126                                                                                                                                                   | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.486<br>1.361<br>0.804<br>1.091<br>1.293<br>0.893<br>1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.063<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit of SOS ribosomal protein L5 thioredoxin glutamyl-tRNA(Asn/GIn) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogensse, iron-sulfur subu 3OS ribosomal protein SIO oxaloacetate decarboxylase, alpha subul oxaloacetate decarboxylase, alpha subul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.634<br>0.522<br>0.424<br>0.659<br>0.741<br>0.751<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.795<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.375 1.584 1.676 0.984 1.378 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439 1.045 0.954 0.972 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>0.866<br>1.195<br>1.197<br>1.163<br>1.038<br>0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 908 ribosomal protein L24 305 ribosomal protein S4 50 kDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein (LE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein (j0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>0.855<br>1.014<br>0.855<br>1.014<br>0.855<br>1.014<br>0.856                                                                                                                                                            | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.051<br>0.919<br>1.058<br>1.135<br>0.86<br>1.129<br>0.899<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase iron ABC transporter periplasmic iron-binding pri soleucyl-RNA synthetase twin-arginine transfocation pathway signal histidyl-RNA synthetase 305 ribosomal protein S5 prolyl-RNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoacyl-ACP synthase II hypothetical protein JJD26997_0724 flagellar assembly protein FIIW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.353 0.845 1.088 molecular chaperone GroES 1.266 1.165 1.025 505 ribosomal protein I.10 0.897 0.975 1.131 histidini dehydrogenase 0.892 1.19 0.992 pyruvate kinase 0.422 1.599 1.011 cyrothrome Coxidase, cbb3-type, subunit III 1.81 1.02 0.979 argininosuscinate synthase 1.873 0.649 1.105 phosphate acetyltransferase 0.422 1.599 1.011 cyrothrome Coxidase, cbb3-type, subunit III 1.044 505 ribosomal protein ST 1.096 1.048 1.039 givceraldehyde 3-phosphate dehydrogen 0.726 1.458 0.819 quinone-reactive Ni/Fe-hydrogenase, smal 0.801 1.254 0.949 F0F1 AFF synthase subunit data 0.459 1.67 0.393 305 ribosomal protein I.14 1.74 1.14 1.075 branched-chain amino acid aminotransferi 1.741 1.203 short chain dehydrogenase/reductase family or 1.044 0.919 chemotaxis protein CheW 1.03 0.96 1.014 strength of the chemotaxis protein CheW 1.03 0.95 1.054 1.091 cyrothrome Coxidase, chb3-type, subunit III 1.034 1.134 0.919 chemotaxis protein CheW 1.03 0.96 1.014 strength or 1.034 1.034 0.919 chemotaxis protein CheW 1.03 0.96 1.014 strength or 1.034 0.919 chemotaxis protein CheW 1.03 0.974 0.984 1.055 0.079 0.985 1.035 0.079 0.985 1.035 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126 0.525 1.38 0.825 1.1746 0.526 1.789 0.67 0.579 0.798                                                                                              | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.804<br>1.091<br>1.293<br>0.893<br>1.293<br>1.293<br>1.391<br>1.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.519<br>0.872<br>1.254<br>1.184<br>1.186<br>1.198<br>1.198<br>3.0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-aufur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-polymerase III beta subunit, central asparty/[glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subia acetate kinase formate dehydrogenase, iron-aufur subu 30S ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein LSC028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.634<br>0.522<br>0.424<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>0.852<br>0.824<br>1.261<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.795<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.375 1.584 1.676 0.984 1.378 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439 1.045 0.954 0.972 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.037<br>0.866<br>1.195<br>1.163<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038 | 505 ribosomal protein L24 305 ribosomal protein S4 505 NB outer membrane protein L-Serine ammonia-lysse, partial hypothetical protein CLE0033 acetyl-CoA-carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-onoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase aubunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.852<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014<br>0.458<br>1.57<br>1.082<br>0.85<br>1.245<br>0.92                                                                                                                                                      | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.051<br>0.919<br>1.058<br>1.135<br>0.86<br>1.129<br>0.899<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein ThiF  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthetisase  twin-arginine translocation pathway signal  histidyl-tRNA synthetisase  30S ribosomal protein S5  prolyl-RNA synthetisae  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-hosphate synthase large chain  3-oxoacyl-ACP synthase il  hypothetical protein JSD  1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.88   1.368   0.951   citrate synthase   0.882   1.19   0.932   pyruvate kinase   0.422   1.569   1.011   cytochrome Coxidase, cbb3-type, subunit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.729 0.514 1.232 1.291 1.291 0.743 0.725 0.885 0.881 1.126 0.525 1.38 0.825 1.172 1.746 0.526 1.789 0.67 0.579 1.053 1.34                                                                                    | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.804<br>1.091<br>1.293<br>0.893<br>1.293<br>1.293<br>1.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.519<br>0.872<br>1.254<br>1.184<br>1.186<br>1.198<br>3.0.837<br>0.837<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.198<br>1.19 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumerate reductase iron-sulfur subunit succiny-LOA synthesase subunit beta DNA-directed RNA polymerase subunit beta DNA-polymerase III beta subunit, central asparty/glutamyl-RNA(Asn/Gin) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subiacetate kinase formate dehydrogenase, iron-sulfur subu 30S ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein C1028 multi-sensor signal transduction histiding multi-sensor signal transduction histiding multi-sensor signal transduction histiding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.634 0.522 0.424 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.3669 0.795 1.01 0.946 0.862 1.299 1.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.1626 1.112 1.282 1.001 0.66 0.881 0.862 1.294 1.439 1.045 0.952 1.286 0.952 1.286 0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.09<br>0.835<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.197<br>1.196<br>1.195<br>1.163<br>1.085<br>0.856<br>1.113<br>1.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 505 ribosomal protein L24 305 ribosomal protein S4 505 N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein CIP170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-RNA synthetase subunit beti 305 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.816<br>0.693<br>1.385<br>0.875<br>0.752<br>0.812<br>0.569<br>1.006<br>1.513<br>0.998<br>1.445<br>1.488<br>0.855<br>1.014<br>0.458<br>1.57<br>1.082<br>0.855<br>1.245<br>0.92                                                                                                                                            | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.001<br>1.015<br>0.919<br>0.899<br>1.25<br>0.932<br>1.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylyltransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein This aspartate aminotransferase iron ABC transporter periplasmic iron-binding prisoleucyl-RNA synthetase twin-arginine translocation pathway signal histidyl-RNA synthetase 305 ribosomal protein S5 probj-RNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoscy-LAG synthase in the synthase cytochrome C family protein in the synthase cytochrome C family protein in the synthase in th |
| 1.182         1.102         0.979         argininosuccinate synthase         1.873         0.649         1.105         phosphate acetyltransferase         1.038         0.825         1.14         elongation factor P           0.516         1.520         0.954         505 ribosomal protein L16         1.007         0.85         1.148         hypothetical protein C414_000420088         0.819         1.14         1.044         505 ribosomal protein L31           0.459         1.67         0.389         305 ribosomal protein S7         0.601         1.559         0.94         305 ribosomal protein S8         0.239         2.055         0.709 505 ribosomal protein L12           0.574         1.946         0.435         1.296         ruberrythrin         0.551         1.248         1.204         transhvirthylamine-N-oxide reductase 2 precu         0.802         1.18         0.885 bifunctional N-acetylglucosamine-1-phosphate           1.084         1.344         0.919         - bernotaxis protein CheW         1.03         0.96         1.045         sucinate dehydrogenase, Csubunit         1.03         0.885         bifunctional N-acetylglucosamine-1-phosphate           1.084         1.344         0.919         - bernotaxis protein CheW         1.03         0.96         1.045         succinate dehydrogenase, Csubunit         1.03<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 1.26 - 0.525 1.38 0.825 1.172 1.746 0.526 0.526 1.789 0.677 0.579 0.798 1.053                                                                                 | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>0.607<br>1.631<br>0.804<br>1.091<br>1.091<br>1.091<br>1.293<br>1.29<br>1.384<br>0.872<br>0.872<br>0.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.014<br>0.865<br>1.063<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-sulfur subu 30s ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein CIEO298 multi-sensor signal transduction histidini chemotaxis protein CheV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375 1.584 1.676 0.984 1.378 1.162 1.606 1.112 1.282 1.001 0.6 0.881 0.862 1.294 1.439 1.045 0.954 0.954 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.037<br>1.163<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 2-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FxbM family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.85 1.245 0.922 0.834 0.663 1.71 1.0848                                                                                                                                                                             | 1.345 1.162 1.314 1.275 1.509 0.84 1.016 1.016 1.146 0.973 1.625 1.293 0.888 1.293 0.888 0.92 1.408 | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.011<br>1.015<br>0.989<br>1.058<br>1.135<br>0.919<br>1.058<br>0.135<br>0.899<br>1.25<br>0.932<br>1.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate aminotransferase iron ABC transporter periplasmic iron-binding pri soleucyl-RNA synthetase twin-arginine transfocation pathway signal histidyl-RNA synthetase 305 ribosomal protein S5 prolyl-RNA synthetase 305 ribosomal protein S5 prolyl-RNA synthetase 305 ribosomal protein S5 carbamoyl-phosphate synthase large chain 3-oxoacyl-ACP synthase II hypothetical protein JID26997_0724 flagellar assembly protein FIIW 3-deoxy-8-phosphoctulonate synthase cytochome C family protein UDP-GlcNAc-specific C4,6 dehydratase/C5 epimu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.007   0.51   1.542   0.954   50S ribosomal protein L16   1.007   0.95   1.148   hypothetical protein C414_000420088   0.819   1.14   1.044   50S ribosomal protein L31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 1.126 0.686 1.126 0.525 1.38 0.825 1.172 0.526 1.749 0.679 0.679 0.679 1.053 1.34 1.116 1.1353                                                                      | 1.395<br>1.552<br>0.987<br>0.787<br>1.267<br>1.435<br>0.992<br>0.931<br>1.607<br>1.631<br>0.804<br>1.091<br>1.293<br>0.893<br>1.29<br>1.531<br>1.384<br>0.872<br>0.774<br>0.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.519 0.872 1.254 1.184 1.186 1.198 1.043 0.887 0.822 1.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-aufur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-directed RNA polymerase subunit be DNA-polymerase III beta subunit, central asparty/[glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-aufur subu 3OS ribosomal protein S10 oxaloacetate decerboxylase, alpha subul hypothetical protein LIC0298 multi-sensor signal transduction histidinichemotaxis protein CLeV molecular chaperone GroES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 1.261 1.578 0.926 1.104 0.843 0.3699 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.375 1.584 1.676 0.984 1.378 1.162 1.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.092<br>1.039<br>1.153<br>1.297<br>1.197<br>0.866<br>1.163<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.113<br>1.155<br>0.856<br>1.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505 ribosomal protein L24 305 ribosomal protein S4 505 NB outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoAcarboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic paptide PEB3 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.816 0.693 1.385 0.875 0.752 0.5812 0.569 1.006 1.513 0.998 1.445 1.485 1.014 0.458 1.57 1.082 0.855 1.245 0.92 0.855 1.245 0.92 0.855 1.245 0.92 0.855                                                                                                                                                                  | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.899<br>0.899<br>1.25<br>0.932<br>1.293<br>0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription delogation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron A8C transporter periplasmic iron-binding pri  soleucyl-RNA synthetisse  twin-arginine translocation pathway signal  histidyl-tRNA synthetisse  30S ribosomal protein S15  prolyl-tRNA synthetisse  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-phosphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JSD  1-goslar acetylosuccinate S  carbamoyl-phosphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JDC6997_0724  flagallar assambly protein FIIW  3-deoxy-8-phosphoctulonate synthase  cytochrome C family protein  UDP-GICNAC-specific C4,6 dehydratase/CS epim  histidiool dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.096 1.048 1.039 glyceraldehyde 3-phosphate dehydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 1.126                                                                                                                                                               | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.607<br>1.631<br>0.486<br>1.361<br>1.391<br>1.293<br>0.893<br>1.29<br>1.531<br>1.384<br>0.872<br>0.774<br>0.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.698<br>1.114<br>0.865<br>1.519<br>0.872<br>1.254<br>1.184<br>1.198<br>1.043<br>0.887<br>0.822<br>1.078<br>1.198<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191<br>1.191  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumerate reductase iron-sulfur subunit succiny-LOA synthesase subunit beta DNA-directed RNA polymerase subunit beta DNA-polymerase III beta subunit, central asparty/glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subiacetate kinase formate dehydrogenase, iron-sulfur subu 30S ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein CE028 multi-sensor signal transduction histidin chemotaxis protein CheY molecular chaperone GroES citrate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.266 0.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.032<br>1.039<br>0.903<br>1.153<br>1.297<br>1.197<br>1.037<br>0.866<br>1.193<br>1.038<br>1.038<br>1.038<br>1.163<br>1.163<br>1.163<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038 | SOS ribosomal protein L24 305 ribosomal protein S4 50 Su Da outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cip177 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-RNA synthetase subunit beti 305 ribosomal protein L13 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FibM family protein 505 ribosomal protein L10 pyruvate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.445 1.014 0.458 1.577 1.082 0.85 1.245 0.92 0.834 0.6653 1.71 0.848 0.897                                                                                                                                                                             | 1.145 1.162 1.314 1.275 1.309 0.84 1.016 1.146 0.973 1.625 0.785 1.184 0.92 1.408 1.184 0.92 1.169  | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86<br>1.129<br>0.899<br>1.25<br>0.932<br>1.25<br>0.932<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylyltransferase 305 ribosomal protein 517 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein Mog thiamine biosynthesis protein Thigaspartate aminotransferase iron ABC transporter periplasmic iron-binding pri soleucyl-RNA synthetase twin-arginine translocation pathway signal histidyl-RNA synthetase 305 ribosomal protein 55 prolyl-RNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoacyl-AGP synthase il hypothetical protein JID 26997_0724 flageliar assembly protein FIW Jadoxys-9-phosphoctulonate W Jadoxys-9-phosphoctulon |
| 0.459         1.67         0.839         30S ribosomal protein S7         0.601         1.509         0.904         30S ribosomal protein S8         0.239         2.055         0.709         SOS ribosomal protein L1           1.546         0.435         1.296         0.933         50S ribosomal protein L14         1.744         1.14         1.075 branched-chain aminor local daminotransfer         1.741         1.203 short chain dehydrogenase/reductase family of the protein protein L1           1.546         0.435         1.296         ruberythrin         0.551         1.28         1.204 trimethylamine-N-oxide reductase 2 precu         0.802         1.316         0.885 bifunctional N-acetylglucosamine-1-phosphate           1.084         1.344         0.919         chemotaxis protein CheW         1.03         0.96         1.014         succinate dehydrogenase, Csubunit         1.033         0.789         1.181 OmpR protein, particular           0.855         1.345         1.001         cysteine desuffurase         0.79         0.954         1.045         succinate dehydrogenase, flavoprotein sut         0.958         -         0.932         transaldolase           0.855         1.348         1.002         0.796         0.954         0.954         1.049         0.955         1.499         0.955         1.812         0.825 <td>0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.885 1.326 0.525 1.38 0.825 1.372 1.746 0.526 1.789 0.67 0.579 0.798 1.053 1.34 1.116 1.353 3.31</td> <td>1.395<br/>1.552<br/>0.987<br/>0.787<br/>1.267<br/>1.452<br/>0.991<br/>1.607<br/>0.804<br/>1.091<br/>1.691<br/>0.893<br/>1.29<br/>1.531<br/>0.893<br/>1.29<br/>1.531<br/>0.872<br/>0.774<br/>1.451<br/>0.872<br/>0.774<br/>1.451</td> <td>0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.063 0.866 1.519 0.872 1.184 1.186 1.198 1.043 0.887 0.822 1.078 1.211 1.185 1.083</td> <td>DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit of the SOS ribosomal protein L5 thiosomal protein L5 thiosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter as enolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-sulfur subu 30s ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein CIEC298 multi-sensor signal transduction histidinichemotaxis protein CheY molecular chaperone GroE5 citrate synthase</td> <td>0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.101 0.946 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803</td> <td>1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 0.881 0.662 1.294 1.439 1.045 0.954 0.954 0.972 1.286 0.808</td> <td>0.994 0.896 0.903 1.035 0.966 0.867 1.099 0.835 1.032 1.153 1.297 0.866 1.195 1.633 1.038 1.038 1.038 1.155 0.818 0.818 0.819 0.856 1.113</td> <td>905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein C23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, fxbM family protein 505 ribosomal protein L10 pyruvate kinase phosphate acetyltransferase</td> <td>0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.835 1.245 0.93 1.71 0.663 1.71 0.848 0.855</td> <td>1.345</td> <td>0.985<br/>0.966<br/>1.618<br/>0.966<br/>0.937<br/>0.916<br/>0.924<br/>1.157<br/>1.113<br/>0.989<br/>1.151<br/>1.001<br/>1.015<br/>0.919<br/>1.058<br/>1.135<br/>0.86<br/>1.129<br/>0.899<br/>1.25<br/>0.932<br/>1.29<br/>0.932<br/>1.29<br/>0.932<br/>1.29<br/>0.966<br/>1.131<br/>1.011</td> <td>acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription deligation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdanum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri soleucyl-RNA synthetase  twin-arginine transforcation pathway signal histidyl-RNA synthetase 305 ribosomal protein S5 probly-RNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoscyl-ACP synthase II hypothetical protein JID 26997_0724 flagellar assembly protein FIW 3-deoxy-8-phosphoctulomate synthase cytochrome C family protein UDP-GICNA-specific C4, 6 dehydratase/C5 epiministidyl-dickore C oxidase, cbb3-type, subunit III elongation factor P</td> | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.885 1.326 0.525 1.38 0.825 1.372 1.746 0.526 1.789 0.67 0.579 0.798 1.053 1.34 1.116 1.353 3.31                                                                   | 1.395<br>1.552<br>0.987<br>0.787<br>1.267<br>1.452<br>0.991<br>1.607<br>0.804<br>1.091<br>1.691<br>0.893<br>1.29<br>1.531<br>0.893<br>1.29<br>1.531<br>0.872<br>0.774<br>1.451<br>0.872<br>0.774<br>1.451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.063 0.866 1.519 0.872 1.184 1.186 1.198 1.043 0.887 0.822 1.078 1.211 1.185 1.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit of the SOS ribosomal protein L5 thiosomal protein L5 thiosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter as enolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-sulfur subu 30s ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein CIEC298 multi-sensor signal transduction histidinichemotaxis protein CheY molecular chaperone GroE5 citrate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.101 0.946 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 0.881 0.662 1.294 1.439 1.045 0.954 0.954 0.972 1.286 0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.994 0.896 0.903 1.035 0.966 0.867 1.099 0.835 1.032 1.153 1.297 0.866 1.195 1.633 1.038 1.038 1.038 1.155 0.818 0.818 0.819 0.856 1.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CLE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein C23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, fxbM family protein 505 ribosomal protein L10 pyruvate kinase phosphate acetyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.835 1.245 0.93 1.71 0.663 1.71 0.848 0.855                                                                                                                                                                         | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.151<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86<br>1.129<br>0.899<br>1.25<br>0.932<br>1.29<br>0.932<br>1.29<br>0.932<br>1.29<br>0.966<br>1.131<br>1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription deligation factor GreA transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdanum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri soleucyl-RNA synthetase  twin-arginine transforcation pathway signal histidyl-RNA synthetase 305 ribosomal protein S5 probly-RNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoscyl-ACP synthase II hypothetical protein JID 26997_0724 flagellar assembly protein FIW 3-deoxy-8-phosphoctulomate synthase cytochrome C family protein UDP-GICNA-specific C4, 6 dehydratase/C5 epiministidyl-dickore C oxidase, cbb3-type, subunit III elongation factor P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.574         1.496         0.933         50S ribosomal protein L14         1.74         1.14         1.075         branched-chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain amino acid aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain aminotransfer         1.741         1.203         short chain dehydrogenase/reductase family of the protein chain aminotransfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.686 1.126 0.525 1.38 0.825 1.746 0.526 1.774 0.579 0.798 1.053 1.033 1.116 1.353 0.83 0.83                                                                  | 1.395<br>1.552<br>0.987<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>0.804<br>1.361<br>0.804<br>1.293<br>0.893<br>1.384<br>0.872<br>0.872<br>1.451<br>0.874<br>1.451<br>1.691<br>1.293<br>1.531<br>1.384<br>0.872<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384     | 0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.063 0.866 1.519 0.872 1.254 1.184 1.186 1.198 1.043 0.827 1.058 1.011 1.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit be DNA-directed RNA polymerase subunit be DNA-polymerase III beta subunit, central asparty/[glutamyl-RNA(San/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-sulfur subu 3OS ribosomal protein S10 oxaloacetate decarboxylase, alpha subun hypothetical protein LCBC98 multi-sensor signal transduction histidinichemotaxis protein CCP9 colorate synthase argininosuccinate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.634<br>0.522<br>0.424<br>0.984<br>0.659<br>0.741<br>0.751<br>0.489<br>1.971<br>1.578<br>0.926<br>1.104<br>0.843<br>0.369<br>0.795<br>1.01<br>0.946<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.848<br>0.862<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1.299<br>1 | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.606 0.881 0.862 1.294 1.439 0.954 0.972 1.286 0.808 1.381 1.165 1.19 0.649 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.994 0.896 0.903 1.035 0.966 0.867 1.09 0.835 1.032 1.153 1.297 1.197 1.197 1.193 1.038 1.038 1.038 1.113 1.155 0.818 1.025 1.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505 ribosomal protein L24 305 ribosomal protein S4 505 NBo outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoAcabovylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-onoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB3 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C414_000420088                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.816 0.693 1.385 0.875 0.752 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.855 1.245 0.92 0.853 1.71 0.848 0.897                                                                                                                                                                                    | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.001<br>1.015<br>0.919<br>1.058<br>1.135<br>0.86<br>0.86<br>0.899<br>1.25<br>0.932<br>1.293<br>0.966<br>1.131<br>1.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylyltransferase  305 ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein ThiF  aspartate aminotransferase  iron ABC transporter periplasmic iron-binding pri  soleucyl-RNA synthesis  twin-arginine translocation pathway signal  histidyl-RNA synthetase  305 ribosomal protein S15  prolyl-RNA synthetase  105 ribosomal protein S5  prolyl-RNA synthetase  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-phosphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JUD26997_0724  flaggellar assembly protein FiIW  3-deoxy-8-phosphoctulonate synthase  cyrochrome C family protein  UDP-GICNA-specific C4,6 dehydratase/C5 epim  histidinol dehydrogenase  cyrochrome C coidase, cbb3-type, subunit III  elongation factor P  505 ribosomal protein 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.546         0.435         1.296 rubrerythrin         0.551         1.248         1.204 trimethylamine-N-oxide reductase 2 precu         0.802         1.316 0.885 bifunctional N-acety/glucosamine-1-phosphate           1.084         1.104         0.915 0.705         1.001 crimethylamine-N-oxide reductase 2 precu         0.802         1.316 0.885 bifunctional N-acety/glucosamine-1-phosphate           1.689         0.705 1.164         serine hydroxymethyltrensferase         0.974 0.984 1.045 succinate dehydrogenase, flavoprotein sut         0.98 - 0.982 translatolase         0.982 translatolase           0.855 1.35 1.001 cysteine desulfursas         0.705 0.985 1.483 crime thylamine adenosyltransferase         0.585 1.483 0.935 ubliquin-cyclorhome C reductase, cytoch         0.858 1.289 0.856 cation A8C transporter ATF-binding protein           1.289 0.505 1.248 transthyretin-like protein         1.022 1.026 1.062         ATF-dependent chaperone protein Clp8         0.84 0.986 1.178 flavodoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.885 1.126 0.525 1.172 1.746 0.526 1.789 0.67 0.579 1.053 1.34 1.116 1.353 0.83 1.382 1.382 0.832                                                                  | 1.395<br>1.552<br>0.987<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>0.804<br>1.361<br>0.804<br>1.293<br>0.893<br>1.29<br>0.872<br>0.774<br>0.774<br>0.875<br>0.875<br>0.774<br>0.875<br>0.774<br>0.875<br>0.774<br>0.774<br>0.875<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0 | 0.911<br>0.937<br>1.116<br>1.189<br>0.867<br>1.011<br>0.658<br>1.114<br>0.865<br>1.163<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumerate reductase iron-sulfur subunit succiny-LOA synthesase subunit beta DNA-directed RNA polymerase subunit beta DNA-polymerase III beta subunit, central asparty/glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subiacetate kinase periplasmic nitrate reductase, small subiacetate kinase formate dehydrogenase, iron-sulfur subu 305 ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypothetical protein CE028 multi-sensor signal transduction histidin chemotaxis protein CheY molecular chaperone GroES citrate synthase argininosuccinate synthase argininosuccinate synthase SOS ribosomal protein L16 glyceraldehyde 3-phosphate dehydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.2666 0.882 1.873 1.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.282 1.282 1.001 0.6 0.881 1.045 0.954 1.439 1.045 0.858 1.381 1.165 1.194 0.690 0.858 1.169 0.858 1.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.994<br>0.896<br>0.903<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>1.039<br>1.153<br>1.297<br>1.037<br>0.866<br>1.193<br>1.038<br>0.818<br>1.038<br>0.818<br>1.155<br>0.818<br>1.155<br>0.818<br>1.155<br>0.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 505 ribosomal protein L24 305 ribosomal protein S4 505 N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CI50033 acetyl-CoA carboxylase subunit A cjaC protein individual protein cife subunit A cjaC protein diphy acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-RNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FxbM family protein 505 ribosomal protein L10 pyruvate kinase phosphate acetyltransferase hypothetical protein C14_000420088 quinome-reactive Ni/Fe-hydrogenase, smal                                                                                                                                                                                                                                                                                                                               | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.006 1.513 0.998 1.445 1.445 1.014 0.458 1.577 1.082 0.85 1.245 0.92 0.834 0.663 1.71 0.848 0.897 0.422 1.038                                                                                                                                                                  | 1.145                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>1.113<br>0.989<br>1.191<br>1.001<br>1.001<br>1.005<br>0.919<br>1.058<br>0.86<br>0.86<br>0.899<br>1.25<br>0.932<br>1.293<br>0.966<br>1.131<br>1.011<br>1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transcription elongation factor GreA transcratolase NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate aminotransferase iron A8C transporter periplasmic iron-binding prisoleucyl-tRNA synthetase 305 ribosomal protein S5 probj-RNA synthetase 305 ribosomal protein S5 probj-RNA synthetase 305 ribosomal protein S5 probj-RNA synthetase 10 Acet |
| 1.084         1.344         0.919 chemotaxis protein CheW         1.03         0.95 class         1.01 succinate dehydrogenase, C subunit         1.03 0,789 1.181 (0.789 1.181)         0.789 protein, partial           1.689 0.705 1.164 serine hydroxymethyltransferase         0.974 0.984 1.045 (0.984 1.045)         succinate dehydrogenase, flavoprotein sut         0.958 — 0.932 (translatiolase         0.932 (translatiolase           0.855 1.35 1.001 (0.952 1.134 methionine adenosyltransferase         0.585 1.483 0.935 (ubiquino-cytochrome C reductase, cytoch         0.858 1.289 0.855 (cation ABC transporter ATP-binding protein           1.289 0.505 1.248 (transthyretin-like protein)         1.022 1.026 1.062         ATP-dependent chaperone protein ClpB         0.84 0.986 1.178 (flavodoxin)         1.178 (flavodoxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 1.126 0.525 1.172 1.746 0.526 1.789 0.798 1.053 1.116 1.383 1.116 1.383 1.182 0.516 0.519                                                                     | 1.395<br>1.552<br>0.987<br>0.787<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.631<br>0.486<br>1.361<br>1.293<br>0.129<br>1.293<br>1.294<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384     | 0.911 0.937 1.116 0.867 1.011 0.698 1.114 0.698 1.114 0.865 1.519 0.872 1.254 1.184 1.186 1.198 1.043 0.822 1.078 1.21 1.185 0.822 0.829 0.829 0.829 0.829 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 fumerate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit of SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter as enolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-sulfur subunit social subunitation oral protein CIBC298 multi-sensor signal transduction histidinichemotaxis protein CIBC298 multi-sensor signal transduction histidinichemotaxis protein CheY molecular chaperone GrotS citrate synthase argininosuccinate synthase SOS ribosomal protein L16 glyceraldehyde 3-phosphate dehydrogen 3OS ribosomal protein ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.101 0.946 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.266 0.882 1.873 1.007 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.375 1.584 1.676 0.984 1.397 1.162 1.001 0.66 0.881 0.862 1.294 1.439 1.045 0.954 0.972 1.186 0.808 1.165 1.19 0.649 0.858 1.165 1.19 0.649 0.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.994 0.896 0.903 1.035 0.966 0.857 1.09 0.835 1.032 1.032 1.039 1.153 1.297 1.163 1.038 1.085 0.818 1.155 0.818 1.155 0.818 1.1025 0.932 1.105 1.148 0.819 0.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIEO033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S12 carboxyl-terminal protease biotin carboxylase for saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FxbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C114_00042008 quinone-reactive Ni/Fe-hydrogenase, smal                                                                                                                                                                                                                                                                                                                                                                          | 0.816 0.693 1.385 0.875 0.752 0.569 1.006 1.513 0.998 1.445 1.57 1.082 0.855 1.245 0.92 0.834 0.663 1.71 0.488 0.897 0.492 1.038 0.819 0.801 0.819 0.801                                                                                                                                                                  | 1.345                                                                                               | 0.985 0.966 1.618 0.966 0.937 0.916 0.924 1.157 1.113 1.091 1.515 0.091 1.055 0.86 1.129 0.899 1.25 0.932 1.293 0.966 1.131 1.011 1.144 0.949 0.709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription deligation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylytransferase 30S ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate aminotransferase iron ABC transporter periplasmic iron-binding prisolacuyl-IRNA synthetase 10sloeuyl-IRNA synthetase 10sloeuyl-IRNA synthetase 30S ribosomal protein S5 probly-IRNA synthetase 20S ribosomal protein S5 probly-IRNA synthetase Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoscyl-ACP synthase II hypothetical protein JID 26997_0724 flagellar assembly protein FIW 3-deoxy-8-phosphoctulonate synthase cytochrome C family protein UDP-GICNA-specific C4,6 dehydratase/C5 epimhistidinol dehydrogenase cytochrome C oxidase, cbb3-type, subunit III elongation factor P 50S ribosomal protein L31 FOF14 ATP synthase subunit delta 50S ribosomal protein L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.689         0.705         1.164         serline hydroxymethyltransferase         0.974         0.984         1.045         succinate dehydrogenase, flavoprotein sut         0.958         —         0.932         transaldolase           0.855         1.35         1.001         cysteine desulfurase         0.95         delta-aminolevulinic acid dehydratase         0.366         1.812         0.825         305 hlosomal protein S3           1.213         0.955         1.134         methionine adenosyltransferase         0.85         1.489         0.955         1.248         vansthyretin-like protein         0.05         1.02         1.026         ATP-dependent chaperone protein ClpB         0.84         0.986         1.178         flavodoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.729 0.514 1.232 1.291 0.743 0.725 0.885 0.881 0.886 1.126 1.126 1.126 1.748 0.677 0.579 0.798 1.053 1.316 1.353 0.83 0.831 1.316 1.353 0.830 1.316 1.353 0.830 1.382 0.516                                  | 1.395<br>1.592<br>0.987<br>1.394<br>1.267<br>0.992<br>1.452<br>0.991<br>1.691<br>1.691<br>1.691<br>1.293<br>0.893<br>1.29<br>1.531<br>1.384<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0.872<br>0 | 0.911 0.937 1.116 0.937 1.116 0.867 1.013 0.866 1.519 0.872 1.254 1.184 1.186 1.198 1.043 0.827 1.088 0.821 1.184 1.190 0.822 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit beta DNA-directed RNA polymerase subunit beta DNA-directed RNA polymerase subunit beta DNA-dolymerase ill beta subunit, central asparty/[glutamyl-tRNA[Kan/Gln] amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subunitate dehydrogensse, iron-sulfur subunitate dehydrogense for Schosomal protein C10298 multi-sensor signal transduction histidin chemotaxip rotein CAPY molecular chaperone GroES citrate synthase argininosuccionate synthase SOS ribosomal protein L16 glyceraldehyde 3-phosphate dehydrogen 305 ribosomal protein T7 SOS ribosomal protein T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.266 0.882 1.873 1.007 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.375<br>1.584<br>1.376<br>1.378<br>1.378<br>1.162<br>1.100<br>0.66<br>0.881<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1.045<br>1 | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.039<br>0.903<br>1.153<br>1.129<br>1.037<br>1.197<br>1.037<br>1.197<br>1.038<br>1.038<br>1.038<br>1.185<br>1.038<br>1.185<br>1.038<br>1.185<br>1.038<br>1.185<br>1.038<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185<br>1.185 | 505 ribosomal protein L24 305 ribosomal protein S4 505 NDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoAcatosylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-onoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 sapartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S12 scarboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C414_000420088 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi                                                                                                                                                                                                                                                                                                       | 0.816 0.693 1.385 0.875 0.752 0.5812 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.855 1.245 0.92 0.834 0.663 1.71 0.848 0.897 0.422 1.038 0.819 0.801                                                                                                                                               | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>0.989<br>1.191<br>1.015<br>1.015<br>1.058<br>1.135<br>0.86<br>0.899<br>1.253<br>0.966<br>1.293<br>0.966<br>1.131<br>1.011<br>1.14<br>1.041<br>0.949<br>0.709<br>1.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription elongation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron A8C transporter periplasmic iron-binding pri  soleucyl-RNA synthetiss  twin-arginine translocation pathway signal  histidyl-tRNA synthetisse  30S ribosomal protein S5  prolyl-RNA synthetisse  30S ribosomal protein S5  prolyl-RNA synthetisse  10S ribosomal protein S5  prolyl-RNA synthetisse  10A in A, Crystal Structure Of Adenylosuccinate S  carbamoyl-phosphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JUSC6997_0724  flagallar assembly protein FIIW  3-deoxy-8-phosphoctulonate synthase  cytochrome C family protein  10P-GICNA-2-perific C4, 6 dehydratase/C5 epim  histidinol dehydrogenase  cytochrome C oxidase, cbb3-type, subunit III  elongation factor P  50S ribosomal protein L31  F0F1 ATP synthase subunit delta  50S ribosomal protein L21  short chain dehydrogenase/reductase family ox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.213 0.925 1.134 methionine adenosyltransferase 0.585 1.483 0.935 ubiquinol-cytochrome Creductase, cytoch 0.885 1.289 0.856 cation ABC transporter ATP-binding protein 1.022 1.026 1.062 ATP-dependent chaperone protein ClpB 0.84 0.986 1.178 flavodoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.729 0.514 1.322 1.291 0.743 0.725 0.885 0.881 0.686 - 0.525 1.326 0.525 1.172 0.579 0.677 0.579 0.793 1.34 1.116 1.153 0.83 1.382 0.83 1.382 0.83 1.382 0.83                                                | 1.395<br>1.552<br>0.987<br>1.394<br>1.267<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>0.804<br>1.091<br>1.293<br>0.893<br>1.29<br>1.531<br>1.384<br>0.872<br>0.774<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1.384<br>1 | 0.911 0.937 1.116 0.867 1.011 0.698 1.114 0.865 1.063 0.867 1.114 1.186 1.198 1.043 1.043 1.088 0.851 1.184 1.186 1.199 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 1.079 0.872 0.872 0.872 0.873 0.873 0.873 0.873 0.873 0.873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumerate reductase iron-sulfur subunit succiny-LOA synthesase subunit beta DNA-directed RNA polymerase subunit beta DNA-polymerase III beta subunit, central asparty/glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subiacetate kinase periplasmic nitrate reductase, small subiacetate kinase formate dehydrogenase, iron-sulfur subu 3OS ribosomal protein S10 oxaloacetate decarboxylase, alpha subul hypotheticial protein CEG28 multi-sensor signal transduction histidin chemotaxis protein CheY molecular chaperone GroES citrate synthase argininosuccinate synthase argininosuccinate synthase argininosuccinate synthase 3OS ribosomal protein S7 SOS ribosomal protein I16 glyceraldehyde 3-phosphate dehydrogen 3OS ribosomal protein I16 SOS ribosomal protein I14 rubrerythrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.2666 0.882 1.673 1.007 0.726 0.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.375 1.584 1.376 1.594 1.378 1.397 1.162 1.606 1.112 1.822 1.001 0.6 0.881 1.045 0.954 0.954 0.954 0.972 0.954 1.148 1.165 1.19 0.649 0.85 1.458 1.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>1.032<br>1.037<br>1.195<br>1.195<br>1.085<br>0.856<br>1.113<br>1.085<br>0.856<br>0.818<br>1.025<br>0.903<br>1.1148<br>0.903<br>1.148<br>0.903<br>1.148<br>0.903<br>1.148<br>0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 505 ribosomal protein L24 305 ribosomal protein S4 505 N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-COA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein [0170 major antigenic peptide PEB2 asspartate kinase, monofunctional class phenylalanyl-RNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrochamnose 3,5-epimerase methyltransferase, RibM family protein S05 ribosomal protein L10 pyruvate kinase phosphate acetyltransferase hypothetical protein C141_000420088 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi trimethylamine-N-oxide reductase 2 precu                                                                                                                                                                                                                                  | 0.816 0.693 1.385 0.875 0.752 0.812 0.569 1.003 1.193 0.998 1.451 1.488 0.855 1.57 1.082 0.834 0.663 1.71 0.848 0.897 0.422 1.038 0.819 0.801 0.801                                                                                                                                                                       | 1.345                                                                                               | 0.985 0.966 1.618 0.966 0.937 0.916 0.924 1.157 1.113 1.011 1.011 1.14 1.044 0.949 0.709 0.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription elongation factor GreA transkatolase  NADI dehydrogenase subunit G  UTP-gliccose-1-phosphate uridylytransferase 305 ribosomal protein S17 molybdenum cofactor biosynthesis protein Mog thiamine biosynthesis protein ThiF aspartate aminotransferase iron A8C transporter periplasmic iron-binding prisoleucyl-tRNA synthetase 305 ribosomal protein S5 prolyl-RNA synthetase 305 ribosomal protein S5 uribosomal protein S5 uribosomal protein S7 3-oxoacyl-ACP synthase II hypothetical protein JID2697_0724 flagellar assembly protein FIIW 3-deoxy-8-phosphoctulonate synthase cytochrome C family protein UDP-GicNAc-specific C4,6 dehydratase/C5 epim- histidion dehydrogenase UDP-GicNAc-specific C4,6 dehydratase/C5 epim- histidion dehydrogenase S05 ribosomal protein L3 F0F1 ATP synthase subunit delta S05 ribosomal protein L2 F0F1 ATP synthase subunit delta S05 ribosomal protein L3 F0F1 ATP synthase subunit delta S05 ribosomal protein L3 F0F1 ATP synthase subunit delta S05 ribosomal protein L3 F0F1 ATP synthase subunit delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.289 0.505 1.248 transthyretin-like protein 1.022 1.026 1.062 ATP-dependent chaperone protein Clp8 0.84 0.986 1.178 flavodoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.729 0.514 1.232 1.291 0.743 0.725 0.881 0.686 1.126 0.525 1.172 0.525 1.172 0.526 1.746 0.526 1.789 0.579 0.979 1.054 1.116 1.056 0.459 0.514 1.096 0.459                                                   | 1.395<br>1.552<br>0.987<br>1.394<br>1.267<br>1.435<br>0.992<br>1.452<br>0.931<br>1.607<br>1.631<br>1.091<br>1.293<br>0.893<br>1.384<br>0.872<br>0.774<br>1.451<br>0.865<br>1.366<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368<br>1.368     | 0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.063 0.872 1.184 1.184 1.184 1.184 1.186 1.043 0.827 1.043 0.827 0.829 0.939 0.939 0.939 0.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyi-CoA synthetase subunit bata DNA-directed RNA polymerase subunit be DNA polymerase III beta subunit, central asparty/[glutamyi-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I blfunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small sublacetate kinase formate dehydrogenase, iron-sulfur subu 30S ribosomal protein S10 oxaloacetate decarboxylase, alpha subunitypothetical protein CIEO298 multi-sensor signal transduction histidinic chemotaxis protein CAPY molecular chaperone GroES citrate synthase argininosuccinate synthase signal transduction signal contraction and signal synthase synthase signal synthase synthase signal synthase synthase signal synthase syn | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.101 0.946 0.843 0.369 1.01 0.946 0.862 1.299 1.848 0.803 1.266 0.882 1.673 1.007 0.7661 1.7744 0.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.001 0.6 0.831 0.862 1.045 0.954 0.972 1.286 0.808 1.381 1.165 0.808 1.165 1.19 0.649 0.85 1.19 1.458 1.509 1.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.099<br>1.032<br>1.032<br>1.032<br>1.037<br>1.197<br>1.037<br>0.866<br>1.195<br>0.815<br>0.815<br>1.025<br>0.813<br>1.025<br>0.813<br>1.025<br>0.813<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>1.025<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814<br>0.814 | 505 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIEO033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S12 carboxyl-terminal protease biotin carboxylase for saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FxbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C414_00042008 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi                                                                                                                                                                                                                                                                                                        | 0.816 0.693 1.385 0.875 0.752 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.855 1.044 0.653 1.71 0.822 0.834 0.663 1.71 0.848 0.897 0.422 1.038                                                                                                                                                      | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>0.989<br>1.191<br>1.015<br>0.919<br>1.058<br>1.135<br>0.989<br>1.25<br>0.932<br>0.932<br>0.932<br>1.293<br>0.966<br>1.131<br>1.011<br>1.014<br>0.949<br>0.709<br>1.203<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0.840<br>0 | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription deligation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylytransferase 30S ribosomal protein S17 molybdanum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase iron ABC transporter periplasmic iron-binding prosloeucyl-RRNA synthesis social curious deligible in the state of the  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.729 0.514 1.291 0.743 0.885 0.881 1.26 0.525 1.38 0.825 1.172 1.746 0.526 1.172 1.749 0.67 0.579 1.38 1.34 1.363 0.835 1.34 1.054 0.5516 1.054 0.554 1.546 1.054                                            | 1.395<br>1.552<br>0.987<br>1.394<br>1.267<br>0.992<br>1.452<br>0.992<br>1.631<br>1.607<br>1.631<br>1.361<br>0.804<br>1.091<br>1.293<br>0.893<br>1.299<br>1.293<br>0.872<br>1.384<br>0.872<br>1.531<br>1.384<br>0.872<br>1.364<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365<br>1.365     | 0.911 0.937 1.116 1.189 0.867 1.011 0.698 1.114 0.865 1.063 0.87 1.254 1.184 1.184 1.186 1.198 1.078 1.21 1.185 0.979 0.951 0.979 0.951 0.979 0.993 1.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-sulfur subunit succinyl-CoA synthetase subunit bata DNA-directed RNA polymerase subunit be DNA polymerase ill beta subunit, central asparty/[glutamyl-RNA[Asn/Gln] amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspendiase periplasmic nitrate reductase, small subu acetate kinase formate dehydrogenase, iron-sulfur subunit some subunit sub | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.862 1.873 1.007 0.726 0.882 1.873 1.007 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.375 1.584 1.676 0.984 1.378 1.397 1.162 1.001 0.6 0.831 0.862 1.045 0.954 0.972 1.286 0.808 1.381 1.165 0.808 1.165 1.19 0.649 0.85 1.19 1.458 1.509 1.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.994 0.896 0.903 1.035 0.966 1.099 0.835 1.032 0.968 1.032 1.033 1.297 1.037 0.866 1.133 1.353 1.035 1.195 1.163 1.038 1.035 1.113 1.155 0.932 1.104 1.045 0.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 905 ribosomal protein L24 305 (ribosomal protein S4 505 (N2a outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein (LE0033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-axoglutarate-acceptor oxidoreductase si hypothetical protein (DI0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S1 505 ribosomal protein S1 social protein C13 carboxyl-terminal protease biotic carboxylase fur saccharopine dehydrogenase dTDP-4-dehydrorthamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10 pyruvate kinase phosphate acetyltransferase hypothetical protein C140-00420088 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi trimethylamine-N-oxide reductase 2 precu succinate dehydrogenase, Csubunit succinate dehydrogenase, Subuprotein sut delta-aminolevulinic acid dehydratase                                                                                            | 0.816 0.693 1.385 0.875 0.752 0.582 0.682 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 1.57 1.082 0.855 1.245 0.92 0.855 1.245 0.92 1.034 0.663 1.71 0.848 0.897 0.422 1.038 0.819 0.801 0.239 1.741 0.802 1.032                                                                                                       | 1.345                                                                                               | 0.985<br>0.966<br>1.618<br>0.966<br>0.937<br>0.916<br>0.924<br>1.157<br>0.989<br>1.191<br>1.015<br>0.015<br>0.019<br>1.058<br>1.135<br>0.966<br>1.129<br>0.932<br>0.966<br>1.131<br>1.011<br>1.014<br>0.949<br>0.709<br>1.203<br>0.865<br>0.865<br>0.949<br>0.709<br>1.203<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865<br>0.865     | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription delogation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron A8C transporter periplasmic iron-binding pri  soleucyl-RNA synthetisse  twin-arginine translocation pathway signal  histidyl-tRNA synthetisse  30S ribosomal protein S5  prolyl-tRNA synthetisse  30S ribosomal protein S5  prolyl-tRNA synthetisse  20S ribosomal protein S5  prolyl-tRNA synthetisse  20S ribosomal protein S5  prolyl-tRNA synthetisse  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-bosphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JUSC6997_0724  flagallar assamply protein FIIW  3-deoxy-8-phosphoctulonate synthase  cytochrome C family protein  UDP-GICNAC-perific C4, 6 dehydratase/C5 epim  histidinol dehydrogenase  cytochrome C oxidase, 6b3-type, subunit III  elongation factor P  50S ribosomal protein L31  F0F1 ATP synthase subunit delta  50S ribosomal protein L12  short chain dehydrogenase/reductase family ox  bifunctional N-acetylglucosamine-1-phosphate  transaldolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.815 1.246 0.94 cytochrome C551 peroxidase 0.858 1.12 1.049 succinyl-CoA synthase, alpha subunit 0.796 1.377 0.83 translocation protein Tol8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.729 0.514 1.232 1.291 0.743 0.885 0.881 1.26 1.26 1.38 0.825 1.372 1.746 0.526 0.526 1.172 1.789 0.57 0.579 0.579 0.593 1.34 1.363 1.382 1.312 0.5166 0.459 0.574 1.546 1.084 1.685 1.084                   | 1.395<br>1.552<br>0.987<br>0.787<br>1.267<br>1.495<br>0.992<br>0.991<br>1.601<br>0.804<br>1.091<br>1.293<br>1.293<br>1.29<br>1.531<br>1.451<br>0.845<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1.364<br>1 | 0.911<br>1.116<br>1.189<br>0.867<br>1.114<br>0.865<br>1.114<br>0.865<br>1.114<br>1.519<br>0.872<br>1.254<br>1.184<br>1.184<br>1.186<br>1.198<br>0.822<br>1.078<br>1.083<br>1.214<br>1.083<br>1.083<br>1.083<br>1.083<br>1.083<br>1.084<br>1.095<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085<br>1.085  | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elengation factor Ts DNA-directed RNA polymerase subunit ali ribosomal protein L7/L12 ribosomal protein L5 thiosomal protein L5 ribosomal protein L16 ribosomal protein L14 ribosomal protein L16 ribosomal protein  | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 0.852 0.824 1.261 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.848 0.803 1.2666 0.882 1.673 1.007 0.726 0.601 1.744 0.551 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.375 1.584 1.676 0.884 1.397 1.162 1.001 0.66 0.881 0.862 1.091 1.294 1.439 1.045 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808 1.165 0.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.994<br>0.896<br>0.903<br>1.035<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>1.037<br>1.037<br>1.037<br>1.037<br>1.038<br>1.038<br>1.195<br>1.163<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038<br>1.038 | 905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIEO033 acetyl-CoA carboxylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-oxoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 aspartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S15 505 ribosomal protein L23 carboxyl-terminal protease biotin carboxylase for saccharopine dehydrogenase dTDP-4-dehydrorhamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C414_00042008 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi succinate dehydrogenase, flavoprotein sut elita-minolevulinic acid dehydrotatase u bliquinol-cytochrome C reductase, cytoch                                                                                                                                                  | 0.816 0.693 1.385 0.875 0.752 0.569 1.006 1.513 0.998 1.445 1.57 1.082 0.855 1.014 0.458 1.57 1.082 0.93 1.71 0.823 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 0.839 | 1.345                                                                                               | 0.985 0.966 0.937 0.916 0.924 1.157 1.113 0.989 1.191 1.015 1.001 1.015 0.899 1.25 0.899 1.25 0.999 1.191 1.011 1.014 1.044 0.949 0.709 0.709 0.885 1.181 0.932 0.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003 transcription deligation factor GreA transketolase  NADH dehydrogenase subunit G UTP-glucose-1-phosphate uridylytransferase 30S ribosomal protein S17 molybdanum cofactor biosynthesis protein Mog thiamine biosynthesis protein Thif aspartate aminotransferase iron ABC transporter periplasmic iron-binding prisoleucyl-RRNA synthetiase Utvin-arginine translocation pathway signal histidyl-RNA synthetiase  10S ribosomal protein S5 probly-RNA synthetiase  Chain A, Crystal Structure Of Adenylosuccinate S carbamoyl-phosphate synthase large chain 3-oxoscyl-ACP synthase II hypothetical protein JID 26997_0724 flagaliar assembly protein FIW  3-deoxy-8-phosphoctulomate synthase cytochrome C family protein UTP-GlcNAc-specific C4,6 dehydratase/C5 epimhistidinol dehydrogenase cytochrome C oxidase, cbb3-type, subunit III elongation factor P  50S ribosomal protein L31  FOF1 ATP synthase subunit delta  50S ribosomal protein L2  short chain dehydrogenase/reductase family ox bifunctional Nacetylglucosamine-1-phosphate  OmpR protein, partial transaldolase  30S ribosomal protein S3  cation ABC transporter ATP-binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.729 0.514 1.291 0.743 0.885 0.881 1.26 0.525 1.38 0.825 1.172 1.746 0.526 1.172 1.746 0.526 1.178 0.67 0.579 1.341 1.353 0.83 1.341 1.054 0.516 1.054 0.574 1.546 0.574 1.546 0.574 1.546 0.574 1.546 0.574 | 1.395<br>1.552<br>0.987<br>1.495<br>0.992<br>1.495<br>0.992<br>1.691<br>1.691<br>1.691<br>1.293<br>1.293<br>1.293<br>1.294<br>1.361<br>1.293<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294<br>1.294     | 0.911 0.937 1.116 1.189 0.867 1.011 0.865 1.114 0.865 1.1063 0.866 1.118 1.1519 0.872 1.254 1.184 1.184 1.185 1.043 0.812 1.185 1.083 0.951 1.093 0.933 1.296 0.933 1.296 1.0919 1.164 1.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DNA-directed RNA polymerase subunit be SOS ribosomal protein L1 trigger factor elongation factor Ts DNA-directed RNA polymerase subunit all ribosomal protein L7/L12 fumarate reductase iron-aufur subunit succinyl-CoA synthetase subunit bata DNA-directed RNA polymerase subunit be DNA-directed RNA polymerase subunit be DNA-polymerase III beta subunit, central asparty/[glutamyl-RNA(Asn/Gln) amidotr SOS ribosomal protein L5 thioredoxin glutamine synthetase, type I bifunctional adhesin/ABC transporter aspenolase periplasmic nitrate reductase, small subi acetate kinase formate dehydrogenase, iron-aufur subunit sub | 0.634 0.522 0.424 0.984 0.659 0.741 0.751 0.489 1.971 1.578 0.926 1.104 0.843 0.369 0.795 1.01 0.946 0.862 1.299 1.873 1.007 0.726 0.882 1.873 1.007 0.726 0.601 1.744 0.551 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.375 1.584 1.378 1.676 0.984 1.378 1.162 1.606 1.102 1.606 0.881 0.954 0.954 0.954 0.954 1.483 1.509 0.649 0.85 1.14 1.248 0.984 1.1483 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.994<br>0.896<br>0.903<br>0.966<br>0.867<br>1.099<br>0.835<br>1.032<br>0.903<br>1.153<br>1.037<br>1.197<br>1.197<br>1.195<br>0.866<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>1.025<br>0.818<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819<br>0.819 | 905 ribosomal protein L24 305 ribosomal protein S4 50 KDa outer membrane protein L-Serine ammonia-lyase, partial hypothetical protein CIE0033 acetyl-CoAcatosylase subunit A cjaC protein conserved hypothetical protein highly acidic protein, partial translation initiation factor IF3 3-dehydroquinate dehydratase 2-onoglutarate-acceptor oxidoreductase si hypothetical protein Cj0170 major antigenic peptide PEB2 sapartate kinase, monofunctional class phenylalanyl-tRNA synthetase subunit beti 305 ribosomal protein S11 505 ribosomal protein S12 S05 ribosomal protein S12 socraboxyl-terminal protease biotin carboxylase fur saccharopine dehydrogenase dTDP4-dehydrorhamnose 3,5-epimerase methyltransferase, FkbM family protein 505 ribosomal protein L10 pyruvate kinase hypothetical protein C414_000420088 quinone-reactive Ni/Fe-hydrogenase, smal 305 ribosomal protein S8 branched-chain amino acid aminotransferi trimethylamine-N-oxide reductase 2 precu succinate dehydrogenase, C subunit succinate dehydrogenase, C subunit succinate dehydrogenase, flavoprotein sut delta-aminolevulinic acid dehydratase ubiquinol-cytochrome C reductase, cytoch ATP-dependent chaperone protein Cip8 | 0.816 0.693 1.385 0.875 0.752 0.569 1.006 1.513 0.998 1.445 1.488 0.855 1.014 0.458 0.855 1.014 0.458 0.855 1.024 0.92 1.034 0.663 1.71 0.848 0.897 0.422 1.038 0.819 0.801 0.239 1.741 0.802 1.038 0.819 0.801 0.239 1.741 0.802 1.038                                                                                   | 1.345                                                                                               | 0.985 0.966 0.937 0.916 0.924 1.157 1.113 0.989 1.191 1.001 1.015 0.816 1.129 0.826 1.131 1.011 1.14 0.949 0.709 1.203 1.203 0.825 1.181 0.932 0.825 1.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acetyl-CoA carboxylase, carboxyl transferase, bi hypothetical protein C414_000290003  transcription delogation factor GreA  transketolase  NADH dehydrogenase subunit G  UTP-glucose-1-phosphate uridylytransferase  30S ribosomal protein S17  molybdenum cofactor biosynthesis protein Mog  thiamine biosynthesis protein Thif  aspartate aminotransferase  iron A8C transporter periplasmic iron-binding prosioleucyl-RNA synthesis  socialeucyl-RNA synthesis  20S ribosomal protein S19  20S ribosomal protein S19  prolyl-RNA synthetase  Chain A, Crystal Structure Of Adenylosuccinate S  carbamoyl-boaphate synthase large chain  3-oxoacyl-ACP synthase II  hypothetical protein JD26997_0724  flagallar assamply protein FIIIW  3-deoxy-8-phosphoctulonate synthase  cytochrome C family protein  10P-GICNAC-specific C4, 6 dehydratase/C5 epim  histidinol dehydrogenase  cytochrome C oxidase, 6b3-type, subunit III  elongation factor P  50S ribosomal protein L31  F0F1 ATP synthase subunit delta  50S ribosomal protein L21  short chain dehydrogenase/reductase family ox  bifunctional N-acetylguozamine-1-phosphate  Omap protein, particulase  30S ribosomal protein S3  cation ABC transporter ATP-binding protein  flavedoxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Figure 5.2 236 proteins of *C. jejuni* NCTC 11168 identified by iTRAQ labelling proteomic analysis nthe cold exposure experiment

Colours indicate the amounts of identified protein. Green is a ratio of protein less than unity, red is a ratio of protein greater than unity, blank indicates the protein cannot be identified at that time point.

#### 5.2.2.2 Proteins significantly change expression during cold exposure

In this study, protein extracted from cells without cold exposure was used as the reference standard. The amount of protein in the 0 h protein extract was considered to be one. Compared with the 0 h protein extract, a protein that changed its expression more than two times after cold exposure was regarded as a protein with a significant change in expression. There werea total of 102 proteins with significant changesin *C. jejuni* NCTC 11168 under cold stress. 56 proteins were up-regulated after 6 h cold shock and 19 of those 56 proteins were up-regulated in 6 days cold adapted cells. 24 proteins decreased their expression and 22 proteins stopped synthesis in 6 h cold-shocked cells. The 22 proteins that disappeared in 6 h cold-shocked *C. jejuni* NCTC 11168 cells were all re-synthesised and their amounts were back to normal levels after 6 days of cold storage. All 235 proteins found in 0 h cell extracts appeared after six days of cold storage. No identified protein decreased its expression after 6 days of cold storage when compared with 0 h cells' extracts.

Table 5.1 presents all significantly changed C jejuni NCTC 11168 proteins under cold stress found in this study. A total of 56 proteins were up-regulated after 6 h cold shock. Twenty-two proteins were up-regulated after six days of cold storage. Twenty-eight proteins of 56 up-regulated proteins in six hour cold-shocked cells were up-expressed more than 2 fold, but less than 3-fold. Twenty proteins of the 56 up-regulated proteins were up-expressed more than 3-fold but less than 4-fold. Eight proteins of the 56 up-regulated proteins in the six hours of cold-shock cells were upexpressed more than 4 times. They were two chemotaxis proteins, two ribosomal proteins, three cell envelope proteins and one DNA binding protein. The highest upregulated protein was 50S ribosomal protein L2, which was up-expressed 8.6-fold. In the 6 day's cold adapted cells, 22 proteins were up-expressed. Twenty-one of the 22 proteins were up-expressed more than two times, but less than three times. Only one protein was up-expressed more than 3-fold, which is 50S ribosomal protein L2 with 3.2 times over expression. Overall, 22 proteins were up-regulated in both cold shock and after 6 days of cold adaption; 38 proteins were only up-regulated after six hours of cold shock conditions.

The down-regulated proteins and proteins that stopped synthesis in 6h cold shock of *C. jejuni* NCTC 11168 cells are also shown in Table 5.1. The iTRAQ proteomic analysis had detected 24 down-regulated proteins in NCTC 11168 cells after six hours of cold shock. Eighteen of those 24 proteins decreased more than two times but less than three times. Six proteins decreased more than 3-fold but less than 8-fold. They were one translation factor (Tuf), one tRNA binding protein (AspS), one oxidative stress defence protein (Rbr), one energy metabolism protein (Cyf), one intermediary metabolism protein and one flagellin subunit protein FlaA. Only one protein decreased more than 8-fold. It was Flagellin A (partial) with a notable 31.3-fold decrease in its expression. No proteins were down-regulated after six days of cold shock. Twenty-two proteins stopped synthesis after six hours of cold shock, but resynthesized after six days of cold adaption. The amount of those re-synthesised protein in 6 days sample had not significant change comparing with the 0 hours sample.

Table 5.1 *C. jejuni* NCTC 11168 proteins significantly affected by cold stress

|                     | Protein name                                            | Theoretical | Cold       | Cold    |
|---------------------|---------------------------------------------------------|-------------|------------|---------|
| Accession           | Mw (Da)                                                 | shock       | adaptation |         |
| number              |                                                         |             | (6 h)      | (6 day) |
| <b>Up-regulated</b> | Î                                                       | T           | I          | T       |
| gi 121613277        | methyl-accepting chemotaxis protein                     | 72901       | +4.7       | +2.5    |
| gi 121613238        | methyl-accepting chemotaxis signal transduction protein | 73191       | +5.0       | +2.8    |
| gi 121613238        | methyl-accepting chemotaxis protein                     | 72546       | +2.9       |         |
| gi 121613017        | methyl-accepting chemotaxis protein                     | 77220       | +3.1       | +2.0    |
| gi   419589392      | putative MCP-type signal transduction protein           | 48552       | +2.2       |         |
| gi 384447762        | DNA-directed RNA polymerase subunit                     | 156229      | +2.1       |         |
| gi 57237529         | 50S ribosomal protein L1                                | 25031       | +3.0       |         |
| gi 283953694        | 50S ribosomal protein L5                                | 20083       | +3.1       |         |
| gi 57236893         | 30S ribosomal protein S10                               | 11665       | +2.6       |         |
| gi 57237362         | 50S ribosomal protein L25/general stress protein Ctc    | 19506       | +2.9       |         |
| gi 57238707         | 50S ribosomal protein L16                               | 16365       | +3.0       |         |
| gi 57237544         | 30S ribosomal protein S7                                | 17681       | +3.6       |         |
| gi 57238704         | 50S ribosomal protein L14                               | 13354       | +2.6       |         |
| gi 57238730         | 50S ribosomal protein L3                                | 20824       | +2.9       |         |
| gi 57237954         | 30S ribosomal protein S18                               | 10322       | +2.0       |         |
| gi 86149254         | ribosomal protein L4                                    | 22273       | +2.2       |         |
| gi 57237528         | 50S ribosomal protein L11                               | 15127       | +2.1       |         |
| gi 57238502         | 30S ribosomal protein S9                                | 14128       | +3.3       |         |
| gi 68248462         | ribosomal protein L22                                   | 15885       | +3.2       |         |
| gi 57169062         | ribosomal protein L13                                   | 15864       | +2.9       |         |
| gi 57238703         | 50S ribosomal protein L24                               | 8335        | +2.2       |         |
| gi 57238607         | 30S ribosomal protein S4                                | 23895       | +3.0       |         |
| gi 57238606         | 30S ribosomal protein S11                               | 13942       | +3.9       | +3.2    |
| gi 57238700         | 30S ribosomal protein S8                                | 14795       | +2.5       |         |
| gi 57168772         | ribosomal protein L21                                   | 11602       | +2.6       |         |
| gi 57238609         | 50S ribosomal protein L17                               | 13240       | +3.6       | +2.2    |
| gi 57238698         | 50S ribosomal protein L18                               | 13288       | +3.5       | +2.6    |
| gi 57238706         | 50S ribosomal protein L29                               | 7029        | +2.4       |         |
| gi 633730           | RpsO                                                    | 10206       | +3.5       | +2.1    |
| gi 57238696         | 50S ribosomal protein L15                               | 14019       | +3.7       | +2.3    |
| gi 57238705         | 30S ribosomal protein S17                               | 9600        | +2.7       |         |
| gi 57238697         | 30S ribosomal protein S5                                | 15787       | +3.6       | +2.0    |
| gi 57238711         | 50S ribosomal protein L2                                | 30515       | +8.6       | +3.0    |
| gi 153952472        | 30S ribosomal protein S3                                | 26067       | +5.0       | +2.3    |
| gi 57238510         | cytochrome C oxidase, cbb3-type, subunit III            | 31370       | +3.7       | +2.4    |
| gi 218563111        | formate dehydrogenase large subunit                     | 104573      | +2.2       |         |
| gi 419641626        | periplasmic nitrate reductase, small subunit            | 19251       | +2.5       | +2.3    |
| gi 419622743        | cytochrome c552                                         | 69795       | +2.7       |         |
| gi 86151404         | trimethylamine-N-oxide reductase 2 precursor            | 93857       | +2.3       | +2.2    |
| gi 57238056         | ubiquinolcytochrome C reductase, cytochrome C1          | 41617       | +2.5       |         |
|                     | subunit                                                 |             |            |         |
| gi 57238512         | cbb3-type cytochrome C oxidase subunit II               | 25078       | +2.1       |         |
| gi 57238139         | quinone-reactive Ni/Fe-hydrogenase, small subunit       | 39846       | +2.0       |         |
| gi 57237388         | flagellar motor protein MotA                            | 28279       | +2.5       |         |
| gi 85036689         | major outer membrane protein                            | 45632       | +4.3       | +2.4    |
| gi 86152514         | 50 kDa outer membrane protein                           | 53832       | +4.0       | +2.1    |
| gi 57237913         | lipoprotein                                             | 18559       | +4.4       | +2.8    |

| gi 283955143               | 3-deoxy-8-phosphooctulonate synthase                     | 29826  | +2.1  |        |
|----------------------------|----------------------------------------------------------|--------|-------|--------|
| gi 57237741                | DNA-binding protein HU                                   | 10268  | +4.3  |        |
| gi 57238192                | nonheme iron-containing ferritin                         | 19531  | +2.9  |        |
| gi 57236997                | peptidyl-prolyl cis-trans isomerase D,-like protein      | 57475  | +2.4  |        |
| gi 4704599                 | fibronectin binding protein                              | 32429  | +3.9  | +2.4   |
| gi 86150017                | putative sugar transferase                               | 89945  | +3.3  |        |
| gi 57237048                | hypothetical protein CJE0033                             | 26440  | +2.1  |        |
| gi 86150082                | conserved hypothetical protein                           | 43511  | +3.3  |        |
| gi 86150649                | conserved hypothetical protein                           | 16323  | +3.0  | +2.3   |
| gi 57237459                | hypothetical protein CJE0453                             | 30726  | +3.0  |        |
| Down-regulated             | l proteins                                               |        |       |        |
| gi 57238619                | ATP/GTP-binding protein                                  | 40355  | -2.1  |        |
| gi 57237524                | elongation factor Tu                                     | 43623  | -3.0  |        |
| gi 57236953                | aspartyl-tRNA synthetase                                 | 66676  | -3.0  |        |
| gi 86148961                | heat shock protein HtpG                                  | 69640  | -2.0  |        |
| gi 86150249                | thiol peroxidase                                         | 18771  | -2.4  |        |
| gi 57168680                | thioredoxin                                              | 11501  | -2.9  |        |
| gi 86150520                | rubrerythrin                                             | 25023  | -3.6  |        |
| gi 419635264               | superoxide dismutase                                     | 25056  | -2.1  |        |
| gi 86150091                | flavodoxin                                               | 17224  | -2.5  |        |
| gi 57238028                | cytochrome C553                                          | 11002  | -5.6  |        |
| gi 218562328               | acetate kinase                                           | 44429  | -2.0  |        |
| gi 419641974               | serine hydroxymethyltransferase                          | 46079  | -2.4  |        |
| gi 86149461                | ATP-sulfurylase family protein                           | 44829  | -7.2  |        |
| gi 3413445                 | galE                                                     | 37224  | -2.4  |        |
| gi 86150126                | flagellin subunit protein FlaA                           | 59075  | -7.00 |        |
| gi 56806980                | flagellin A                                              | 11704  | -31.4 |        |
| gi 88597146                | phosphate acetyltransferase                              | 56356  | -2.9  |        |
| gi 153952659               | adenylate kinase                                         | 21432  | -2.3  |        |
| gi 57237017                | transthyretin-like protein                               | 15910  | -2.6  |        |
| gi 57237475                | hypothetical protein CJE0469                             | 21025  | -2.1  |        |
| gi 86150070                | conserved hypothetical protein                           | 29837  | -2.0  |        |
| gi 86149608                | conserved hypothetical protein                           | 39053  | -2.1  |        |
| gi 218561850               | hypothetical protein Cj0170                              | 28767  | -2.6  |        |
| gi 57237008                | hypothetical protein CJE0806                             | 27951  | -2.3  |        |
| Stopped biosyn             | 71 .                                                     | 2,331  |       |        |
| gi 57237051                | cytochrome C family protein                              | 39104  |       | 6 day  |
| gi 57237336                | transaldolase                                            | 37122  |       | 6 day  |
| gi 121612363               | oxidoreductase, putative                                 | 64074  |       | 6 day  |
| gi 57238069                | aspartyl/glutamyl-tRNA amidotransferase subunit B        | 53256  |       | 6 day  |
| gi 57237342                | transcription elongation factor GreA                     | 18056  |       | 6 day  |
| gi 317511751               | isoleucyl-tRNA synthetase                                | 106086 |       | 6 day  |
| gi 57238257                | prolyl-tRNA synthetase                                   | 65053  |       | 6 day  |
| gi 57237746                | ribose-phosphate pyrophosphokinase                       | 33848  |       | 6 day  |
| gi 57236939                | CTP synthetase                                           | 60765  |       | 6 day  |
| gi 86150584                | GMP synthase                                             | 57397  |       | 6 day  |
| gi 86148986                | acyl carrier protein                                     | 8592   |       | 6 day  |
| gi 57237500                |                                                          |        |       |        |
| gi[3/23/300                | acetyl-CoA carboxylase carboxyltransferase subunit alpha | 34473  |       | 6 day  |
| gi 13509099                | aspartate-semialdehyde dehydrogenase                     | 21405  |       | 6 day  |
| gi 13309099<br>gi 57238618 | 2,3,4,5-tetrahydropyridine-2-carboxylate N-              | 42635  |       | 6 day  |
| R1121720010                | succinyltransferase                                      | 42033  |       | o uay  |
| gi 961E0020                |                                                          | 21245  |       | 6 day. |
| gi 86150038                | dTDP-4-dehydrorhamnose 3,5-epimerase                     | 21245  |       | 6 day  |
| gi 455428                  | flagellin protein                                        | 59652  |       | 6 day  |

| gi 57237820                                               | delta-aminolevulinic acid dehydratase             | 36733 |     | 6 day |  |  |
|-----------------------------------------------------------|---------------------------------------------------|-------|-----|-------|--|--|
| gi 86150511                                               | thiamine biosynthesis protein ThiF                | 30047 |     | 6 day |  |  |
| gi 57237180                                               | iron ABC transporter periplasmic iron-binding     | 37406 |     | 6 day |  |  |
|                                                           | protein                                           |       |     |       |  |  |
| gi 419641488                                              | short chain dehydrogenase/reductase family        | 28161 |     | 6 day |  |  |
|                                                           | oxidoreductase                                    |       |     |       |  |  |
| gi 317511289                                              | highly acidic protein, partial                    | 45096 |     | 6 day |  |  |
| gi 57237099                                               | hypothetical protein CJE0087                      | 49254 |     | 6 day |  |  |
| Cold-induced proteins found in 6h cold-shocked cells only |                                                   |       |     |       |  |  |
| gi 283954623                                              | aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase, | 49712 | 6 h |       |  |  |
|                                                           | A subunit                                         |       |     |       |  |  |

# 5.2.2.3 Functional classification of significantly changed C. jejuni NCTC 11168 proteins

The 102 proteins with significant alteration during cold exposure were grouped by functional classification according to the Sanger Centre *C. jejuni* functional database. Table 5.2 presentsthe functional classifications of the significantly changed proteins in NCTC 11168 in response to cold stress. Based on their functionality, those 102 significantly changed proteins at cold shock conditions were divided into 16 different groups. The 56 up-regulated proteins were classified into 10 different functional categories. The 24 down-regulated proteins were grouped into 10 functional categories. The 22 stopped-synthesis proteins belonged to 11 different functional categories.

There were 10 different functional categories corresponding to these 56 upregulated proteins. Fifty percent of up-regulated proteins, 28 of 56, were ribosomal proteins, responsible for translating mRNA to protein. The second largest functional category of up-regulated protein was involved with energy metabolism. Eight up-regulated proteins were involved in energy metabolism. Most of them participated in bacterial anaerobic respiration. The third and fourth largest functional protein groups had the same number of proteins. They were cell envelope and chemotaxis and cell motility proteins. Those two groups both had five up-regulated proteins.

Twenty-four down-regulated proteins were grouped into 10 functional categories. Excluding six down-regulated proteins with unknown functions, the largest functional group in down-regulated protein was oxidative stress, which had four down-regulated proteins. The second and third largest functional categories in down-regulated protein were general intermediary metabolism and cell envelope. They both have three down-regulated proteins.

The 22 proteins whose synthesis stopped at 6 hours of cold shock were divided into 11 different functional groups. The largest functional group was genetic information processing, which had four proteins. The second largest functional category in those stopped-synthesis proteins was metabolism of purine, pyrimidine, nucleoside and

nucleotide. The remanining functional categories had only two or one proteins, including two stopped-synthesis proteins with unknown function.

Table 5.2 Functional grouping of proteins significantly changed in *C. jejuni* NCTC 11168 in response to cold temperatures

| Functional classification         | Cold shock cell       | Cold adapted cells (6day)      |                                |                       |
|-----------------------------------|-----------------------|--------------------------------|--------------------------------|-----------------------|
|                                   | Up-regulated proteins | Down-<br>regulated<br>proteins | Protein that stopped synthesis | Up-regulated proteins |
| Chemotaxis and motility           | 5                     |                                |                                | 3                     |
| Genetic information processing    | 1                     | 2                              | 4                              |                       |
| Ribosomal protein                 | 28                    |                                |                                | 8                     |
| Energy metabolism                 | 8                     | 2                              | 2                              | 3                     |
| Cell envelope                     | 5                     | 3                              | 2                              | 3                     |
| Adaptation and atypical condition | 2                     |                                |                                |                       |
| Pathogenicity                     | 1                     |                                |                                | 1                     |
| General                           | 1                     | 3                              | 1                              |                       |
| intermediary                      |                       |                                |                                |                       |
| metabolism                        |                       |                                |                                |                       |
| Molecular                         | 1                     | 1                              |                                |                       |
| chaperone                         |                       |                                |                                |                       |
| Oxidative stress                  |                       | 4                              | 1                              |                       |
| defence                           |                       |                                |                                |                       |
| Fatty acid                        |                       | 1                              | 2                              |                       |
| biosynthesis                      |                       |                                |                                |                       |
| Purine, pyrimidine,               |                       | 1                              | 3                              |                       |
| nucleoside and                    |                       |                                |                                |                       |
| nucleotide                        |                       |                                |                                |                       |
| Amino acid                        |                       |                                | 2                              |                       |
| metabolism                        |                       |                                |                                |                       |
| Transport/binding                 |                       | 1                              | 1                              |                       |
| Cofactors and                     |                       |                                | 2                              |                       |
| vitamins synthesis                |                       | _                              |                                |                       |
| Unknown function                  | 4                     | 6                              | 2                              | 1                     |
| Total number                      | 56                    | 24                             | 22                             | 19                    |

#### 5.3 Discussion

## **5.3.1** Changes in 1D protein banding patterns under cold stress

Our study found the 1D protein profile of the *C. jejuni* NCTC 11168 used in the study do not show obvious change after Day 1, Day 2, Day 6 and Day 8 of 4°C cold exposure. However, 6 h of 4°C cold exposure caused visible alterations in the 1D protein profile of NCTC 11168, when compared with its protein profile without cold exposure.

Hazeleger et al. (1998) had used an isotopic labelling technique and 1D protein electrophoresis to study *de novo* protein synthesis of *C. jejuni* ATCC 33560 under cold temperatures. Hazeleger and his colleagues found *C. jejuni* ATCC 33560 only synthesized 9% of proteins at 4°C, compared with at 37°C; however, excluding decrease in the density of protein bands, the 1D protein profile of *C. jejuni* ATCC 33560 exposed to 4°C was similar to the protein profile of cells growing at 37°C. Our study also found that the *C. jejuni* NCTC 11168 cells exposed to 4°C for 24 and 48 h, six and eight days, have a similar 1D protein profile to cells without 4°C cold exposure. The 1D protein electrophoresis results suggested that *C. jejuni* NCTC 11168 did not alter its protein expression noticeably during cold adaptation.

The study found six hour cold shock caused avisible change in the NCTC 11168 1D protein banding pattern. This was the first time 1D protein electrophoresis had identified the alteration of *C. jejuni* protein synthesis under cold stress. As 1D protein electrophoresis is not a sensitive enough technique to reveal small protein alterations, it is assumed that *C. jejuni* NCTC 11168 had altered its protein expression tremendously when processing the cold shock response.

# 5.3.2 Comparative proteomic analysis of cold stress response in *C. jejuni* NCTC 11168

There were 102 proteins with significant changes (more than a 2-fold increase or decrease) during cold exposure and one cold-induced protein, which cannot be found in the cell without cold exposure, had been identified by iTRAQ labelling proteomic

analysis in *C. jejuni* NCTC 11168. In response to six hours of cold shock, 56 proteins were up-regulated, 24 proteins decreased their expression and 22 proteins stopped synthesis in *C. jejuni* NCTC 11168 cells. What is more, six hours of cold shock was found to induce the expression of one protein, GatA (Aspartyl/glutamyl-tRNA amidotransferase subunit A), which was notable to be found in 0 h and cold adapted cells. GatA is responsible for translational fidelity. Anderson et al. (2006) reported glutamyl amidotransferase increased nine times in *Staphylococcus aureus* in response to genotoxic chemical exposure, but did not see the expression of this protein affected by cold stress. The role of GatA in *C. jejuni* to response cold stress requires further study. After six days cold storage, the alteration of protein expression became less conspicuous. There were only 19 proteins with significantly changed in 6 day cold adapted cells extraction. All 19 proteins were up-regulated proteins.

As shown in Table 5.2, those 102 proteins were categorised in 16 groups based on their function. The most notable up-regulated protein group was that of the ribosomal proteins. Twenty-eight of 56 up-regulated proteins in cold shocked NCTC 11168 cells and eight of 22 up-regulated proteins in cold adapted NCTC 11168 cells were ribosomal proteins, which were responsible for protein translation. Over expression of such a large number of ribosomal proteins suggested that C. jejuni NCTC 11168 increased its capability for biosynthesis of certain proteins to cope with cold stress. Our observation was the opposite of the findings of Stintzi and Whitworth (2003), who found a temperature downshift significantly decreased transcript abundance of ribosomal protein genes. The reason behind this result in transcript and protein abundance, in the case of C. jejuni cold response, was a result of the different experimental time points. Stintzi and Whitworth (2003) tested C. jejuni NCTC 11168 transcript alterations after 10 min of cold exposure. The shortest cold exposure time in our experiment was six hours. I assumed that C. jejuni decreased its protein synthesis at the first 10 min cold exposure and increases its capability for biosynthesis of protein after six hoursof cold exposure.

Cold induced ribosomal proteins have been reported in both *E. coli* (Joens et al., 1992) and *B. subtilis* (Graumann et al., 1996). However, the numbers of cold-induced

ribosomal protein in *E. coli* and *B. subtilis* were very small, compared with *C. jejuni* NCTC 11168. A temperature downshift only induced ribosomal proteins S1, S6, L7/L12 in *E. coli* and S6, L7/L12 in *B. subtilis* (Joens et al., 1992; Graumann et al., 1996). These four ribosomal proteins did not change their expression in *C. jejuni* NCTC 11168 in our cold exposure study. This suggested that the strategy used by *C. jejuni* NCTC 11168 to cope with cold stress was very different from the one used by *E. coli* and *B. subtilis*.

Eight up-regulated proteins in cold shock cells and three up-regulated proteins in cold adapted cells were related to energy metabolism. The over expression of proteins involved in energy metabolism suggested more energy was needed by C. jejuni NCTC 11168 in response to cold stress. This finding was in agreement with the studies of Stintzi and Whitworth (2003) and Moen el al. (2005), who showed that C. jejuni genes encoding enzymes involved in energy metabolism increased transcription in response temperature downshifts. However, up-regulated metabolism genes found in Stintzi and Whitworth's study were all involved in aerobic respiration. In our study, four of eight up-regulated energy metabolism proteins (FdhA ((formate dehydrogenase large subunit)), ZP 14173510 ((small subunit of periplasmic nitrate reductase)), cytochrome c552 and trimethylamine-Noxide reductase 2 precursor) in cold shock cells and two of three up-regulated energy metabolism proteins (ZP 14173510 and trimethylamine-N-oxide reductase 2 precursor) in cold adapted cells were found to be involved in anaerobic respiration. This suggested that C. jejuni NCTC 11168 relied more on aerobic respiration in the first 10 min of cold exposure, but after six hours of 4°C cold exposure, the anaerobic respiration pathway become more favourable.

The third and fourth largest functional groups of up-regulated proteins both have five proteins. They are chemotaxis and cell motility proteins and cell envelope protein. The category of chemotaxis and cell motility contained five up-regulated proteins in cold shock cells and three up-regulated proteins in cold adapted cells. They were all methyl-accepting chemotaxis proteins, which is responsible for signal transduction. It has been reported that chemotaxis proteins were involved in molecular thermosensing in *E. coli* (Nara et al., 1996) and cold shock induced

fourmethyl-accepting chemotaxis proteins in *Shewanella oneidensis* (Gao et al., 2006). The increasing biosynthesis of chemotaxis proteins in *C. jejuni* NCTC 11168 in response cold stress suggested these methyl-accepting chemotaxis proteins may also be involved in cold signal transduction and cold stress response regulation in *C. jejuni*.

There were five up-regulated proteins in cold-shocked cells and three up-regulated proteins in cold adapted cells belonging to cell envelope proteins. They were PorA (major outer membrane protein), Omp50 (50 kDa outer membrane protein), KdsA (lipopolysaccharides synthesis enzyme), MotA (flagellar motor protein) and a lipoprotein. Expression of PorA and Omp50 had increasedat 42°C, compared with 36°C and 31°C (Dedieu et al., 2002; Dedieu et al., 2008). Antimicrobials had also been found to induce PorA and Omp50 in *C. jejuni*, and it was believed the increase expression of those two cell envelope proteins was an adaptive response to increase surface polysaccharides (Xia et al., 2013). The mechanism behind up-regulation of PorA and Omp50 in response to cold temperature could be the same response to antimicrobials. PorA, Omp50, KdsA, MotA and the lipoprotein are all involved in cell membrane construction. This suggested that *C. jejuni* NCTC 11168 increased biosynthesis of cell membrane constructed proteins to protect cell walls from low temperatures in response to cold stress.

The largest functional group of down regulated proteins in cold-shocked *C. jejuni* NCTC 11168 cells was the oxidative stress defence protein. There were four oxidative stress defence proteins found that had decreased their expression during cold shock more than 2-fold. They were Tpx (Thiol peroxidise), Trx (Thioredoxin), Rbr (Rubrerythrin) and Sod (Superoxide dismutase). Those proteins were involved in oxidative defence and catalysed the conversion of hydrogen peroxide to oxygen and water. The decreased expression of oxidative stress proteins was in agreement with the over-expression of anaerobic respiration proteins found in this study in both cold shock and cold adapted *C. jejuni* NCTC 11168 cells. Our finding about decreasing oxidative stress proteinsin *C. jejuni* under cold stress was opposite to the finding of Stintzi and Whitworth (2003), who observed two genes encoding proteins involved in the oxidative stress defence were up-regulated. Since Stintzi and Whitworth tested *C. jejuni* transcript alteration after 10 min of cold exposure, the opposite

results of the two studies could be that *C. jejuni* NCTC 11168 relied more on aerobic respiration and up-regulate oxidative stress defence proteins at the first 10 min of cold exposure, but after six hours of 4°C cold exposure, anaerobic respiration pathway become favourable and cell decreases oxidative stress defence proteins.

The other functional group worth mentioning in down regulated proteins was cell envelope proteins. According to the Sanger Center *C. jejuni* functional database, flagellar proteins are belonging to cell envelope protein. Our study disclosed flagellin A and its partial protein had notable decrease in cold shock *C. jejuni* NCTC 11168, with 7-fold and 31.3-fold decrease in their expression respectively. Our finding was in agreement with the observation of Stintzi and Whitworth (2003), who had found the transcription of flagellar protein genes in *C. jejuni* NCTC 11168 decreased when temperatures downshifted from 42°C to 4°C. The notable decrease in flagellar protein expression suggested the cell deprioritises it movement in favour of survival in response to cold.

The largest functional group of these proteins that stopped synthesis in cold shock conditions was genetic information processing. There were four genetic information processing proteins, which were responsible for transcription and translation. Together with two down-regulated genetic information processing proteins, there were a total of six genetic information processing proteins that significantly reduced their biosynthesis response to cold shock. Our study has identified 28 up-regulated ribosomal proteins and one up-regulated genetic information processing protein in cold-shocked *C. jejuni* NCTC 11168 cells. As ribosomal proteins are involved in mRNA translation, ribosomal proteins are regarded as a subgroup of genetic information processing proteins. Overall, in response to six hours of cold shock, *C. jejuni* NCTC 11168 increased 29 genetic information processing proteins and decreased 6 genetic information processing proteins. This suggested hat *C. jejuni* NCTC 11168 cells selectively produced protein enzymes to response cold shock.

The second largest functional group of these stop synthesis proteins was purine, pyrimidine, nucleosides and nucleotidemetabolism proteins. This functional category has three stop synthesized proteins and one down-regulated protein. They are PrsA

(ribose-phosphate pyrophosphokinase), PyrG (Cytidine triphosphate synthetase), GuaA (Guanosine monophosphate synthetise) and Adk (Adenylate kinase). Those four proteins are related to the metabolism of purine, pyrimidine, nucleoside and nucleotide and biosynthesis of DNA. This suggested that *C. jejuni* NCTC 11168 cells slowed down their DNA synthesis during cold shock.

#### 5.3.3 Conclusion

This study found that *C. jejuni* managed its protein expression in very different ways to respond to cold shock and cold adaptation. *C. jejuni* NCTC 11168 reprogrammed its protein biosynthesis dramatically to respond to cold shock. It significantly altered expression of 102 of 235 identified proteins to respond 6 h cold shock. Twenty-eight ribosomal proteins, eight energy metabolism proteins, five chemotaxis proteins and five cell envelope proteins have been found increase their expression during cold shock. Meanwhile, four oxidative stress defence proteins were down-regulated. Four genetic information processing proteins and three DNA biosynthesized proteins stopped their expression during cold shock.

Compared with 6 h cold shock, six days cold storage caused fewer changes in protein expression in *C. jejuni* NCTC 11168. Only 19 proteins were up-regulated in response to six days cold exposure. This suggested *C. jejuni* NCTC 11168 dramatically altered its physiological characteristics in response to cold shock. In the cold shock stage, it increased protein synthesis and energy metabolism, while slowing down its DNA synthesis. After the first few hours of cold shock, *C. jejuni* NCTC 11168 cells entered a cold adaptation period where its physiological characteristics may have changed back to normal, as its proteomic profile in cold adaptation period was similar to the proteomic profile of cells without cold exposure.

During cold exposure, the most notable up-regulated protein group in *C. jejuni* NCTC 11168 was ribosomal protein. Over expression of a large number of ribosomal proteins, suggesting that *C. jejuni* NCTC 11168 might increase its capability for protein biosynthesis to cope with cold stress. Cold induced ribosomal proteins have been reported in both *E. coli* (Joens et al., 1992) and *B. subtilis* (Graumann et al., 1996). However, the numbers of cold-induced ribosomal protein in *E. coli* and *B.* 

subtilis were very small, compared with *C. jejuni* NCTC 11168. A temperature downshift only induced four ribosomal proteins in *E. coli* and *B. subtilis* and those four ribosomal proteins did not change their expression in *C. jejuni* NCTC 11168. This suggested that the strategy used by *C. jejuni* NCTC 11168 to cope with cold stress was very different from the one used by *E. coli* and *B. subtilis*.

The over expression of proteins involved in energy metabolism suggested more energy was needed by *C. jejuni* NCTC 11168 in response to cold stress. Our study found, apart of up-regulation of energy metabolism proteins involved in aerobic respiration, *C. jejuni* NCTC 11168 increased its energy metabolism proteins related to anaerobic respiration. This suggested that *C. jejuni* NCTC 11168 rely on both aerobic respiration and anaerobic respiration pathway to provide energy in cold condition.

# Chapter 6 Proteomic study of Cold Shock and Adaptation in Two Waterborne Outbreak *C. jejuni* strains

### 6.1 *C. jejuni* SVS 5001 and SVS 5141

*C. jejuni* SVS 5001 and SVS 5141 were isolated from a Danish waterborne outbreak in 1996 (Engberg et al, 1998). The former was a human diarrhoeal isolate; the latter was recovered from the water that was the source of the outbreak. Due to the similar phenotypic characteristics and different origins of these two strains, they have been used in number of subtyping studies to examine the sensitivity of subtyping methods (Siemer et al, 2004; Kokotovic and On, 1999; On and Harrington, 2000).

A previous survival study had found the clinical isolate, *C. jejuni* SVS 5001, has higher survivability at room temperature than strains isolated from bovine, turkey and chicken (On et al, 2006). As SVS 5001 has the potential for longer survival at low temperatures that do not permit growth, this human diarrhoeal isolate and the water origin strain from the same waterborne outbreak, SVS 5141, were selected for this comparative proteomics analysis to elucidate their cellular cold stress responses mechanisms.

# 6.2 Proteomic analysis of *C. jejuni* SVS 5001 and SVS 5141

This section reports the proteomics analysis of cold stress responses in *C. jejuni* SVS 5001 and SVS 5141. 1D protein profile analysis and iTRAQ labelling proteomics analysis for these two strains' cold stress response was conducted as described in Sections 3.8 and 3.11, respectively.

# 6.2.1 1D profile of *C. jejuni* SVS 5001 and SVS 5141 during cold shock and adaptation

Whole-cell protein extractions of *C. jejuni* SVS 5001 and SVS 5141 were collected at 0 h, 6 h, Day 1, Day 2, Day 6 and Day 8 during the 4°C storage. After protein qualification, protein extraction samples from the two strains collected at different time-points were used to run 1D electrophoresis to compare their protein profiles. In this analysis, six hours of cold exposure was considered as cold shock; 24h, 48h, 6 day and 8 day cold exposure were considered as cold adaptation periods for *C. jejuni* SVS 5001 and SVS 5141.

As there was a shortage of a six-hour cold shock *C. jejuni* SVS 5001 protein extraction sample, the 1D electrophoresis for SVS 5001 only had five time-point samples; they were samples from 0 h, day 1, day 2, day 6 and day 8. Figure 6.1 displays the protein profiles of *C. jejuni* SVS 5001 collected at these five time-points. The protein profiles of this *C. jejuni* strain exposed at 4°C for 1 day, 2 days, 6 days and 8 days appeared identical. Those cold exposure cell protein profiles were similar to the protein profile of the cells without cold exposure.



Figure 6.1 1D Protein profiles of  $\it C. jejuni$  SVS 5001 collected at 0 h, and Day 1, Day 2, Day 6 and Day 8

(M is the marker).

The 1D protein profiles of *C. jejuni* SVS 5141 collected at different time-points are shown as Figure 6.2. 1D protein profile of this strain with 1 day, 2 days, 6 days and 8 days of cold exposure appear identical. This is the same as the protein banding pattern of C. jejuni SVS 5001, these four cold adapted C. jejuni SVS 5141 cells' protein profiles do not have obvious visual alterations compared with the protein profile of cell without cold exposure. In contrast to those cold adapted cell protein profiles, the six hours of cold shock C. jejuni SVS 5141 protein profiles appeared different from the protein profile of the cell without cold exposure. As shown in Figure 6.2, there were five clear visual changes in the protein profile of cold-shocked C. jejuni SVS 5141. These five obvious variations in protein bands circled in red and yellow lines. The five circled protein bands at six hours of cold storage cell protein profiles all appeared down-regulated. The three red circles contained protein bands that were abundant at the protein profile of cells without cold exposure and all cold adapted cell protein profiless, but disappeared from the six hours of cold-shocked cells' protein profiles; the molecular weights were  $\sim$ 10kD,  $\sim$ 14kD and  $\sim$ 75kD. The other two down-regulated protein bands, which are circled by a yellow line, were much less intense than the same protein bands in the protein profiles of cells without cold exposure and all cold adapted cells. The molecular weight of these two protein bands were  $\sim$ 23kD and  $\sim$ 28kD.



Figure 6.2 1D Protein profiles of *C. jejuni* SVS 5141 collected at 0 h, 6 h and Day 1, Day 2, Day 6 and Day 8

(M is the marker).

## 6.2.2 Different protein expression in *C. jejuni* SVS 5001 and SVS 5141 under cold stress

iTRAQ labelling gel-free proteomic analysis was used to study protein quantitative changes under cold stress in proteome scale for *C. jejuni* SVS 5001 and 5141. Five protein extraction samples were selected for this comparative proteomic analysis. They are whole-cell protein extractions from 0 h, 6 h and 6 days of 4°C storage of *C. jejuni* SVS 5001 and 0 h, 6 days 4°C storage of *C. jejuni* SVS 5141.

In comparing study protein quantitative changes effected by cold exposure, the protein samples extracted from cells without cold storage were regarding as the standard. The protein samples extracted from cold storage cells were compared with the standard. If the ratio of quantity variation for one identified protein is more than two times, this protein was considered as a protein with significant expression changes during cold storage.

#### 6.2.2.1 Proteome map of C. jejuni SVS 5001

In the present study, iTRAQ labelling comparative proteomic analysis had identified 227 proteins in *C. jejuni* SVS 5001. Figure 6.3 shows the amounts of those 227 proteins displayed by ratios and with different colours. The red colour indicated the ratio of a protein is greater than unity; the green colour indicated the ratio of a protein less than unity; blank indicated protein that could not be identified at that time point.

The 0 h cold exposure cells had 214 proteins identified. After six hours of 4°C cold exposure, *C. jejuni* SVS 5001 stopped synthesizing 21 proteins; meantime ten coldinduced proteins that cannot be found in the cells without cold storage started to synthesize. The protein numbers in the six hour cold-shocked SVS 5001 cells was 203. After six days of cold exposure, the number of proteins identified in *C. jejuni* SVS 5001 was reduced to 195. Compared with the 0 hours sample, there were 28 proteins that stopped biosynthesis and nine proteins that could not be found in the 0 hours sample were induced by six days of cold exposure.



Figure 6.3 227 proteins of *C. jejuni* SVS 5001 identified by iTRAQ labelling proteomic analysis in this cold exposure experiment

Colour indicates amount of identified protein. Green is a ratio of protein less than unity, red is a ratio of protein greater than unity and the blank indicates protein cannot be identified at that time point.

## 6.2.2.2 Proteins with significant alteration in C. jejuni SVS 5001 during cold exposure

In response to cold stress, *C. jejuni* SVS 5001 significantly altered expression of 197 proteins. There were only 30 proteins without significant changes during cold exposure. Table 6.1 presents those 197 of *C. jejuni* SVS 5001 proteins that were altered significantly during cold exposure.

Proteomic analysis found 85 and 138 proteins were up-regulated in six hour of cold shock cells and six days of cold storage cells, respectively. Eighty-two proteins were both up-regulated in cells with 6 h cold shock and six days of cold exposure. Eighty-five proteins' expression was up-regulated in six hours of cold shock *C. jejuni* SVS 5001 cells. Forty-two of them increased 2-fold; 25 of the 85 increased 3- fold; nine proteins increased four times, six proteins had a five to eight time increase. One lipoprotein had a tremendous 135-fold increase in cold shock *C. jejuni* SVS 5001 cells. One hundred thirty eight proteins were up-regulated in six-day cold adapted SVS 5001 cells. Thirty of 138 proteins increased two times; 40 of them had a 3-fold increase; 26 proteins increased four times; 19 proteins increased five times; 12 of the 138 proteins had a six times increase; five proteins increased 7-fold and five proteins had a eight to twelve times increase. The highest increased rate of protein expression had been seen in six-day cold adapted SVS 5001 cells was 12.3-fold, which was in the formate dehydrogenase large subunit of SVS 5001 cells.

Cold stress had induced 12 proteins that cannot be found in 0 hour *C. jejuni* SVS 5001 cells. Six hours of cold shock had induced nine proteins; six day of cold storage had induced nine proteins. Six proteins had been induced by both six hours of cold shock and six days of cold storage.

The down-regulated proteins and proteins that stop synthesis under cold stress in *C. jejuni* SVS 5001 are also showed in Table 6.1. There were 24 proteins that decreased their expression in six-hour cold-shocked SVS 5001 cells, 11 proteins decreased their expressions in six days of cold adapted cells. Eight protein's expressions decreased both in six hours of cold shock and six days of cold storage cells. Twenty and 28 proteins stopped their synthesis in six-hour cold shock cells and six days of cold

adapted cells, respectively. Expression of 14 protiens ceased in both six hours of cold shock and six days of cold exposure.

Table 6.1 *C. jejuni* SVS 5001 protein alteration as affected by cold stress

|                     |                                                       | Theoretical | Cold  | Cold       |
|---------------------|-------------------------------------------------------|-------------|-------|------------|
| Accession           | Protein name                                          | Mw (Da)     | shock | adaptation |
| number              |                                                       |             | (6 h) | (6 day)    |
| <b>Up-regulated</b> | proteins                                              |             |       |            |
| gi 86149534         | chemotaxis protein CheA                               | 85349       |       | +2.2       |
|                     | methyl-accepting chemotaxis signal transduction       |             | .70   | +5.6       |
| gi 218563153        | protein                                               | 73191       | +7.8  | +5.0       |
| gi 121613238        | methyl-accepting chemotaxis protein                   | 72546       | None  | +6.0       |
| gi 121613017        | methyl-accepting chemotaxis                           | 77220       | +2.4  | +3.0       |
| gi 419619379        | putative MCP-type signal transduction protein         | 40704       | +3.3  | +7.0       |
| gi 57237338         | chemotaxis protein CheW                               | 19504       |       | +2.1       |
| gi 384441131        | Elongation factor G                                   | 76983       |       | +2.2       |
| gi 419629625        | DNA-directed RNA polymerase subunit beta'             | 169643      | +2.1  | +3.6       |
| gi 218562793        | elongation factor Ts                                  | 39758       |       | +3.5       |
| gi 57238608         | DNA-directed RNA polymerase subunit alpha             | 37734       |       | +2.2       |
| gi 384447762        | DNA-directed RNA polymerase subunit beta              | 156229      |       | +3.0       |
|                     | DNA polymerase III beta subunit, central domain       |             |       | . 4.0      |
| gi 415729844        | protein                                               | 28735       |       | +4.0       |
| gi 57237410         | DNA-binding response regulator                        | 25614       | +2.4  | +6.9       |
| gi 205356548        | translation initiation factor IF3                     | 14527       | +2.1  | +2.8       |
| gi 419632940        | polynucleotide phosphorylase/polyadenylase            | 79322       | +3.0  | +4.0       |
| gi 57237527         | transcription antitermination protein NusG            | 20183       |       | +2.2       |
| gi 57236924         | competence protein ComEA                              | 8847        | +3.0  | +4.2       |
| gi 40217918         | putative transcription termination factor             | 47265       | +2.7  | +7.3       |
| gi 407941670        | threonyl-tRNA ligase                                  | 69916       |       | +3.1       |
| gi 419648839        | histidyl-tRNA synthetase                              | 47897       | +2.5  | +6.4       |
| gi 57238249         | elongation factor P                                   | 21199       |       | +3.3       |
| gi 57237529         | 50S ribosomal protein L1                              | 25031       | +3.1  | +5.2       |
| gi 57238707         | 50S ribosomal protein L16                             | 16365       | +3.1  | +3.9       |
| gi 57237544         | 30S ribosomal protein S7                              | 17681       | +4.5  | +4.3       |
| gi 57238730         | 50S ribosomal protein L3                              | 20824       | +4.3  | +6.3       |
| gi 57237528         | 50S ribosomal protein L11                             | 15127       | +2.1  | +2.3       |
| gi 57238502         | 30S ribosomal protein S9                              | 14128       | +4.7  | +2.7       |
| gi 57237722         | 30S ribosomal protein S1                              | 62827       |       | +2.5       |
| gi 153952052        | 30S ribosomal protein S2                              | 30449       |       | +3.1       |
| gi 57169062         | ribosomal protein L13                                 | 15864       | +3.1  | +2.5       |
| gi 57238703         | 50S ribosomal protein L24                             | 8335        | +2.9  | +3.7       |
| gi 57238606         | 30S ribosomal protein S11                             | 13942       | +8.9  | None       |
| gi 57238712         | 50S ribosomal protein L23                             | 10561       | +2.4  | +4.5       |
| gi 57238700         | 30S ribosomal protein S8                              | 14795       | +2.2  | +2.6       |
| gi 57168772         | ribosomal protein L21                                 | 11602       | +3.4  | +5.3       |
| gi 57238609         | 50S ribosomal protein L17                             | 13240       | +3.7  | +5.0       |
| gi 57238706         | 50S ribosomal protein L29                             | 7029        | +3.0  | +5.3       |
| gi 633730           | RpsO, 30S ribosomal protein S15                       | 10206       | +3.5  | +4.0       |
| gi 57236974         | 50S ribosomal protein L9                              | 16272       | +2.4  | +5.0       |
| gi 57237163         | 50S ribosomal protein L31                             | 7757        | +2.5  | +3.9       |
| gi   419640337      | pyruvate ferredoxin/flavodoxin oxidoreductase         | 132355      | +2.1  | +3.6       |
| gi 86150091         | flavodoxin                                            | 17224       | -2.4  | +2.4       |
| gi 218563111        | formate dehydrogenase large subunit                   | 104573      | +6.5  | +12.3      |
| gi 283955551        | ATP synthase F1 sector beta subunit                   | 50885       | . 5.5 | +4.3       |
| gi 419637637        | bifunctional aconitate hydratase 2/2-methylisocitrate | 93523       |       | +3.5       |

|                            | dehydratase                                                                       |                |          |      |
|----------------------------|-----------------------------------------------------------------------------------|----------------|----------|------|
| gi 148926719               | fumarate hydratase                                                                | 50947          | +3.3     | +7.3 |
| gi 57238028                | cytochrome C553                                                                   | 11002          | -2.2     | +2.5 |
| gi 419641626               | periplasmic nitrate reductase, small subunit                                      | 19251          | +7.5     | +6.7 |
| gi 86149326                | formate dehydrogenase, iron-sulfur subunit                                        | 24717          | +4.2     | +6.6 |
| gi 57238440                | glyceraldehyde 3-phosphate dehydrogenase A                                        | 36691          | 14.2     | +2.8 |
| gi 57237413                | cytochrome C551 peroxidase                                                        | 37021          | +5.8     | +9.1 |
| gi 37237413                | isocitrate dehydrogenase, NADP-dependent                                          | 86588          | +2.5     | +4.4 |
| gi 384447418               | FOF1 ATP synthase subunit epsilon                                                 | 13825          | +4.5     | +4.4 |
| gi 419622743               |                                                                                   | 69795          | <b>+</b> | +7.9 |
| gi 148926276               | cytochrome c552 malate oxidoreductase                                             | 44170          | +2.4     | +2.8 |
| gi 146920276               | ubiquinolcytochrome C reductase, iron-sulfur                                      | 44170          |          | +2.9 |
| gi 57238058                | subunit                                                                           | 18332          | +2.6     | +3.0 |
| gi 153951531               | 2-oxoglutarate-acceptor oxidoreductase subunit OorC                               | 20141          |          | +3.0 |
| gi 283955815               | pyruvate kinase                                                                   | 53954          | +2.5     | +3.6 |
| gi 86151404                | trimethylamine-N-oxide reductase 2 precursor                                      | 93857          | +2.8     | +3.6 |
| gi 57237495                | succinate dehydrogenase, C subunit                                                | 31983          | +2.1     | +4.9 |
| 0 1                        | succinate denydrogenase, C subdifft succinate dehydrogenase, flavoprotein subunit | 67163          |          | +4.9 |
| gi 419648255               |                                                                                   | 0/103          | +4.5     | +9.3 |
| ailE72200E6                | ubiquinolcytochrome C reductase, cytochrome C1 subunit                            | 41617          | +3.7     | +3.0 |
| gi 57238056<br>gi 57238266 |                                                                                   | 41617<br>30216 | +2.6     | +5.0 |
| gi 57238266                | succinyl-CoA synthase, alpha subunit                                              |                | +2.0     | +5.0 |
| <u> </u>                   | 2-oxoglutarate-acceptor oxidoreductase subunit OorB                               | 31758          | .20      |      |
| gi 86149076                | malate:quinone oxidoreductase, putative                                           | 50953          | +2.0     | +4.1 |
| gi 153951934               | 2-oxoglutarate-acceptor oxidoreductase subunit OorA                               | 41211          | +3.2     | +5.6 |
| gi 317455537               | Chain A, Crystal Structure Of Phosphoglycerate Kinase                             | 43921          | .2.1     | +3.0 |
| gi 419645546               | NADH dehydrogenase subunit G                                                      | 94588          | +3.1     | +3.4 |
| gi 57237111                | F0F1 ATP synthase subunit delta                                                   | 20497          | +2.5     | .54  |
| gi 57237336                | transaldolase                                                                     | 37122          | None     | +5.1 |
| gi 57238563                | flavodoxin                                                                        | 22239          | +3.7     | +6.6 |
| gi 3290034                 | flagellin B                                                                       | 59220          | +2.1     | +4.9 |
| gi 85036689                | major outer membrane protein                                                      | 45632          | +6.2     | +5.4 |
| gi 330689730               | Chain A, The Virulence Factor Peb4                                                | 28359          | . 4.2    | +3.9 |
| gi 86152514                | 50 kDa outer membrane protein                                                     | 53832          | +4.3     | +4.5 |
| gi 148926946               | major antigenic peptide PEB2                                                      | 24485          | +2.6     | +6.6 |
| gi 57237913                | lipoprotein                                                                       | 18559          | +135     | None |
| gi 57237957                | flagellar assembly protein FliW                                                   | 14892          | +2.6     | +6.0 |
|                            | bifunctional N-acetylglucosamine-1-phosphate                                      |                | . 4.0    | .2.0 |
| ~: 452052664               | uridyltransferase/glucosamine-1-phosphate                                         | 40272          | +4.0     | +3.9 |
| gi 153952664               | acetyltransferase                                                                 | 48372          | .20      |      |
| gi 881376                  | OmpR protein, partial                                                             | 22640          | +2.8     | +6.7 |
| gi 205355989               | putative 80hosphor-sugar mutase                                                   | 48938          | +3.4     | +5.9 |
| gi 121613200               | glucosamine—fructose-6-phosphate aminotransferase                                 | 67687          | +3.0     | +3.8 |
| gi 37719580                | putative UDP-glucose 4-epimerase                                                  | 35556          |          | +4.3 |
| gi 57238142                | 2-nitropropane dioxygenase family oxidoreductase                                  | 39995          |          | +3.9 |
| gi 57238656                | transketolase                                                                     | 70001          | 0.0      | +2.9 |
| gi 57238554                | UTP-glucose-1-phosphate uridylyltransferase                                       | 30831          | +3.3     | +5.4 |
| gi 419622287               | UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase                                 | 37683          | None     | +5.0 |
| gi 57238192                | nonheme iron-containing ferritin                                                  | 19531          | +3.2     | +3.1 |
| gi 148926924               | heat shock protein dnaK                                                           | 67432          |          | +2.9 |
| gi 419658906               | trigger factor                                                                    | 50970          | +2.6     | +5.6 |
| gi 57238092                | molecular chaperone GroES                                                         | 9452           |          | +3.2 |
| gi 57237122                | FKBP-type peptidyl-prolyl cis-trans isomerase SlyD                                | 20547          | <u> </u> | +3.0 |
| gi 419641014               | ATP-dependent chaperone protein ClpB                                              | 95538          | +3.4     | +6.5 |
| gi 86150249                | thiol peroxidase                                                                  | 18771          |          | +2.4 |

| gi 57168680                | thioredoxin                                             | 11501  |      | +2.7  |
|----------------------------|---------------------------------------------------------|--------|------|-------|
| gi 419694122               | thioredoxin reductase                                   | 34000  |      | +3.6  |
| gi 86148986                | acyl carrier protein                                    | 8592   | None | +4.1  |
| gi 57238437                | enoyl-ACP reductase                                     | 29961  | +2.7 | +4.6  |
| gi 419641319               | biotin carboxylase                                      | 49485  | +3.9 | +7.6  |
| gi 413041313               | acetyl-CoA carboxylase, carboxyl transferase, beta      | 43483  | 13.5 | 17.0  |
| gi 283955572               | subunit                                                 | 31300  | +3.8 | +8.3  |
| gi 57237499                | 3-oxoacyl-ACP synthase II                               | 43103  |      | +2.7  |
| gi 57237383                | nucleoside diphosphate kinase                           | 15161  |      | +3.9  |
| gi[3/23/303                | Chain A, Crystal Structure of Adenylosuccinate          | 15101  |      | 13.5  |
| gi 329666276               | Synthetase                                              | 46529  |      | +2.6  |
| gi 148926982               | carbamoyl-phosphate synthase large chain                | 122342 | +2.9 | +3.6  |
| gi 86149847                | argininosuccinate synthase                              | 45778  | +2.6 | +4.0  |
| gi 317510573               | methionine adenosyltransferase                          | 40926  | 12.0 | +4.2  |
| gi 13509099                | aspartate-semialdehyde dehydrogenase                    | 21405  | None | +10.6 |
| gi 283954138               | aspartate kinase, monofunctional class                  | 42771  | +2.5 | +4.6  |
| gi 121612631               | saccharopine dehydrogenase                              | 45561  | +4.7 | +4.4  |
| gi 419622789               | aspartate aminotransferase                              | 43692  | 14.7 | +4.1  |
| gi 57238611                | histidinol dehydrogenase                                | 46687  | +2.7 | +5.7  |
| gi 284055744               | Chain A, Crystal Structure of Putative Bacterioferritin | 17574  | 72.7 | +3.7  |
| g1 204033744               | bifunctional adhesin/ABC transporter                    | 17374  |      | 72.4  |
| gi 57237749                | aspartate/glutamate-binding protein                     | 28243  | +2.4 | +6.4  |
| gi 57238619                | ATP/GTP-binding protein                                 | 40355  | +2.2 | +3.1  |
| gi 146386525               | Chain A, Crystal Structure of Peb3                      | 26351  | 72.2 | +4.1  |
| gi 86149797                | cjaC protein                                            | 27835  | +4.6 | +4.1  |
| gi 00143737                | putative capsule polysaccharide export system           | 27633  | 74.0 | T4.2  |
| gi 148925618               | periplasmic protein                                     | 58916  | +2.4 | +3.2  |
| gi 419645158               | preprotein translocase subunit SecA                     | 98244  | +3.5 | +3.1  |
| gi 88596055                | twin-arginine translocation pathway signal              | 72004  | +3.1 | +5.1  |
| gi 57237149                | cation ABC transporter ATP-binding protein              | 33050  | +2.1 | +5.0  |
| gi 86149225                | 3-methyl-2-oxobutanoate hydroxymethyltransferase        | 30354  | 12.1 | +2.5  |
| g1 80143223                | 4-methyl-5(B-hydroxyethyl)-thiazole monophosphate       | 30334  |      | +2.5  |
| gi 57237728                | biosynthesis enzyme                                     | 20427  |      | +3.4  |
| gi 415730403               | multi-sensor signal transduction histidine kinase       | 25368  |      | +2.9  |
| gi 57236972                | ATP-dependent protease ATP-binding subunit HsIU         | 49747  |      | +3.3  |
| gi 57237197                | ATP-dependent Clp protease proteolytic subunit          | 21807  | +2.8 | +3.7  |
| gi 419627400               | carboxyl-terminal protease                              | 48990  | +2.0 | +3.7  |
| gi 283954636               | ATP-dependent protease La                               | 90364  | +2.9 | +3.4  |
| gi 88597680                | aspartate ammonia-lyase                                 | 52166  | 12.5 | +2.0  |
| gi 317511439               | L-Serine ammonia-lyase, partial                         | 36633  |      | +2.0  |
| gi 86150500                | conserved hypothetical protein                          | 20593  | +2.0 | +2.2  |
| gi 57237475                | hypothetical protein CJE0469                            | 21025  | +2.0 | +5.0  |
| gi 57237475<br>gi 57237305 | hypothetical protein CJE0298                            | 32085  | +2.7 | +3.7  |
|                            |                                                         | 15910  | +2.7 | 1     |
| gi 57237017                | transthyretin-like protein                              |        | 1    | +3.8  |
| gi 86149608                | conserved hypothetical protein                          | 39053  | 1    | +4.1  |
| gi 86150182                | oxidoreductase, short chain dehydrogenase/reductase     | 28233  |      | +3.5  |
| gi 50150182<br>gi 57237048 | family hypothetical protein CJE0033                     | 26440  | +3.4 | +4.9  |
|                            |                                                         | 28767  |      | +     |
| gi 218561850               | hypothetical protein Cj0170                             |        | +2.6 | +4.1  |
| gi 283955175               | hypothetical protein C414_000420088                     | 16753  | 12.2 | +3.6  |
| gi 57237003                | hypothetical protein CJE0800                            | 25980  | +3.3 | +5.2  |
| gi 57238518                | hypothetical protein CJE1668                            | 22100  | .2.2 | +4.0  |
| gi 153951812               | hypothetical protein JJD26997_0724                      | 41387  | +2.2 | +2.6  |
| rrotein biosyi             | nthesizing at cold stress only                          |        |      |       |

|                             | aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase, A                |                |                |       |
|-----------------------------|--------------------------------------------------------------------|----------------|----------------|-------|
| gi 283954623                | subunit                                                            | 49712          |                | 6d    |
| gi 57236953                 | aspartyl-tRNA synthetase                                           | 66676          | 6h             | 6d    |
| gi 57238257                 | prolyl-tRNA synthetase                                             | 65053          | OH             | 6d    |
| gi 56806980                 | flagellin A                                                        | 11704          | 6h             | - Cu  |
| gi 57236939                 | CTP synthetase                                                     | 60765          | 6h             | 6d    |
| gi 86150584                 | GMP synthase                                                       | 57397          | OH             | 6d    |
| gi 57237180                 | iron ABC transporter periplasmic iron-binding protein              | 37406          | 6h             | 6d    |
| gi 86150511                 | thiamine biosynthesis protein ThiF                                 | 30047          | 6h             | 6d    |
| gi 86150082                 | conserved hypothetical protein                                     | 43511          | 6h             | - Cu  |
| gi 86150649                 | conserved hypothetical protein                                     | 16323          | 6h             |       |
| gi 57237099                 | hypothetical protein CJE0087                                       | 49254          | 6h             | 6d    |
| gi 57237008                 | hypothetical protein CJE0806                                       | 27951          | 6h             | 6d    |
| Down-regulat                |                                                                    | 2,331          | 0.1            | 00    |
| gi 419638103                | putative MCP-type signal transduction protein                      | 48561          | -3.09          |       |
| gi 57237524                 | elongation factor Tu                                               | 43623          | -3             |       |
| gi 57238069                 | aspartyl/glutamyl-tRNA amidotransferase subunit B                  | 53256          | -4.78          | None  |
| gi 475890                   | fur                                                                | 18175          | -7.04          | None  |
| gi 57238704                 | 50S ribosomal protein L14                                          | 13354          | None           | -2.1  |
| gi 57237954                 | 30S ribosomal protein S18                                          | 10322          | -7.13          | None  |
| gi 86149254                 | ribosomal protein L4                                               | 22273          | -2.71          | None  |
| gi 68248462                 | ribosomal protein L22                                              | 15885          | -2.71          | None  |
| gi 86150091                 | flavodoxin                                                         | 17224          | -2.36          | +2.39 |
| gi 50130091<br>gi 57238028  | cytochrome C553                                                    | 11002          | -2.30          | +2.39 |
| gi 57237465                 | fumarate reductase iron-sulfur subunit                             | 28282          | -2.13          | -2.96 |
| gi 86149479                 | enolase                                                            | 45253          | -5.67          | -4.47 |
|                             |                                                                    | 48109          | -5.07          | -4.47 |
| gi 57238690                 | citrate synthase<br>flagellin subunit protein FlaA                 | 59075          | 11 6           | -2.92 |
| gi 86150126                 |                                                                    |                | -11.6<br>-4.9  | 1     |
| gi 3413445                  | galE                                                               | 37224          | -              | -4.18 |
| gi 57237741<br>gi 419641974 | DNA-binding protein HU                                             | 10268          | -2.64<br>-2.13 |       |
| • .                         | serine hydroxymethyltransferase                                    | 46079          |                | -2.31 |
| gi 86149461                 | ATP-sulfurylase family protein                                     | 44829          | -2.58<br>-5.66 | †     |
| gi 57237923                 | acetyl-CoA carboxylase subunit A                                   | 54834<br>56356 |                | None  |
| gi 88597146                 | phosphate acetyltransferase                                        |                | -10.4<br>-10.  | -3.09 |
| gi 57237746                 | ribose-phosphate pyrophosphokinase                                 | 33848          |                | None  |
| gi 57237300                 | cysteine desulfurase                                               | 43191          | -3.96          | -2.66 |
| gi 419633975                | branched-chain amino acid aminotransferase                         | 34036          | None           | -2.57 |
| gi 57238618                 | 2,3,4,5-tetrahydropyridine-2-carboxylate N-<br>succinyltransferase | 42635          | -4.77          | None  |
| gi 153951811                | molybdenum cofactor biosynthesis protein MogA                      | 20371          | -3.14          | None  |
| gi 86150607                 | protease DO                                                        | 50976          | -2.35          | -2.24 |
| gi190120007                 | short chain dehydrogenase/reductase family                         | 30970          | -5.16          | None  |
| gi 419641488                | oxidoreductase                                                     | 28161          | -3.10          | None  |
|                             | ped synthesis under cold stress                                    | 28101          |                |       |
| gi 121613238                | methyl-accepting chemotaxis protein                                | 72546          | None           | +6.0  |
| gi 57238000                 | chemotaxis protein CheY                                            | 14428          | None           | None  |
| gi 37238000<br>gi 419589392 | putative MCP-type signal transduction protein                      | 48552          | None           | None  |
| gi 419389392<br>gi 57238069 | aspartyl/glutamyl-tRNA amidotransferase subunit B                  | 53256          | -4.8           | None  |
| gi 37238069<br>gi 475890    | fur [Campylobacter jejuni]                                         | 18175          | -7.0           |       |
| gi 475890<br>gi 57238704    | 50S ribosomal protein L14                                          | 13354          | +              | None  |
|                             |                                                                    |                | None           | -2.1  |
| gi 57238698                 | 50S ribosomal protein L18                                          | 13288          | None           | None  |
| gi 57237954                 | 30S ribosomal protein S18                                          | 10322          | -7.1           | None  |
| gi 57238606                 | 30S ribosomal protein S11                                          | 13942          | +8.9           | None  |
| gi 57238705                 | 30S ribosomal protein S17                                          | 9600           | None           | None  |

| gi 57238697  | 30S ribosomal protein S5                            | 15787 |       | None  |
|--------------|-----------------------------------------------------|-------|-------|-------|
| gi 153952472 | 30S ribosomal protein S3                            | 26067 | None  | None  |
| gi 57238512  | cbb3-type cytochrome C oxidase subunit II           | 25078 | None  | None  |
| gi 57237336  | transaldolase                                       | 37122 | None  | +5.1  |
| gi 455428    | flagellin protein                                   | 59652 | None  | None  |
| gi 57237388  | flagellar motor protein MotA                        | 28279 |       | None  |
| gi 57237913  | lipoprotein                                         | 18559 | +135  | None  |
| gi 283955143 | 3-deoxy-8-phosphooctulonate synthase                | 29826 | None  | None  |
| gi 57237119  | translocation protein TolB                          | 44711 | None  | None  |
| gi 57236997  | peptidyl-prolyl cis-trans isomerase D,-like protein | 57475 | None  | None  |
| gi 86150084  | methyltransferase, FkbM family protein              | 33582 | None  | None  |
| gi 86150017  | putative sugar transferase                          | 89945 | None  | None  |
| gi 419622287 | UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase   | 37683 | None  | +5.0  |
| gi 57237746  | ribose-phosphate pyrophosphokinase                  | 33848 | -10.0 | None  |
| gi 86148986  | acyl carrier protein                                | 8592  | None  | +4.1  |
| gi 57237923  | acetyl-CoA carboxylase subunit A                    | 54834 | -5.7  | None  |
| gi 13509099  | aspartate-semialdehyde dehydrogenase                | 21405 | None  | +10.6 |
| gi 419633975 | branched-chain amino acid aminotransferase          | 34036 | None  | -2.6  |
|              | 2,3,4,5-tetrahydropyridine-2-carboxylate N-         |       | -4.8  | None  |
| gi 57238618  | succinyltransferase                                 | 42635 |       |       |
| gi 57237694  | glutamate-1-semialdehyde aminotransferase           | 46517 |       | None  |
| gi 57237820  | delta-aminolevulinic acid dehydratase               | 36733 |       | None  |
| gi 153951811 | molybdenum cofactor biosynthesis protein MogA       | 20371 | -3.1  | None  |
| gi 57237459  | hypothetical protein CJE0453                        | 30726 | None  | None  |
| gi 283954942 | hypothetical protein C414_000290003                 | 44381 | None  | None  |
|              | short chain dehydrogenase/reductase family          |       | -5.2  | None  |
| gi 419641488 | oxidoreductase                                      | 28161 |       |       |

#### 6.2.2.3 A proteome map of C. jejuni SVS 5141

Because of a shortage in the six hour cold shock *C. jejuni* SVS 5141 cell extraction sample, only 0 h and six days of cold exposure protein samples from *C. jejuni* SVS 5141 were able be analyzed by the iTRAQ labelling proteomic approach. The iTRAQ labelling comparative proteomic analysis had identified 235 proteins in 0 h and six days of cold exposure *C. jejuni* SVS 5141 cells. As shown in Figure 6.4, amount of those 235 proteins is displayed in ratios and different colours. The red colour indicated the ratio of a protein is greater than unity; the green colour indicated the ratio of a protein less than unity; blank indicated protein that could not be identified at that time point.

There were 235 proteins identified by iTRAQ labelling proteomic analysis from the cell without cold exposure. After six days of cold storage, 54 proteins stopped biosynthesis, the number of proteins in *C. jejuni* SVS 5141 with six days of cold exposure had reduced to 181. The six days of cold exposure did not induce any protein that could not be found in *C. jejuni* SVS 5141 cells without cold storage.

| 0 h | 0.868      | 6 day | Description co-chaperonin GroEL                                                          |
|-----|------------|-------|------------------------------------------------------------------------------------------|
|     | 0.868<br>2 |       | co-chaperonin GroEL flagellin subunit protein FlaA                                       |
|     | 0.67       |       | flagellin B                                                                              |
|     |            |       | flagellin protein                                                                        |
|     | 1.77       |       | flagellin A                                                                              |
|     | 1.645      | 1.074 | elongation factor Tu                                                                     |
|     | 1.115      | 1.429 | nitrate reductase catalytic subunit                                                      |
|     | 0.918      | 1.555 | alkyl hydroperoxide reductase                                                            |
|     | 0.822      | 1.602 | chemotaxis protein CheA                                                                  |
|     | 1.613      |       | protease DO                                                                              |
|     | 0.645      |       | conserved hypothetical protein                                                           |
|     | 0.364      |       | methyl-accepting chemotaxis protein methyl-accepting chemotaxis signal transduction prot |
|     | 0.16       |       | methyl-accepting chemotaxis protein                                                      |
|     | 0.393      |       | methyl-accepting chemotaxis protein                                                      |
|     | 2          |       | putative MCP-type signal transduction protein                                            |
|     | 2          |       | putative MCP-type signal transduction protein                                            |
|     | 0.631      | 1.603 | putative MCP-type signal transduction protein                                            |
|     | 1.425      |       | quinone-reactive Ni/Fe-hydrogenase, large subunit                                        |
|     | 0.82       | 1.502 | pyruvate ferredoxin/flavodoxin oxidoreductase                                            |
|     | 0.912      |       | fumarate reductase flavoprotein subunit                                                  |
|     | 0.861      |       | heat shock protein dnaK                                                                  |
|     | 1.399      |       | thiol peroxidase<br>flavodoxin                                                           |
|     |            | 1.1   | flavodoxin<br>formate dehydrogenase large subunit                                        |
|     | 0.813      | 1.448 | Chain A, Crystal Structure Of Putative Bacterioferritin                                  |
|     | 0.215      |       | major outer membrane protein                                                             |
|     | 1.146      |       | chemotaxis protein CheV                                                                  |
|     | 1.255      |       | ATP synthase F1 sector beta subunit                                                      |
|     | 1.518      | 1.421 | FOF1 ATP synthase subunit alpha                                                          |
|     | 1.187      |       | Elongation factor G                                                                      |
|     | 1.474      | 1.395 | DNA-binding protein HU                                                                   |
|     | 0.818      |       | bifunctional aconitate hydratase 2/2-methylisocitrate                                    |
|     | 1.11       |       | aspartate ammonia-lyase                                                                  |
|     | 1.043      |       | fumarate hydratase                                                                       |
|     | 0.841      |       | hypothetical protein CJE0469                                                             |
|     | 1.105      |       | Chain A, The Virulence Factor Peb4 And The Periplasmi<br>conserved hypothetical protein  |
|     | 0.826      |       | 50S ribosomal protein L25/general stress protein Ctc                                     |
|     | 1.711      | 0.735 | cytochrome CSS3                                                                          |
|     | 0.693      | 1.607 | DNA-directed RNA polymerase subunit beta'                                                |
|     | 0.545      |       | 50S ribosomal protein L1                                                                 |
|     | 0.817      |       | triggerfactor                                                                            |
|     | 0.945      |       | elongation factor Ts                                                                     |
|     | 0.683      | 1.519 | DNA-directed RNA polymerase subunit alpha                                                |
|     | 1.395      |       | ribosomal protein L7/L12                                                                 |
|     | 1.909      |       | fumarate reductase iron-sulfur subunit                                                   |
|     | 1.321      | 1.309 | succinyl-CoA synthetase subunit beta                                                     |
|     | 0.71       | 1.603 | DNA-directed RNA polymerase subunit beta                                                 |
|     | 0.735      | 1.352 | DNA polymerase III beta subunit, central domain prote                                    |
|     | 1.188      | 1.541 | 50\$ ribosomal protein L5<br>thioredoxin                                                 |
|     | 0.957      |       | glutamine synthetase, type I                                                             |
|     | 0.759      | 1.437 | bifunctional adhesin/ABC transporter aspartate/gluta                                     |
|     | 1.859      |       | enolase                                                                                  |
|     | 0.625      |       | periplasmic nitrate reductase, small subunit                                             |
|     | 1.646      | 1.271 | acetate kinase                                                                           |
|     | 0.366      | 1.634 | formate dehydrogenase, iron-sulfur subunit                                               |
|     | 0.707      | 1.579 | 30S ribosomal protein S10                                                                |
|     | 1.231      |       | oxaloacetate decarboxylase, alpha subunit, putative                                      |
|     | 0.858      |       | hypothetical protein CJE0298                                                             |
|     | 1.163      | 1.174 | multi-sensor signal transduction histidine kinase                                        |
|     | 1.189      |       | chemotaxis protein CheY                                                                  |
|     | 1.189      | 1.065 | molecular chaperone GroES                                                                |
|     | 0.737      | 1.461 | citrate synthase<br>argininosuccinate synthase                                           |
|     | 0.757      | 1.622 | 50S ribosomal protein L16                                                                |
|     | 0.792      |       | glyceraldehyde 3-phosphate dehydrogenase A                                               |
|     | 0.315      |       | 30S ribosomal protein S7                                                                 |
|     |            |       | 50S ribosomal protein L14                                                                |
|     | 1.494      |       | rubrerythrin                                                                             |
|     | 0.958      | 1.57  | chemotaxis protein CheW                                                                  |
|     | 1.653      | 1.146 | serine hydroxymethyltransferase                                                          |
|     |            |       |                                                                                          |
|     | 1.541      |       | cysteine desulfurase                                                                     |
|     | 1.049      | 1.315 | methionine adenosyltransferase                                                           |
|     |            | 1.315 |                                                                                          |

| 0 h | .538              | 6 day | Description 3 nonheme iron-containing ferritin                                                                                  |
|-----|-------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
|     | .077              | 1.39  | nonheme iron-containing ferritin inosine 5'-monophosphate dehydrogenase                                                         |
|     | 0.65              |       | FKBP-type peptidyl-prolyl cis-trans isomerase SlyD                                                                              |
|     | .122              |       | conserved hypothetical protein                                                                                                  |
|     | .886              | 1.47  | DNA-binding response regulator                                                                                                  |
|     | .789              | 1.56  | ketol-acid reductoisomerase                                                                                                     |
|     | .655              |       | isocitrate dehydrogenase, NADP-dependent                                                                                        |
|     | .389              |       | 50S ribosomal protein L3                                                                                                        |
|     | .155<br>.433      |       | ATP-dependent protease ATP-binding subunit HsIU F0F1 ATP synthase subunit epsilon                                               |
| U.  | .433              |       | cbb3-type cytochrome C oxidase subunit II                                                                                       |
|     | 2                 |       | aspartyl/glutamyl-tRNA amidotransferase subunit B                                                                               |
|     | 2                 |       | ATP/GTP-binding protein                                                                                                         |
| 0.  | .313              | 1.80  | cytochrome c552                                                                                                                 |
| 1.  | .995              |       | ribose-phosphate pyrophosphokinase                                                                                              |
| 0.  | .811              | 1.23  | oxidoreductase, short chain dehydrogenase/reducta                                                                               |
|     | .656              | 1.24  | acyl carrier protein  malate oxidoreductase                                                                                     |
|     | .617              |       | adenylate kinase                                                                                                                |
|     | 2                 |       | aspartate-semialdehyde dehydrogenase                                                                                            |
| 0.  | .589              | 1.50  | b ubiquinolcytochrome C reductase, iron-sulfur subur                                                                            |
|     | 2                 |       | 30S ribosomal protein S18                                                                                                       |
|     | .645              |       | thioredoxin reductase                                                                                                           |
|     | .879              |       | ribosomal protein L4                                                                                                            |
|     | .683              |       | enoyl-ACP reductase                                                                                                             |
|     | .695<br>.222      |       | 7 50S ribosomal protein L11<br>3 30S ribosomal protein S9                                                                       |
| _   | .654              | 1.34  | 30S ribosomal protein S9<br>30S ribosomal protein S1                                                                            |
|     | .564              |       | 3 30S ribosomal protein S2                                                                                                      |
|     | .453              |       | 7 ATP-dependent Clp protease proteolytic subunit                                                                                |
| 0.  | .662              |       | 3-methyl-2-oxobutanoate hydroxymethyltransferase                                                                                |
| -   | .072              | 1.30  | glutamate-1-semialdehyde aminotransferase                                                                                       |
|     | .099              | 1.52  | heat shock protein HtpG                                                                                                         |
|     | .573              |       | 7 putative phospho-sugar mutase                                                                                                 |
|     | 1.73<br>.729      |       | ribosomal protein L22<br>Chain A, Crystal Structure Of Peb3                                                                     |
|     | .836              |       | 4-methyl-5(B-hydroxyethyl)-thiazole monophosphate                                                                               |
|     | .501              | 1.49  | glucosamine-fructose-6-phosphate aminotransferas                                                                                |
|     | .886              | 1.59  | ribosomal protein L13                                                                                                           |
| 1.  | .908              |       |                                                                                                                                 |
| 1.  | .074              | 1.43  | putative UDP-glucose 4-epimerase                                                                                                |
| _   | .015              | 1.3   | 50S ribosomal protein L24                                                                                                       |
|     | .919              |       | 30S ribosomal protein S4                                                                                                        |
|     | .408              |       | 50 kDa outer membrane protein                                                                                                   |
|     | .745<br>.431      |       | L-Serine ammonia-lyase, partial<br>hypothetical protein CJE0033                                                                 |
| U.  | 2                 | 1.50  | acetyl-CoA carboxylase subunit A                                                                                                |
| 0.  | .528              | 1,47  | 2 cjaC protein                                                                                                                  |
| 0.  | .083              | 1.93  | conserved hypothetical protein                                                                                                  |
|     | 2                 |       | highly acidic protein, partial                                                                                                  |
| 0.  | .546              |       | translation initiation factor IF3                                                                                               |
|     | 2                 |       | 3-dehydroquinate dehydratase                                                                                                    |
|     | .036<br>.766      | 1.33  | 2-oxoglutarate-acceptor oxidoreductase subunit Oor                                                                              |
|     | .766<br>.666      |       | hypothetical protein Cj0170 major antigenic peptide PEB2                                                                        |
|     | .655              |       | a major antigenic peptide PEBZ  L aspartate kinase, monofunctional class                                                        |
|     | .844              |       | phenylalanyl-tRNA synthetase subunit beta                                                                                       |
|     | .851              |       | 30S ribosomal protein S11                                                                                                       |
|     | .678              |       | 50S ribosomal protein L23                                                                                                       |
|     | .556              |       | carboxyl-terminal protease                                                                                                      |
| 0.  | .465              | 1.53  | biotin carboxylase                                                                                                              |
|     | 2<br>1.01         | 4.24  | fur                                                                                                                             |
|     | 2.01              |       | dTDP-4-dehydrorhamnose 3.5-epimerase                                                                                            |
|     |                   |       | methyltransferase, FkbM family protein                                                                                          |
|     | 1.16              |       | 50S ribosomal protein L10                                                                                                       |
| 0.  | .569              | 1.43  | L pyruvate kinase                                                                                                               |
|     | 1.94              | 1.09  | phosphate acetyltransferase                                                                                                     |
|     | .764              |       | hypothetical protein C414_000420088                                                                                             |
|     | .221              |       | quinone-reactive Ni/Fe-hydrogenase, small subunit                                                                               |
|     | .687              |       | 30S ribosomal protein S8                                                                                                        |
|     | 1.72<br>0.43      | 1.0   | branched-chain amino acid aminotransferase                                                                                      |
|     | 0.43<br>.734      |       | trimethylamine-N-oxide reductase 2 precursor<br>succinate dehydrogenase, C subunit                                              |
|     |                   |       | succinate dehydrogenase, C subunit succinate dehydrogenase, flavoprotein subunit                                                |
|     |                   |       |                                                                                                                                 |
| 0.  | .409<br>2         |       | delta-aminolevulinic acid dehydratase                                                                                           |
| 0.  | .409<br>2<br>.444 |       | delta-aminolevulinic acid dehydratase  ubiquinolcytochrome C reductase, cytochrome C1 si                                        |
| 0.  | 2                 | 1.80  | delta-aminolevulinic acid dehydratase  ubiquinol—cytochrome C reductase, cytochrome C1 st  ATP-dependent chaperone protein Clp8 |

| ) h |                                                                                                                                                        | 6 da | y                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 0.571                                                                                                                                                  |      |                                                                                      | fibronectin binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0.377                                                                                                                                                  |      | 1.623                                                                                | ribosomal protein L21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.113                                                                                                                                                  |      |                                                                                      | conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 1.217                                                                                                                                                  |      |                                                                                      | aspartyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.478                                                                                                                                                  |      | 1.522                                                                                | polynucleotide phosphorylase/polyadenylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.783                                                                                                                                                  |      |                                                                                      | 2-oxoglutarate-acceptor oxidoreductase subunit Oor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                        |      |                                                                                      | acetyl-CoA carboxylase carboxyltransferase subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 0.668                                                                                                                                                  |      |                                                                                      | malate:quinone oxidoreductase, putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 0.288                                                                                                                                                  |      |                                                                                      | flagellar motor protein MotA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.851                                                                                                                                                  |      | 1 1/19                                                                               | nucleoside diphosphate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 0.539                                                                                                                                                  |      |                                                                                      | putative capsule polysaccharide export system perip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1.311                                                                                                                                                  |      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 0.504                                                                                                                                                  |      |                                                                                      | transcription antitermination protein NusG<br>ATP-dependent protease La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                        |      | 1.450                                                                                | 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinylt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 0.962                                                                                                                                                  |      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                                                                        |      | 4 60                                                                                 | putative sugar transferase<br>508 ribosomal protein L17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 0.38                                                                                                                                                   |      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 1.85                                                                                                                                                   |      |                                                                                      | oxidoreductase, putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.1                                                                                                                                                    |      |                                                                                      | 50S ribosomal protein L18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                        |      |                                                                                      | lipoprotein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0.446                                                                                                                                                  |      |                                                                                      | 2-oxoglutarate-acceptor oxidoreductase subunit Oor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 1.205                                                                                                                                                  |      |                                                                                      | 30S ribosomal protein S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.363                                                                                                                                                  |      |                                                                                      | 50S ribosomal protein L29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.988                                                                                                                                                  |      |                                                                                      | Chain A, Crystal Structure Of Phosphoglycerate Kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.768                                                                                                                                                  |      | 1.232                                                                                | 2-nitropropane dioxygenase family oxidoreductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 0.566                                                                                                                                                  |      |                                                                                      | hypothetical protein CJE0453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 1.836                                                                                                                                                  |      |                                                                                      | ATP-sulfurylase family protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 0.532                                                                                                                                                  |      | 1.468                                                                                | competence protein ComEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.366                                                                                                                                                  |      | 1.634                                                                                | RpsO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 1.02                                                                                                                                                   |      |                                                                                      | hypothetical protein CJE0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.575                                                                                                                                                  |      |                                                                                      | putative transcription termination factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 1.655                                                                                                                                                  |      |                                                                                      | CTP synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 1.105                                                                                                                                                  |      |                                                                                      | hypothetical protein CJE0806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.85                                                                                                                                                   |      |                                                                                      | peptidyl-prolyl cis-trans isomerase D,-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1.178                                                                                                                                                  |      | 1.648                                                                                | 50S ribosomal protein L15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.835                                                                                                                                                  |      |                                                                                      | preprotein translocase subunit SecA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 0.654                                                                                                                                                  |      |                                                                                      | 50S ribosomal protein L9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.45                                                                                                                                                   |      |                                                                                      | hypothetical protein CJE0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 1,102                                                                                                                                                  |      |                                                                                      | threonyl-tRNA ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 1.312                                                                                                                                                  |      |                                                                                      | superoxide dismutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 0.886                                                                                                                                                  |      |                                                                                      | hypothetical protein CJE1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 1.066                                                                                                                                                  |      |                                                                                      | GMP synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.417                                                                                                                                                  |      |                                                                                      | acetyl-CoA carboxylase, carboxyl transferase, beta su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.549                                                                                                                                                  |      | 1.303                                                                                | hypothetical protein C414_000290003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 2                                                                                                                                                      |      |                                                                                      | transcription elongation factor GreA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 0.717                                                                                                                                                  |      |                                                                                      | transcription elongation factor Great<br>transketolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 0.717                                                                                                                                                  |      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                                                                        |      |                                                                                      | NADH dehydrogenase subunit G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.561                                                                                                                                                  |      | 1.556                                                                                | UTP-glucose-1-phosphate uridylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 2                                                                                                                                                      |      |                                                                                      | 30S ribosomal protein S17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 1.292                                                                                                                                                  |      |                                                                                      | molybdenum cofactor biosynthesis protein MogA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 1.185                                                                                                                                                  |      |                                                                                      | thiamine biosynthesis protein ThiF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 0.705                                                                                                                                                  |      |                                                                                      | aspartate aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1.093                                                                                                                                                  |      |                                                                                      | iron ABC transporter periplasmic iron-binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2<br>0.467                                                                                                                                             |      |                                                                                      | isoleucyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.467                                                                                                                                                  |      |                                                                                      | twin-arginine translocation pathway signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.46                                                                                                                                                   |      |                                                                                      | histidyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.486                                                                                                                                                  |      |                                                                                      | 30S ribosomal protein S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 1 191                                                                                                                                                  |      |                                                                                      | prolyl-tRNA synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | TITOT                                                                                                                                                  |      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 0.695                                                                                                                                                  |      | 1.305                                                                                | Chain A, Crystal Structure Of Adenylosuccinate Synthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                        |      | 1.305<br>1.516                                                                       | Chain A, Crystal Structure Of Adenylosuccinate Syntho<br>carbamoyl-phosphate synthase large chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 0.695                                                                                                                                                  |      | 1.516                                                                                | carbamoyl-phosphate synthase large chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0.695<br>0.484                                                                                                                                         |      | 1.516<br>1.17                                                                        | Chain A, Crystal Structure Of Adenylosuccinate Synth carbamoyl-phosphate synthase large chain 3-oxoacyl-ACP synthase II hypothetical protein JJD26997_0724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.695<br>0.484<br>1.049                                                                                                                                |      | 1.516<br>1.17<br>1.389                                                               | carbamoyl-phosphate synthase large chain<br>3-oxoacyl-ACP synthase II<br>hypothetical protein JJD26997_0724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0.695<br>0.484<br>1.049<br>0.611                                                                                                                       |      | 1.516<br>1.17<br>1.389                                                               | carbamoyl-phosphate synthase large chain 3-oxoacyl-ACP synthase II hypothetical protein JJD26997_0724 flagellar azzembly protein FIIW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796                                                                                                     |      | 1.516<br>1.17<br>1.389                                                               | carbamoyl-phosphate synthase large chain 3-xoxacyl-ACP synthase II hypothetical protein JID26997_0724 flagellar aszembly protein FIIW 3-deoxy-8-phosphooctulonate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796                                                                                                     |      | 1.516<br>1.17<br>1.389                                                               | carbamoyl-phosphate synthase large chain 3-axxacyl-ACF synthase II hypothetical protein JID26997_0724 flagellar assembly protein FIIW 3-dexxy-8-phosphocotulonate synthase cytechrome Cfamily protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496                                                                                       |      | 1.516<br>1.17<br>1.389<br>1.382                                                      | carbamovi-phosphate synthase large chain 3-oxoacyl-ACP synthase II   3-deoxyl-Sphosphoctulonate synthase cytechrome C family protein UDP-GIcNA-specific C4,6 dehydratase/C5 epimerasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56                                                                               |      | 1.516<br>1.17<br>1.389<br>1.382                                                      | carbamory-phosphate synthase large chain<br>3-aoacy-(AAC pynthase II<br>hypothetical protein JID26997_0724<br>flagellar assembly protein FIW<br>3-deony-9-phosphoctulonata synthase<br>cytochrome C family protein<br>UDP-GlcWc-pecific C-6,6 ehydratase/CS epimerase<br>histolinoi dehytogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56                                                                               |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848                                     | carbamory-hosphate synthase large chain  3-ovacyt-ACP synthase II hypothetical protein JID26997_0724 flagellar assambly protein FIIW 3-deony-8-phosphocutulonate synthase cytochrome (Family protein UDP-GICMA-specific C4,6 dehydratase/C5 epimerase histidinoi dehydrogenase cytochrome C odidate, cb83-type, subunit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726                                                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274                            | carbamory-hosphate synthase large chain  3-coacy-(ACP printhse il   hypothetical protein JJ026997, 0724  flagaliar assembly protein FiXIV  3-deony-8-phosphocutionata synthase  cytochrome (family protein  JVD-RICKA-popelic (C-6, dehydratase/CS apimerase  histidinoi dehydrogenase  cytochrome Covidiase, cb83-types, subunit III  delongstion factor II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533                                                    |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467                   | carbamory-hosphate synthase large chain  3-avacqi-AGP synthase III  hypothetical protein JID26997_0724  flagallar assembly protein FIIW  3-deony-9-hosphocotulonata synthase  cytochrome C family protein  UDP-GlickMc-apecific C-6,6 dehyriatase/C5 epimerase  hytochrome C oxidase, cbb3-type, subunit III  elongation factor P 505 ribosomial protein 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533<br>0.5                                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5            | carbamory-inosphate synthase large chain<br>3-coacy-iAC-B primase II<br>hypothetical protein JDD0597-0724<br>flegallar assembly protein FIW<br>3-deoxy-9-brosphoctulionate synthase<br>cytochrome C family protein<br>JDM-GIVAR-specific C-6, 6 dehydratase/C5 epimerase<br>histidinol dehydrogenase<br>cytochrome C oxides, cbb3-type, subunit III<br>elongation factor P<br>505 ribosomal protein I.31<br>FOST ATP synthase subunit delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533<br>0.5                                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5            | carbamory-hosphate synthase large chain 3-acoacy-iACP printhase iI hypothetical protein JJ026997_0724 flagellar assembly protein FIRW 3-deony-6-phosphoctulomate synthase cytochrome (family protein DPG-IICNA-opecific CA, 6 dehydratase/CS opimerase histolinoi dehydrogenase cytochrome Covidiase, cb83-type, subunit III delegation factor 9 505 ribosomal protein I31 505 ribosomal protein I31 505 ribosomal protein I2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533<br>0.5<br>0.5<br>1.839                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamori-phosphate synthase large chain 3-coacyi-(ACP primase II   hypothetical protein JUD03897, 0724   fingular assembly protein FIRW 3-decny-8-phosphocotulonata synthase cytochrome Camiliy protein DUPG-(ICM-2-ogel-Co-6, 6-dehydratase)-(S epimerase histidinoi dehydrogenase (yclochrome Codiales, cbb3-type, subunit III elongation factor P 505 ribosomal protein 12 1001 AIP synthase subunit delta 506 ribosomal protein 12 506 ribosomal protein 12 506 ribosomal protein 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533<br>0.5                                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamori-phosphate synthase large chain 3-coacyi-(ACP primase II   hypothetical protein JUD03897, 0724   fingular assembly protein FIRW 3-decny-8-phosphocotulonata synthase cytochrome Camiliy protein DUPG-(ICM-2-ogel-Co-6, 6-dehydratase)-(S epimerase histidinoi dehydrogenase (yclochrome Codiales, cbb3-type, subunit III elongation factor P 505 ribosomal protein 12 1001 AIP synthase subunit delta 506 ribosomal protein 12 506 ribosomal protein 12 506 ribosomal protein 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.152<br>0.726<br>0.533<br>0.5<br>0.5<br>1.839                             |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamori-phosphate synthase large chain 3-coacyi-(ACP primase II   hypothetical protein JUD03897, 0724   fingular assembly protein FIRW 3-decny-8-phosphocotulonata synthase cytochrome Camiliy protein DUPG-(ICM-2-ogel-Co-6, 6-dehydratase)-(S epimerase histidinoi dehydrogenase (yclochrome Codiales, cbb3-type, subunit III elongation factor P 505 ribosomal protein 12 1001 AIP synthase subunit delta 506 ribosomal protein 12 506 ribosomal protein 12 506 ribosomal protein 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.152<br>0.726<br>0.533<br>0.5<br>0.093<br>1.839                                   |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamory-inosphate synthase large chain  3-coacy-(A-CF printhse il   hypothetical protein J1026997, 0724   flagaliar assembly protein FIRV  3-deony-6-phosphocutionata synthase  cytochrome (family protein  J10P click-Log-petic (C-6, dehydratase/CS epimerase  histidinoi dehydrogenase  cytochrome Covidiase, cbb3-type, subunit III  elongation factor  505 ribosomal protein I31  505 ribosomal protein I23  short chain dehydrogenase/eductase family oxidor  short chain short chain chain  Short chain short chain  Short chain short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain  Short chain |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.152<br>0.726<br>0.533<br>0.5<br>0.093<br>1.839<br>0.504<br>0.563                 |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamory-hosphate synthase large chain 3-acoacy-la-CP synthase iI hypothetical protein JID26997_0724 flagallar assembly protein FIIW 3-acoacy-Sp-abpoonculomate synthase cytochrome (family protein UDP-dicNAc-apecific C-6, 6 dehydratase/CS epimerase histidinol dehydrogenase cytochrome Covidiase, obb3-3-ype, subunit III delingation factor 9 505 ribosomal protein 13 FOR ATP synthase subunit delta 505 ribosomal protein 13 short chain dehydrogenase/eductase family oxidore bifunctional N-acetylglucosamina-1-ghosphate uridy CmpR protein, partial transaldolase 305 ribosomal protein 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.53<br>0.726<br>0.533<br>0.55<br>0.093<br>1.839<br>0.504<br>0.563<br>0.45 |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.467<br>1.5<br>1.907   | carbamory-hosphate synthase large chain 3-acoacy-la-CP synthase iI hypothatical protein JID26997_0724 flagallar assembly protein FINV 3-decey-Sphosphoculionate synthase cytochrome (family protein DVP-dicNAr-opecific C4,6 dehydratase/C5 epimerase histidinol dehydrogenase cytochrome Covidiase, obb3-1ype, subunit III delingstion factor 9 505 ribosomal protein 13 FOR ATP synthase subunit data 505 ribosomal protein 12 short chain dehydrogenase/eductase family oxidore bifunctional N-acetylglucosmine-1-phosphate uridy CmpR protein, partial transaldolase 305 ribosomal protein 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 0.695<br>0.484<br>1.049<br>0.611<br>0.618<br>1.796<br>2<br>0.496<br>0.56<br>0.53<br>0.726<br>0.093<br>1.839<br>0.504<br>0.563<br>0.45<br>0.77          |      | 1.516<br>1.17<br>1.389<br>1.382<br>1.44<br>1.848<br>1.274<br>1.507<br>1.496<br>1.437 | 3-acoacy, ACP prothase II hypothetical protein JID26897_0724 flagallar assembly protein FINV     3-deony-6-phosphocotulonase synthase     UDP-GIcNAc-specific C4,6 dehydratase/C5 epimerase     histidinoi dehydrogenase     vopcotrome C Callades, cbb3-type, subunit III     alongstion factor P     505 ribosomal protein 131     70F1 AIP synthase subunit delta     505 ribosomal protein 12     bidructional Nacetylglucosamine-1-phosphate uridy     ompf protein, partial     transaldolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Figure 6.4 235 proteins of *C. jejuni* SVS 5141 identified by iTRAQ labelling proteomic analysis in the cold exposure experiment

Colours indicate the amountsof identified protein. Green is for a ratio of protein less than unity, red is for a ratio of protein greater than unity, the blank indicates protein cannot be identified at that time point.

## 6.2.2.4 Proteins of C. jejuni SVS 5141 significantly affected by cold stress

Compared with *C. jejuni* SVS 5001, alteration of protein expression in *C. jejuni* SVS 5141 in response to six days of cold storage was less conspicuous. The iTRAQ labelling proteomic analysis found 86 proteins were up-regulated, 54 proteins stopped synthesis and only one protein was down-regulated after six days of cold storage. The proteins of *C. jejuni* SVS 5141 affected by six days of cold exposure are shown in Table 6.2.

Thirty-nine of those 86 up-regulated proteins increased two times; 25 of them had a 3-fold increase; nine proteins had a four times increase; four proteins increased 5-fold; two proteins increased eight times, five proteins increased more than 10-fold but less than 20-fold, and only two proteins had more than a 20-times increase after six days of cold storage. The two proteins with more than 20-fold increase were 50S ribosomal protein L2 and one conserved hypothetical protein.

 Table 6.2 Protein in C. jejuni SVS 5141 affected by six days of cold storage

|                              |                                                         | Theore | Cold    |
|------------------------------|---------------------------------------------------------|--------|---------|
| Accession                    | Protein name                                            | tical  | adapta- |
| number                       |                                                         | Mw     | tion (6 |
| TT 1.4.1                     |                                                         | (Da)   | day)    |
| Up-regulated gi   218563153  | methyl-accepting chemotaxis signal transduction protein | 73191  | +11.7   |
| gi 121613238                 | methyl-accepting chemotaxis signal transduction protein | 73191  | +11.7   |
| gi 121013238                 | methyl-accepting chemotaxis protein                     | 77220  | +11.9   |
| gi 419619379                 | putative MCP-type signal transduction protein           | 40704  | +2.5    |
| gi 419619379<br>gi 419629625 | DNA-directed RNA polymerase subunit beta'               | 169643 | +2.3    |
| gi 57238608                  | DNA-directed RNA polymerase subunit alpha               | 37734  | +2.3    |
| gi 384447762                 | DNA-directed RNA polymerase subunit beta                | 156229 | +2.3    |
| gi 384447702<br>gi 205356548 | translation initiation factor IF3                       | 14527  | +2.7    |
| gi 419632940                 | polynucleotide phosphorylase/polyadenylase              | 79322  | +3.2    |
| gi 57236924                  | competence protein ComEA                                | 8847   | +2.8    |
| gi 40217918                  | putative transcription termination factor               | 47265  | +2.5    |
| gi 40217918<br>gi 419648839  |                                                         | 47897  | +3.4    |
| gi 57237529                  | histidyl-tRNA synthetase 50S ribosomal protein L1       |        |         |
|                              | •                                                       | 25031  | +3.0    |
| gi 57236893                  | 30S ribosomal protein S10                               | 11665  | +2.2    |
| gi 57238707                  | 50S ribosomal protein L16                               | 16365  | +3.6    |
| gi 57237544                  | 30S ribosomal protein S7                                | 17681  | +5.4    |
| gi 57238730                  | 50S ribosomal protein L3                                | 20824  | +4.4    |
| gi 57237528                  | 50S ribosomal protein L11                               | 15127  | +2.2    |
| gi 57238502                  | 30S ribosomal protein S9                                | 14128  | +8.5    |
| gi 57237722                  | 30S ribosomal protein S1                                | 62827  | +2.1    |
| gi 153952052                 | 30S ribosomal protein S2                                | 30449  | +2.6    |
| gi 57238712                  | 50S ribosomal protein L23                               | 10561  | +2.1    |
| gi 57238700                  | 30S ribosomal protein S8                                | 14795  | +2.2    |
| gi 57168772                  | ribosomal protein L21                                   | 11602  | +4.3    |
| gi 57238609                  | 50S ribosomal protein L17                               | 13240  | +4.3    |
| gi 57238706                  | 50S ribosomal protein L29                               | 7029   | +4.5    |
| gi 633730                    | RpsO                                                    | 10206  | +4.5    |
| gi 57236974                  | 50S ribosomal protein L9                                | 16272  | +2.1    |
| gi 57238697                  | 30S ribosomal protein S5                                | 15787  | +3.4    |
| gi 57237163                  | 50S ribosomal protein L31                               | 7757   | +2.8    |
| gi 57238711                  | 50S ribosomal protein L2                                | 30515  | +20.5   |
| gi 218563111                 | formate dehydrogenase large subunit                     | 104573 | +5.9    |
| gi 419641626                 | periplasmic nitrate reductase, small subunit            | 19251  | +2.6    |
| gi 86149326                  | formate dehydrogenase, iron-sulfur subunit              | 24717  | +4.5    |
| gi 57237413                  | cytochrome C551 peroxidase                              | 37021  | +2.3    |
| gi 317509581                 | isocitrate dehydrogenase, NADP-dependent                | 86588  | +2.1    |
| gi 384447418                 | F0F1 ATP synthase subunit epsilon                       | 13825  | +3.6    |
| gi 419622743                 | cytochrome c552                                         | 69795  | +5.8    |
| gi 148926276                 | malate oxidoreductase                                   | 44170  | +2.1    |
| gi 57238058                  | ubiquinolcytochrome C reductase, iron-sulfur subunit    | 18332  | +2.6    |
| gi 283955815                 | pyruvate kinase                                         | 53954  | +2.5    |
| gi 86151404                  | trimethylamine-N-oxide reductase 2 precursor            | 93857  | +3.7    |
| gi 419648255                 | succinate dehydrogenase, flavoprotein subunit           | 67163  | +3.9    |
| gi 57238056                  | ubiquinolcytochrome C reductase, cytochrome C1 subunit  | 41617  | +4.1    |
| gi 57238266                  | succinyl-CoA synthase, alpha subunit                    | 30216  | +2.6    |
| gi 153951934                 | 2-oxoglutarate-acceptor oxidoreductase subunit OorA     | 41211  | +3.5    |

| gi 419645546 | NADH dehydrogenase subunit G                                      | 94588  | +3.1  |
|--------------|-------------------------------------------------------------------|--------|-------|
| gi 57238510  | cytochrome C oxidase, cbb3-type, subunit III                      | 31370  | +12.2 |
| gi 57237111  | F0F1 ATP synthase subunit delta                                   | 20497  | +3.0  |
| gi 57238563  | flavodoxin                                                        | 22239  | +2.6  |
| gi 86152514  | 50 kDa outer membrane protein                                     | 53832  | +4.3  |
| gi 57237913  | lipoprotein                                                       | 18559  | +19.0 |
|              | bifunctional N-acetylglucosamine-1-phosphate                      |        | +3.0  |
| gi 153952664 | uridyltransferase/glucosamine-1-phosphate acetyltransferase       | 48372  |       |
| gi 881376    | OmpR protein, partial                                             | 22640  | +2.6  |
| gi 57237388  | flagellar motor protein MotA                                      | 28279  | +5.9  |
| gi 57237957  | flagellar assembly protein FliW                                   | 14892  | +2.2  |
| gi 148926946 | major antigenic peptide PEB2                                      | 24485  | +2.0  |
| gi 85036689  | major outer membrane protein                                      | 45632  | +8.8  |
| gi 57238192  | nonheme iron-containing ferritin                                  | 19531  | +3.0  |
| gi 4704599   | fibronectin binding protein                                       | 32429  | +3.4  |
| gi 205355989 | putative phospho-sugar mutase                                     | 48938  | +2.6  |
| gi 121613200 | glucosaminefructose-6-phosphate aminotransferase                  | 67687  | +3.0  |
| gi 57238554  | UTP-glucose-1-phosphate uridylyltransferase                       | 30831  | +2.8  |
| gi 57237122  | FKBP-type peptidyl-prolyl cis-trans isomerase SlyD                | 20547  | +2.4  |
| gi 419641014 | ATP-dependent chaperone protein ClpB                              | 95538  | +3.7  |
| gi 419694122 | thioredoxin reductase                                             | 34000  | +2.1  |
| gi 57238437  | enoyl-ACP reductase                                               | 29961  | +2.2  |
| gi 419641319 | biotin carboxylase                                                | 49485  | +3.3  |
| gi 283955572 | acetyl-CoA carboxylase, carboxyl transferase, beta subunit        | 31300  | +3.8  |
| gi 148926982 | carbamoyl-phosphate synthase large chain                          | 122342 | +3.1  |
| gi 283954138 | aspartate kinase, monofunctional class                            | 42771  | +2.1  |
| gi 57238611  | histidinol dehydrogenase                                          | 46687  | +2.6  |
| gi 86149797  | cjaC protein                                                      | 27835  | +2.8  |
| gi 148925618 | putative capsule polysaccharide export system periplasmic protein | 58916  | +2.7  |
| gi 88596055  | twin-arginine translocation pathway signal                        | 72004  | +3.3  |
| gi 57237149  | cation ABC transporter ATP-binding protein                        | 33050  | +3.2  |
| gi 57237197  | ATP-dependent Clp protease proteolytic subunit                    | 21807  | +3.4  |
| gi 419627400 | carboxyl-terminal protease                                        | 48990  | +2.6  |
| gi 283954636 | ATP-dependent protease La                                         | 90364  | +3.0  |
| gi 86149225  | 3-methyl-2-oxobutanoate hydroxymethyltransferase                  | 30354  | +2.3  |
| gi 86150500  | conserved hypothetical protein                                    | 20593  | +2.3  |
| gi 57237048  | hypothetical protein CJE0033                                      | 26440  | +3.6  |
| gi 86150082  | conserved hypothetical protein                                    | 43511  | +23.3 |
| gi 86150649  | conserved hypothetical protein                                    | 16323  | +16.7 |
| gi 57237003  | hypothetical protein CJE0800                                      | 25980  | +3.4  |
| gi 153951812 | hypothetical protein JJD26997_0724                                | 41387  | +2.3  |
| Down-regulat | ed and stopped-synthesis proteins                                 |        |       |
| gi 419638103 | putative MCP-type signal transduction protein                     | 48561  | None  |
| gi 419589392 | putative MCP-type signal transduction protein                     | 48552  | None  |
| gi 57238000  | chemotaxis protein CheY                                           | 14428  | None  |
| gi 57238069  | aspartyl/glutamyl-tRNA amidotransferase subunit B                 | 53256  | None  |
| gi 475890    | fur                                                               | 18175  | None  |
| gi 57236953  | aspartyl-tRNA synthetase                                          | 66676  | None  |
| gi 57237342  | transcription elongation factor GreA                              | 18056  | None  |
| gi 317511751 | isoleucyl-tRNA synthetase                                         | 106086 | None  |
| gi 57238257  | prolyl-tRNA synthetase                                            | 65053  | None  |
| gi 57238704  | 50S ribosomal protein L14                                         | 13354  | None  |
| gi 57237954  | 30S ribosomal protein S18                                         | 10322  | None  |
| gi 57238606  | 30S ribosomal protein S11                                         | 13942  | None  |
|              |                                                                   |        |       |

| gi 153951193   | 50S ribosomal protein L10                                      | 17775 | None  |
|----------------|----------------------------------------------------------------|-------|-------|
| gi 57238698    | 50S ribosomal protein L18                                      | 13288 | None  |
| gi 57237952    | 30S ribosomal protein S6                                       | 14689 | None  |
| gi 57238705    | 30S ribosomal protein S17                                      | 9600  | None  |
| gi 153952472   | 30S ribosomal protein S3                                       | 26067 | None  |
| gi 57238028    | cytochrome C553                                                | 11002 | -2.33 |
| gi 57238690    | citrate synthase                                               | 48109 | None  |
| gi 57238512    | cbb3-type cytochrome C oxidase subunit II                      | 25078 | None  |
| gi 57237051    | cytochrome C family protein                                    | 39104 | None  |
| gi 57237336    | transaldolase                                                  | 37122 | None  |
| gi 455428      | flagellin protein                                              | 59652 | None  |
| gi 56806980    | flagellin A                                                    | 11704 | None  |
| gi 283955143   | 3-deoxy-8-phosphooctulonate synthase                           | 29826 | None  |
| gi 86150038    | dTDP-4-dehydrorhamnose 3,5-epimerase                           | 21245 | None  |
| gi 57237119    | translocation protein TolB                                     | 44711 | None  |
| gi 86150084    | methyltransferase, FkbM family protein                         | 33582 | None  |
| gi 86150017    | putative sugar transferase                                     | 89945 | None  |
| gi 86149461    | ATP-sulfurylase family protein                                 | 44829 | None  |
| gi 419622287   | UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase              | 37683 | None  |
| gi 57236997    | peptidyl-prolyl cis-trans isomerase D,-like protein            | 57475 | None  |
| gi 57168680    | thioredoxin                                                    | 11501 | None  |
| gi 86148986    | acyl carrier protein                                           | 8592  | None  |
| gi 57237500    | acetyl-CoA carboxylase carboxyltransferase subunit alpha       | 34473 | None  |
| gi 57237746    | ribose-phosphate pyrophosphokinase                             | 33848 | None  |
| gi 57237923    | acetyl-CoA carboxylase subunit A                               | 54834 | None  |
| gi 57236939    | CTP synthetase                                                 | 60765 | None  |
| gi 86150584    | GMP synthase                                                   | 57397 | None  |
| gi 13509099    | aspartate-semialdehyde dehydrogenase                           | 21405 | None  |
| gi 57237076    | 3-dehydroquinate dehydratase                                   | 17755 | None  |
| gi 419633975   | branched-chain amino acid aminotransferase                     | 34036 | None  |
| gi 57238618    | 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase | 42635 | None  |
| gi 57238619    | ATP/GTP-binding protein                                        | 40355 | None  |
| gi 57237180    | iron ABC transporter periplasmic iron-binding protein          | 37406 | None  |
| gi 57237820    | delta-aminolevulinic acid dehydratase                          | 36733 | None  |
| gi 153951811   | molybdenum cofactor biosynthesis protein MogA                  | 20371 | None  |
| gi 86150511    | thiamine biosynthesis protein ThiF                             | 30047 | None  |
| gi 317511289   | highly acidic protein, partial                                 | 45096 | None  |
| gi   121612363 | oxidoreductase, putative                                       | 64074 | None  |
| gi 57237459    | hypothetical protein CJE0453                                   | 30726 | None  |
| gi 57237099    | hypothetical protein CJE0087                                   | 49254 | None  |
| gi 57237008    | hypothetical protein CJE0806                                   | 27951 | None  |
| gi 283954942   | hypothetical protein C414_000290003                            | 44381 | None  |
| gi 419641488   | short chain dehydrogenase/reductase family oxidoreductase      | 28161 | None  |

# 6.2.3 Functional classification of significantly changed proteins in *C. jejuni* SVS 5001 and SVS 5141 under cold stress

All proteins with significant expression changed (more than 2-fold) in *C. jejuni* SVS 5001 and 5141 during cold exposure have been grouped by functional classification according to the Sanger Centre *C. jejuni* functional database.

## 6.2.3.1 Functional grouping of significantly changed protein in C. jejuni SVS 5001

As shown in Table 6.3, the 6 h cold shock caused 85 proteins' expression increased in *C. jejuni* SVS 5001. Those 85 up-regulated proteins were grouped into 14 functional categories. The largest group of up-regulated proteins contained 21 proteins and was responsible for energy metabolism. The second largest up-regulated protein group was ribosomal proteins and contained 17 up-regulated proteins. Eight up-regulated proteins belonged to the cell envelope protein category, which was the third largest up-regulated protein group in six-hour cold-shocked *C. jejuni* SVS 5001 cells. Twenty-four proteins reduced their biosynthesis significantly and 21 proteins stopped their biosynthesis after six hours of cold shock. The 24 down-regulated proteins corresponded to 13 different functional categories. The three largest functional categories in the down-regulated proteins were energy metabolism, ribosomal proteins and genetic information processing. The 21 stopped-synthesis proteins were grouped into nine different functional categories. Ribosomal protein, cell envelope and chemotaxis were the three largest functional categories of stopped-synthesis proteins in six hours of cold- shocked *C. jejuni* SVS 5001 cells.

Six days of 4°C cold storage had significantly altered protein expression in *C. jejuni* SVS 5001 cells. After six days of cold storage, 138 proteins were up-regulated; 11 proteins were down-regulated; 28 proteins stopped biosynthesis, meantime nine proteins that could not be found in cells without cold exposure were induced. Functional classification of the significantly changed proteins in six days of cold exposure *C. jejuni* SVS 5001 cells is shown in Table 6.3. These 138 up-regulated proteins were grouped into 18 different functional categories. The three largest functional categories of up-regulated protein were energy metabolism, ribosomal

proteins and genetic information processing, which contained 30, 18 and 15 upregulated proteins, respectively. The 11 down-regulated proteins were grouped into seven different functional categories and the largest functional category of down-regulated protein was energy metabolism, which contained three down-regulated proteins. The 28 stopped biosynthesis proteins in six days of cold storage *C. jejuni* SVS 5001 cells were grouped into 12 functional categories. The three largest functional categories of those stopped-biosynthesis proteins were ribosomal proteins, cell envelope and cofactor and vitamins synthesis, which contained six, five and three stopped-synthesis proteins, respectively. The nine induced proteins only found in six days of cold storage *C. jejuni* SVS 5001 cells corresponded to five different functional categories; and the largest functional category of the cold-induced proteins was chemotaxis and mobility, which contained three cold-induced proteins.

Table 6.3 Functional grouping of significantly changed proteins in *C. jejuni* SVS 5001 in response to cold stress

| Functional classification                     | Cold shock cells (6h) |                               |                                   |                      | Cold adapted cells (6 day) |                               |                                   |                            |
|-----------------------------------------------|-----------------------|-------------------------------|-----------------------------------|----------------------|----------------------------|-------------------------------|-----------------------------------|----------------------------|
|                                               | Upregulated proteins  | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold induced protein | Up-regulated proteins      | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold<br>induced<br>protein |
| Chemotaxis and mobility                       | 3                     | 1                             | 3                                 | 1                    | 6                          |                               | 2                                 | 3                          |
| Genetic information processing                | 7                     | 3                             |                                   |                      | 15                         |                               | 2                                 |                            |
| Ribosomal protein                             | 17                    | 3                             | 4                                 |                      | 18                         | 1                             | 6                                 |                            |
| Energy metabolism                             | 21                    | 4                             | 2                                 |                      | 30                         | 3                             | 1                                 |                            |
| Cell envelope                                 | 8                     | 2                             | 3                                 | 1                    | 8                          | 2                             | 5                                 |                            |
| Adaptation and atypical condition             | 1                     | 1                             |                                   |                      | 1                          |                               |                                   |                            |
| Pathogenicity                                 |                       |                               |                                   | 1                    |                            |                               |                                   |                            |
| General intermediary metabolism               | 3                     | 2                             | 3                                 |                      | 7                          | 1                             | 2                                 |                            |
| Molecular chaperone                           | 2                     |                               | 1                                 |                      | 5                          |                               | 1                                 |                            |
| Oxidative stress defence                      |                       |                               |                                   |                      | 3                          |                               |                                   |                            |
| Fatty acid biosynthesis                       | 3                     | 2                             | 1                                 |                      | 5                          | 1                             | 1                                 |                            |
| Purine, pyrimidine, nucleoside and nucleotide | 1                     | 1                             |                                   | 1                    | 3                          |                               | 1                                 | 2                          |
| Amino acid metabolism                         | 4                     | 2                             | 2                                 |                      | 7                          | 2                             | 1                                 |                            |
| Signal transduction                           |                       |                               |                                   |                      | 1                          |                               |                                   |                            |
| Transport/binding                             | 7                     |                               |                                   | 1                    | 9                          |                               |                                   | 1                          |
| Cofactors and vitamins synthesis              |                       | 1                             |                                   | 1                    | 2                          |                               | 3                                 | 1                          |
| Degradation of macromolecule                  | 2                     | 1                             |                                   |                      | 4                          | 1                             |                                   |                            |
| Degradation of small molecular                |                       |                               |                                   |                      | 2                          |                               |                                   |                            |
| Unknown function                              | 6                     | 1                             | 2                                 | 4                    | 12                         |                               | 3                                 | 2                          |
| Total number                                  | 85                    | 24                            | 21                                | 10                   | 138                        | 11                            | 28                                | 9                          |

## 6.2.3.2 Functional grouping of significantly changed proteins in C. jejuni SVS 5141

Compared with *C. jejuni* SVS 5001, the six days at 4°C cold storage had less impact on protein expression in *C. jejuni* SVS 5141. The six days of cold storage caused SVS 5141 increased expression of 86 proteins, decreased one protein's expression and stopped biosynthesis of 54 proteins. Functional classification of the significant changed proteins in six days of cold exposure *C. jejuni* SVS 5141 is shown in Table 6.4. The 86 up-regulated proteins corresponded to 17 different functional categories. The four largest functional categories of those up-regulated proteins were energy metabolism, ribosomal proteins, cell envelope and genetic information processing, which contained 19, 19, 8 and 8 up-regulated proteins, respectively. Those 54 stopped synthesis proteins in six days of cold storage *C. jejuni* SVS 5141 cells were grouped into 15 functional categories. The three largest functional categories of stopped synthesis proteins were ribosomal proteins, genetic information processing proteins and cell envelope proteins. They contained 8, 6 and 5 stopped-synthesis proteins respectively. The only down-regulated protein found in six days of cold storage *C. jejuni* SVS 5141 belonged to the energy metabolism category.

Table 6.4 Functional grouping significantly changed proteins in *C. jejuni* SVS 5141 in response to cold temperatures

| Functional          | Cold adapted cells (6 day) |                |               |  |  |  |
|---------------------|----------------------------|----------------|---------------|--|--|--|
| classification      | Up-regulated               | Down regulated | Proteins that |  |  |  |
|                     | proteins                   | proteins       | stopped       |  |  |  |
|                     |                            |                | synthesis     |  |  |  |
| Chemotaxis and      | 4                          |                | 3             |  |  |  |
| mobility            |                            |                |               |  |  |  |
| Genetic information | 8                          |                | 6             |  |  |  |
| processing          |                            |                |               |  |  |  |
| Ribosomal protein   | 19                         |                | 8             |  |  |  |
| Energy metabolism   | 19                         | 1              | 4             |  |  |  |
| Cell envelope       | 8                          |                | 5             |  |  |  |
| Adaptation and      | 1                          |                |               |  |  |  |
| atypical condition  |                            |                |               |  |  |  |
| Pathogenicity       | 1                          |                |               |  |  |  |
| General             | 3                          |                | 4             |  |  |  |
| intermediary        |                            |                |               |  |  |  |
| metabolism          |                            |                |               |  |  |  |
| Molecular           | 2                          |                | 1             |  |  |  |
| chaperone           |                            |                |               |  |  |  |
| Oxidative stress    | 1                          |                | 1             |  |  |  |
| defence             |                            |                |               |  |  |  |
| Fatty acid          | 3                          |                | 2             |  |  |  |
| biosynthesis        |                            |                |               |  |  |  |
| Purine, pyrimidine, | 1                          |                | 4             |  |  |  |
| nucleoside and      |                            |                |               |  |  |  |
| nucleotide          |                            |                |               |  |  |  |
| Amino acid          | 2                          |                | 4             |  |  |  |
| metabolism          |                            |                |               |  |  |  |
| Signal transduction |                            |                | 1             |  |  |  |
| Transport/binding   | 4                          |                | 1             |  |  |  |
| Cofactors and       | 1                          |                | 3             |  |  |  |
| vitamins synthesis  |                            |                |               |  |  |  |
| Degradation of      | 3                          |                |               |  |  |  |
| macromolecules      |                            |                |               |  |  |  |
| Unknown function    | 6                          |                | 7             |  |  |  |
| Total number        | 86                         | 1              | 54            |  |  |  |

#### 6.3 Discussion

## 6.3.1 1D protein banding pattern changes in *C. jejuni* SVS 5001 and SVS 5141 under cold stress

The 1D electrophoresis results showed *C. jejuni* SVS 5001 cells with 24 hours, 48 hours, six days and eight days of 4°C cold exposure have similar 1D protein profiles; moreoever, those similar four 1D protein profiles of cold adapted *C. jejuni* SVS 5001 cells appeared identical to the 1D protein profiles of SVS 5001 cells without cold exposure. In contrast to 1D electrophoresis, the iTRAQ labelling proteomic analysis results showed six days of cold exposure caused dramatic alterations in protein expression in *C. jejuni* SVS 5001 (see table 6.3). iTRAQ proteomic analysis identified that 138 proteins increased their expression and 11 proteins decreased their expression in the six days of cold storage SVS 5001 cells. The differences between the results of 1D electrophoresis analysis and iTRAQ labelling proteomic analysis in this cold stress response study suggested the 1D protein electrophoresis technique was not sensitive enough to use alone to examine the alternations in cellular protein expression. 1D protein electrophoresis could only confirm alterations of protein expression, but unable to conclude there was no protein expression changes between the two identical 1D protein profiles.

The 1D protein electrophoresis analysis results suggested that six hours of cold shock caused more significant alternations of protein expression in *C. jejuni* SVS 5141 than 24 hours, 48 hours, six days and eight days of cold storage. Due to a sample shortage, the six-hour cold shock *C. jejuni* SVS 5141 cells' proteomic analysis did not procede. Because of the lack of proteomic analysis data about six-hour cold shock *C. jejuni* SVS 5141, conclusions about 6 hours of cold shock cause more significant protein expression alterations in *C. jejuni* SVS 5141 than six days of cold storage does cannot be made.

# 6.3.2 Comparative proteomic analysis of *C. jejuni* cold shock responses

In the present study, only two cold shock protein extraction samples were processed by iTRAQ labelling comparative proteomic analysis. They were the protein extraction samples from six hour cold-shocked *C. jejuni* SVS 5001 and *C. jejuni* NCTC 11168. To reveal the difference of strain-dependent cold shock response mechanisms, the cold shock proteomic profiles of the two strains have been compared.

#### 6.3.2.1 Up-regulated proteins in two cold shock C. jejuni strains

As shown in Table 6.5, *C. jejuni* SVS 5001 increased expression of 85 proteins in response to cold shock. The three largest functional groups of up-regulated protein in *C. jejuni* SVS 5001 were the same as in *C. jejuni* NCTC 11168, but in a different order. In cold shocked *C. jejuni* SVS 5001 cells, the largest functional group was energy metabolism, which contained 21 up-regulated proteins; the second largest functional group was ribosomal proteins, which had 17 proteins; the third largest functional group was cell envelope proteins, which contained eight up-regulated proteins. In cold-shocked *C. jejuni* NCTC 11168, the three largest functional groups were ribosomal proteins (with 28 up-regulated proteins), energy metabolism proteins (with 8 up-regulated proteins) and cell envelope proteins (with 5 up-regulated proteins).

Table 6.5 Difference in protein expression of *C. jejuni* NCTC 11168 and SVS 5001 in response to cold shock

| Functional classification                     | NCTC 11168            |                               |                                   |                      | SVS 5001              |                               |                                   |                            |
|-----------------------------------------------|-----------------------|-------------------------------|-----------------------------------|----------------------|-----------------------|-------------------------------|-----------------------------------|----------------------------|
|                                               | Up-regulated proteins | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold induced protein | Up-regulated proteins | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold<br>induced<br>protein |
| Chemotaxis and mobility                       | 5                     |                               |                                   |                      | 3                     | 1                             | 3                                 | 1                          |
| Genetic information processing                | 1                     | 2                             | 4                                 | 1                    | 7                     | 3                             |                                   |                            |
| Ribosomal protein                             | 28                    |                               |                                   |                      | 17                    | 3                             | 4                                 |                            |
| Energy metabolism                             | 8                     | 2                             | 2                                 |                      | 21                    | 4                             | 2                                 |                            |
| Cell envelope                                 | 5                     |                               |                                   |                      | 8                     | 2                             | 3                                 | 1                          |
| Adaptation and atypical condition             | 2                     |                               |                                   |                      | 1                     | 1                             |                                   |                            |
| Pathogenicity                                 | 1                     |                               |                                   |                      |                       |                               |                                   | 1                          |
| General intermediary metabolism               | 1                     | 3                             | 1                                 |                      | 3                     | 2                             | 3                                 |                            |
| Molecular chaperone                           | 1                     | 1                             |                                   |                      | 2                     |                               | 1                                 |                            |
| Oxidative stress defence                      |                       | 4                             | 1                                 |                      |                       |                               |                                   |                            |
| Fatty acid biosynthesis                       |                       | 1                             | 2                                 |                      | 3                     | 2                             | 1                                 |                            |
| Purine, pyrimidine, nucleoside and nucleotide |                       | 1                             | 3                                 |                      | 1                     | 1                             |                                   | 1                          |
| Amino acid metabolism                         |                       |                               | 2                                 |                      | 4                     | 2                             | 2                                 |                            |
| Signal transduction                           |                       |                               |                                   |                      |                       |                               |                                   |                            |
| Transport/binding                             |                       | 1                             | 1                                 |                      | 7                     |                               |                                   | 1                          |
| Cofactors and vitamins synthesis              |                       |                               | 2                                 |                      |                       | 1                             |                                   | 1                          |
| Degradation of macromolecule                  |                       |                               |                                   |                      | 2                     | 1                             |                                   |                            |
| Unknown function                              | 4                     | 6                             | 2                                 |                      | 6                     | 1                             | 2                                 | 4                          |
| Total number                                  | 56                    | 24                            | 22                                |                      | 85                    | 24                            | 21                                | 10                         |

Both C. jejuni NCTC 11168 and SVS 5001 increased expression of proteins involved in energy metabolism suggesting that more energy was needed by C. jejuni in response to cold shock. This was in agreement with the study of Stintzi and Whitworth (2003) and Moen el al. (2005). Comparing up-regulated energy metabolism proteins in coldshocked C. jejuni SVS 5001 and C. jejuni NCTC 11168, five energy metabolism proteins were found being up-regulated in both strains. These five proteins were FdhA (formate dehydrogenase large subunit), ZP 14173510 (small subunit of periplasmic nitrate reductase), cytochrome c552, trimethylamine-N-oxide reductase 2 precursor and PetC (ubiquinol--cytochrome C reductase). Apart from PetC, four of them were involved in anaerobic respiration. This suggested that both C. jejuni SVS 5001 and C. jejuni NCTC 11168 activated their anaerobic respiration to produce energy in cold shock conditions. In addition to increasing four anaerobic respirationrelated proteins, C. jejuni SVS 5001 increased expression of eight proteins involved in the TCA cycle in response to cold shock. The TCA cycle was an important aerobic respiration pathway. Increasing expression of TCA cycle related protein and anaerobic respiration-related proteins in cold-shocked C. jejuni SVS 5001 suggested this strain increased both anaerobic and aerobic respiration to fulfil higher energy demand in cold shock conditions. Our study found that six hours of cold exposure did not induce any protein related to the aerobic respiration pathway in C. jejuni NCTC 11168, but caused increased expression of four anaerobic pathway related proteins. This suggested that C. jejuni NCTC 11168 used different mechanisms from C. jejuni SVS 5001 to product energy to respond six hours of cold shock. Instead of activating both anaerobic and aerobic pathways, C. jejuni NCTC 11168 relied more on its anaerobic pathway to provide energy in six hours of cold shock conditions.

*C. jejuni* SVS 5001 cell significantly increased its ribosomal protein expression in response to six hours of cold shock. Overall, 17 ribosomal proteins were upregulated. Twelve were ribosomal proteins from the 50S ribosomal subunit (50S ribosomal protein L1, L3, L9, L11, L13, L16, L17, L21, L23, L24, L29 and L31) and five were up-regulated ribosomal proteins from the 30S ribosomal subunit (30S ribosomal protein S7, S8, S9, S11 and S15). In cold shock conditions, *C. jejuni* NCTC 11168 cell increased its ribosomal proteins' production. All 28 ribosomal proteins

were found to increase their expressions in cold shocked *C. jejuni* NCTC 11168 cells. Seventeen of them were from the 50S ribosomal subunit (50S ribosomal protein L1, L2, L3, L5, L10, L11, L13, L14, L15, L16, L17, L18, L21, L22, L24, L25 and L29) and the other 11 up-regulated ribosomal proteins were from the 30S ribosomal subunit (30S ribosomal protein S3, S4, S5, S7, S8, S9, S10, S11, S15, S17 and S18). Fourteen ribosomal proteins increased their expression in both strains in response to cold shock. Cold inducing ribosomal proteins had also been found in *Bacillus subtilis*, in which three ribosomal proteins, L7, L12 and S6, were induced by cold shock (Graumann et al., 1996). Ribosomal proteins played critical roles in protein biosynthesis. A previous study also had found ribosomes were able to act as sensors of cold shock in *E. coli* (VanBogelen and Neidhardt, 1990). The up-regulation of larger numbers of ribosomal proteins in cold shock conditions suggested that *C. jejuni* might enhance the protein translation process in response to cold shock and ribosomes might play an important role rather than in protein translation in response to cold stress, such as acting as sensors of cold shock.

Cell envelope proteins were the third largest up-regulated protein category in coldshocked C. jejuni SVS 5001. A total of eight cell envelope proteins significantly increased their expression in response to cold shock. They were PorA (major outer membrane protein), Omp50 (50kDa outer membrane protein), OmpR (major outer membrane protein synthesis regulator), lipoprotein, Peb2 (a major antigen), GlmU (an enzyme catalyse cell wall synthesis), FliW (a flagellar assembly protein) and FlaB (flagellin B protein). The last two proteins are involved in the assembly of flagellae, but they are categorized into cell envelope proteins according to the Sanger Center C. jejuni functional database. C. jejuni NCTC 11168 increased five cell envelope proteins' expression to response cold shock. Three of the five envelope proteins had increased in both strains in response to cold shock. They were PorA (major outer membrane protein), Omp50 (50kDa outer membrane protein) and lipoprotein. Expression of PorA and Omp50 in C. jejuni had also been found to increase at a 42°C growing temperature, compared with 36°C and 31°C (Dedieu et al., 2002; Dedieu et al., 2008). Moreover, Xia et al. (2013) found PorA and Omp50 can be induced by antimicrobials and believed the increased expression of those two cell envelope proteins was an

adaptive response to increase surface polysaccharides. The cell envelope protein was important for cell wall and plasma membrane structural integrity. Increasing expression of those envelope proteins in response cold shock in *C. jejuni* suggested these proteins played important roles in retaining cell integrity in cold shock conditions. This was especially so for lipoproteins, which maintained the cell membrane a biologically functional fluid phase in response to low temperature, increased 135.5-fold in cold-shocked *C. jejuni* SVS 5001 cells.

# 6.3.2.2 Down-regulated and stopped-synthesis proteins in cold-shocked C. jejuni

The number of down-regulated protein and stopped-synthesis proteins in cold-shocked *C. jejuni* SVS 5001 cells were similar with the number of correlated proteins in cold-shocked *C. jejuni* NCTC 11168 cell. *C. jejuni* SVS 5001 significantly reduced 24 proteins and stopped synthesizing 21 proteins in response to cold shock. *C. jejuni* NCTC 11168 reduced 24 proteins' expression and stopped synthesizing 22 proteins.

The functional categories of reduced protein and stopped-synthesis proteins in those two cold shock strains were quite different. The largest functional group of down regulated protein in cold shock C. jejuni NCTC 11168 cells was oxidative stress defence, which matched our finding in which C. jejuni NCTC 11168 did not increase any protein involved in aerobic respiration pathway in response to six hours of cold shock. In cold-shocked C. jejuni SVS 5001 cells, the largest functional group of down regulated protein was energy metabolism. There were no down-regulated oxidative stress defence proteins in the cold-shocked C. jejuni SVS 5001 cells. The largest functional group of stopped synthesis protein in cold shocked C. jejuni NCTC 11168 cells was genetic information processing, which included three amino acid tRNA proteins (GatB, IleS and ProS) and one transcription elongation factor (GreA). C. jejuni SVS 5001 did not stop synthesizing any genetic information processing proteins under cold shock conditions. The largest functional group of stopped-synthesis proteins in cold-shocked C. jejuni SVS 5001 cells was ribosomal protein, which included 50S ribosomal proteins, L14, L18 and 30S, and ribosomal proteins, S3, S17. These four ribosomal proteins were all up-regulated in cold-shocked C. jejuni NCTC

11168 cells. The huge differences in down-regulated proteins and stopped-synthesis protein between these two strains in response to cold shock suggested that the two strains used very different strategies to cope with cold shock.

# 6.3.2.3 Cold shock induced protein that cannot be found in C. jejuni without cold stress

Ten cold-induced proteins in cold-shocked *C. jejuni* SVS 5001 cells were not present in cells without cold exposure. In *C. jejuni* NCTC 11168, there was only one cold-induced protein that was not present in cells without cold exposure. The 10 cold-induced *C. jejuni* SVS 5001 proteins that were not present in the 42°C growing cells belonged to seven different functional categories. Four of those 10 proteins have unknown function, the rest of the six proteins belonged to six different functional categories: chemotaxis, cell envelope, pathogenicity, transport/binding, cofactor and vitamin synthesis and purine, pyrimidine nucleoside and nucleotide. The cold-induced protein that was only present in cold-shocked *C. jejuni* NCTC 11168 celss was GatA (subunit A of aspartyl/glutamyl-tRNA amidotransferase), which regulated translational fidelity.

The cold-induced protein that was not present in 42°C was not needed by *C. jejuni* under normal growing temperatures, but was essential for *C. jejuni* to survive at cold temperatures. The difference between the two strains in expression of cold-induced protein reminded us that these two strains used very different strategies in response to cold shock.

#### 6.3.2.4 Conclusions

The proteomic comparative study found both *C. jejuni* NCTC 11168 and SVS 5001 increased expression of large numbers of ribosomal and cell envelope proteins in response to cold shock. Cold shock inducing ribosomal proteins have also been seen in *E. coli* (Joens et al., 1992) and *B. subtilis* (Graumann and Marahiel, 1999). However, the numbers of cold-induced ribosomal protein in *E. coli* and *B. subtilis* were very small, compared with *C. jejuni*. A temperature downshift only induced ribosomal proteins S1, S6, L7/L12 in *E. coli* and S6, L7/L12 in *B. subtilis* (Joens et al., 1992; Graumann et al., 1996). These four ribosomal proteins did not change their

expression in *C. jejuni* at our cold exposure study. A large number of ribosomal proteins (28 in *C. jejuni* NCTC 11168, 7 in *C. jejuni* SVS 5001) increased their expression in *C. jejuni* to response cold shock suggesting that ribosomal proteins played an important role rather than protein translation in cold shock response of *C. jejuni*. Cell envelope proteins played important roles in remaining cell structural integrity and diffusion of small molecular. Both two strains increased the number of cell envelope proteins in response to cold shock, such as PorA, Omp50 and Lipoprotein, suggesting that the two strains might employ similar cold response mechanisms to regulate their cell envelopes.

The two strains of *C. jejuni* have very different protein profiles in their cold-induced energy metabolism protein. C. jejuni SVS 5001 increased expression of 21 energy metabolism proteins in response to cold shock. C. jejuni NCTC 11168 increased fewer energy metabolism proteins in cold shock, which were eight. In addition to variation in the numbers of proteins increased, the respiration pathway of the increased energy metabolism proteins was different between the two strains. C. jejuni SVS 5001 increased both anaerobic and aerobic respiration pathway proteins to enhance the cell's energy generation in cold shock conditions. C. jejuni NCTC 11168 only increased expression of the proteins that were involved in anaerobic respiration. Other evidence regarding C. jejuni NCTC 11168 relying on anaerobic respiration rather than aerobic respiration to provide energy at cold shock was the reduction of four oxidative stress proteins' expression in cold-shocked C. jejuni NCTC 11168 cells. The two strains managed their protein expression in two different modus to fulfil energy requirements in cold-shocked condition suggesting that the mechanism of energy metabolism employed by C. jejuni might contribute to the strain-specific differences in cold tolerance of this pathogen.

# 6.3.3 Comparative analysis of two closely related *C. jejuni* strains' cold adaption

*C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 were isolated from the same waterborne outbreak. Although the two isolates had different origins, the phenotypic characteristics of them were similar. Comparative analysis of the two strains' cold-

adapted protein profile revealed the difference in the two isolates' cold adaptation mechanisms.

As shown in the Table 6.6, to adapt to cold temperature, the clinically isolated *C. jejuni* SVS 5001 altered its protein expression more substantially than the environmentally isolated *C. jejuni* SVS 5141, probably due to its readaptation to a warm-blooded environment. After six days of cold storage, *C. jejuni* SVS 5001 increased 138 proteins' expression, decreased 11 proteins' expression, stopped synthesis of 28 proteins and started to synthesize nine proteins that could not be found in the cells growing at 42°C. The alteration of protein expression in six days of cold exposure *C. jejuni* SVS 5141 was less notable. In cold adapted *C. jejuni* SVS 5141 cells, 86 proteins were up-regulated, only one protein was down-regulated and the biosynthesis of 54 proteins was stopped. Six days of cold storage did not induce any protein that could not be found in *C. jejuni* SVS 5141 growing at 42°C.

Table 6.6 Difference in protein expression of *C. jejuni* SVS 5001 and SVS 5141 in response to 6 days cold exposure

| Functional classification                     | SVS 5001              |                               |                                   |                      | SVS 5141              |                               |                                   |                            |
|-----------------------------------------------|-----------------------|-------------------------------|-----------------------------------|----------------------|-----------------------|-------------------------------|-----------------------------------|----------------------------|
|                                               | Up-regulated proteins | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold induced protein | Up-regulated proteins | Down<br>regulated<br>proteins | Protein<br>that stop<br>synthesis | Cold<br>induced<br>protein |
| Chemotaxis and mobility                       | 6                     |                               | 2                                 | 3                    | 4                     |                               | 3                                 |                            |
| Genetic information processing                | 15                    |                               | 2                                 |                      | 8                     |                               | 6                                 |                            |
| Ribosomal protein                             | 18                    | 1                             | 6                                 |                      | 19                    |                               | 8                                 |                            |
| Energy metabolism                             | 30                    | 3                             | 1                                 |                      | 19                    | 1                             | 4                                 |                            |
| Cell envelope                                 | 8                     | 2                             | 5                                 |                      | 8                     |                               | 5                                 |                            |
| Adaptation and atypical condition             | 1                     |                               |                                   |                      | 1                     |                               |                                   |                            |
| Pathogenicity                                 |                       |                               |                                   |                      | 1                     |                               |                                   |                            |
| General intermediary metabolism               | 7                     | 1                             | 2                                 |                      | 3                     |                               | 4                                 |                            |
| Molecular chaperone                           | 5                     |                               | 1                                 |                      | 2                     |                               | 1                                 |                            |
| Oxidative stress defence                      | 3                     |                               |                                   |                      | 1                     |                               | 1                                 |                            |
| Fatty acid biosynthesis                       | 5                     | 1                             | 1                                 |                      | 3                     |                               | 2                                 |                            |
| Purine, pyrimidine, nucleoside and nucleotide | 3                     |                               | 1                                 | 2                    | 1                     |                               | 4                                 |                            |
| Amino acid metabolism                         | 7                     | 2                             | 1                                 |                      | 2                     |                               | 4                                 |                            |
| Signal transduction                           | 1                     |                               |                                   |                      |                       |                               | 1                                 |                            |
| Transport/binding                             | 9                     |                               |                                   | 1                    | 4                     |                               | 1                                 |                            |
| Cofactors and vitamins synthesis              | 2                     |                               | 3                                 | 1                    | 1                     |                               | 3                                 |                            |
| Degradation of macromolecule                  | 6                     | 1                             |                                   |                      | 3                     |                               |                                   |                            |
| Unknown function                              | 12                    |                               | 3                                 | 2                    | 6                     |                               | 7                                 |                            |
| Total number                                  | 138                   | 11                            | 28                                | 9                    | 86                    |                               | 54                                |                            |

#### 6.3.3.1 Up-regulated proteins in two cold adapted C. jejuni strains

The three largest functional groups of up-regulated protein in cold adapted *C. jejuni* SVS 5001 were same as in *C. jejuni* SVS 5141, and in the same order. In cold adapted *C. jejuni* SVS 5001, the largest functional group of up-regulated protein was energy metabolism protein, which had 30 up-regulated proteins; the second largest functional group was ribosomal protein, which had 18 proteins; the third largest functional group was genetic information processing protein, which had 15 up-regulated proteins. In cold-adapted *C. jejuni* SVS 5141, the three largest functional groups were energy metabolism proteins (with 19 up-regulated proteins), ribosomal proteins (with 19 up-regulated proteins) and genetic information processing proteins (with eight up-regulated proteins).

Comparing the study of up-regulated energy metabolism proteins in cold-adapted C. jejuni SVS 5001 and C. jejuni SVS 5141 found 18 energy metabolism proteins were up-regulated in both strains. Six proteins responsible for electron transport and five proteins involved in anaerobic respiration increased their expression in both strains after six days cold of exposure. The five anaerobic respiration proteins were FdhA ((formate dehydrogenase large subunit), FdhB (formate dehydrogenase, iron-sulfur subunit), small unit of periplasmic nitrate reductase, cytochrome c552 and trimethylamine-N-oxide reductase 2 precursor. Four proteins that participated in the TCA cycle increased in both cold adapted strains. They were SucD (succinyl-CoA synthase, alpha subunit), OorA (2-oxoglutarate-acceptor oxidoreductase subunit), NADP-dependent isocitrate dehydrogenase and malate oxidoreductase. The increased expression of proteins involved in electron transport and the TCA cycle to respond to cold stress found in this study matched the previous *C. jejuni* cold shock transcriptomic study, in which the transcript abundance of genes encoding enzymes involved in the TCA cycle all increased in response to cold stress (Stintzi and Whitworth, 2003). Large numbers of energy metabolism proteins increased in both strains to adapt to cold temperatures suggesting the two closely related C. jejuni strains employed similar mechanisms to fulfil their energy needs for cold adaption.

Both strains increased large numbers of ribosomal proteins to adapt cold temperatures. *C. jejuni* SVS 5001 increased expression of 18 ribosomal proteins. *C. jejuni* SVS 5141 increased expression of 19 ribosomal proteins. Sixteen ribosomal proteins increased in both cold adapted strains. They were ten 50s ribosomal proteins (L1, L3, L9, L11, L16, L17, L21, L23, L29 and L31) and six 30S ribosomal proteins (S1, S2, S7, S8, S9 and S15). The identical up-regulated ribosomal protein profiles in the two cold adapted strains emphasized the similarity of the cold adaption mechanisms used by the two strains.

The third largest functional group of up-regulated protein in both cold-adapted strains was genetic information processing. *C. jejuni* SVS 5001 increased expression of 15 proteins involved in genetic information processing. *C. jejuni* SVS 5141 increased expression of eight proteins that participated in genetic information processing. Seven genetic information processing proteins increased in both strains to adapt to cold temperatures. They were DNA-directed RNA polymerase subunit RpoA and RpoB (catalyse the transcription of DNA), InfC (translation initiation factor), Pnp (responsible for mRNA processing and degradation), ComEA (repair DNA and remove exogenous DNA), HisS (histidyl-tRNA synthetise) and a putative transcription termination factor.

# 6.3.3.2 Down-regulated and stopped-synthesis proteins in cold adapted C. jejuni

The present proteomic analysis found *C. jejuni* SVS 5001 reduced 11 proteins' expression and stopped biosynthesis of 28 proteins to adapt to cold temperatures. *C. jejuni* SVS 5141 reduced only one protein's expression, but stopped biosynthesis of 54 proteins to adapt to six days of 4°C cold exposure. For easier comparative analysis the alteration of the proteome in the two cold-adapted *C. jejuni* strains, the down-regulated proteins and the proteins that stopped synthesis in response to cold adaption were all regarded as cold-repressed proteins.

The three largest functional groups of cold-repressed protein in cold adapted *C.jejuni* SVS 5001 were ribosomal protein (seven cold-repressed proteins), cell envelope protein (seven cold-repressed proteins) and energy metabolism protein (four cold-

repressed proteins). In cold adapted *C. jejuni* SVS 5141, the four largest functional groups of cold-repressed protein were ribosomal protein (eight cold-repressed proteins), genetic information processing protein (six cold-repressed proteins), cell envelope proteins (five cold-repressed proteins) and energy metabolism proteins (five cold-repressed proteins).

Six ribosomal proteins had been found repressed by cold in both *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141. They were two 50s ribosomal proteins (L14 and L18) and four 30S ribosomal proteins (S3, S11, S17 and S18). Ribosomal proteins play a critical role in process of translating mRNA into protein. Reducing expression or stopped biosynthesis of certain numbers of ribosomal proteins corresponded to large numbers of proteins being repressed in those two cold-adapted *C. jejuni* strains. Meanwhile, the biosynthesis of six genetic information processing proteins that stopped in cold-adapted *C. jejuni* SVS 5141 was in agreement with stopped biosynthesis of 54 proteins.

Cell envelope related proteins were the second and third largest groups of cold-repressed proteins in cold adapted *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141, respectively. Four cell envelope related proteins had been found repressed by cold in both strains. They were Fla (flagellin protein), FlaA (flagellin A), TolB (translocation protein, responsible for cell envelope integrity) and KdsA (3-deoxy-8-phosphooctulonate synthase, responsible for outer membrane biogenesis). Although being involved in cell motility, Fla and FlaA are considered as cell envelope proteins, since they are both structural constituents of cell membranes. While the two strains decreased expression of the above cell envelope proteins, eight cell envelope proteins had increased their expression in both of the two cold adapted *C. jejuni* strains. This suggested *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 processed the reconstruction of cell membranes to adapt to cold storage.

Energy metabolism proteins were the third and fourth largest functional groups of cold-repressed protein in cold adapted *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141, respectively. *C. jejuni* SVS 5001 reduced expression of three energy metabolism proteins (FrdB, Eno and GIA) and stopped synthesis of one energy metabolism

protein (CcoO) to adapt to six days of cold storage. In six days of cold storage *C. jejuni* SVS 5001, biosynthesis of four energy metabolism proteins (GltA, CcoO, Tal and one cytochrome C family protein) stop, and one energy metabolism protein's (Cyf) expression had decreased. Two energy metabolism proteins, GltA and CcoO, had been repressed by six days of cold storage in both strains. GltA (citrate synthase) is a pace-making enzyme in the first step of the TCA cycle. *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 both have high concentrations of GltA when they were grown at 42°C. The expression of GltA decreased dramatically, to -46.7 times, in *C. jejuni* SVS 5001 after six days of cold storage. In *C. jejuni* SVS 5141, six days of cold storage completely suspended biosynthesis of GltA. A decrease of this important TCA cycle pace-making enzyme in cold adapted *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 was different from the increased expression of this protein in cold-shocked *C. jejuni* NCTC 11168. This suggested that *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 used similar metabolism mechanisms to adapt to cold, which were different from *C. jejuni* NCTC 11168.

#### 6.3.3.3 Conclusions

*C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 were isolated from the same waterborne outbreak. The difference between the two strains was the former had infected humans from consuming the water from which SVS 5141 had been recovered. The previous study found clinically-isolated *C. jejuni* strains tended to be significantly more likely to remain viable following cold exposure than poultry-derived strains (Chan et al., 2001). It was believed that cold tolerant strains have better survival ability in the environment, therefore, remaining viable after environmental exposure to cause human infections. The present proteomics analysis of two closely related strains compared the alterations of protein quantity during cold adaption to examine how a human infection affected cold adaption mechanism of this pathogen.

The viability assessment results showed *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 had similar survival curves at eight days of cold incubation (Figure 4.2), and the one-way ANOVA statistical test determined there were no statistically significant differences between the average death cell rates of the two strains. Comparative proteomics

analysis found similar of protein expression in the two strains during cold adaptation. To adapt to cold temperatures, both *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 increased a large number of proteins. *C. jejuni* SVS 5001 increased a total of 135 proteins' expression during six days of cold adaption. The number of increased proteins in cold-adapted *C. jejuni* SVS 5141 was 86. In comparison with the 19 upregulated proteins in six days of cold adapted *C. jejuni* NCTC 11168, the two strains were still in a state of vigorous increased protein expression after six days of cold exposure.

The up-regulated proteins in *C. jejuni* SVS 5141 appeared to be a subset of up-regulated proteins in *C. jejuni* SVS 5001. For example, 30 and 19 energy metabolism proteins increased expression in cold-adapted *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141, respectively; 18 were found to have increased expression in both strains. A similar situation was found in the genetic information processing proteins. Fifteen and eight genetic information processing proteins increased their expression in cold adapted *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141, respectively; seven were found to have increased expression in both strains. The similarity of up-regulation in both *C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 suggested that these two closely related *C. jejuni* strains employed similar cold adaption mechanisms.

The differences between the two strains' protein expression during cold adaptation were also quite obvious. To adapt to cold temperatures, the clinically-isolated strain, *C. jejuni* SVS 5001, increased more proteins' expression than its closely related water-originating strain did. This suggested that adaptation in the clinically-isolated, SVS 5001, was considerably more major after six days of cold exposure compared with the strain isolated from an already cool environment-water.

Protein expression was an energy cost process. To fulfil energy requirements for increasing 135 proteins' expression, *C. jejuni* SVS 5001 increased 30 energy metabolism proteins to enhance its energy production. Eighteen of the 30 upregulated energy metabolism proteins in the cold-adapted *C. jejuni* SVS 5001 were also found to have increased expression in *C. jejuni* SVS 5141. The other 12 proteins, which increased in the clinically-isolated strain only, were six TCA cycle proteins,

three electron transport proteins, three glycolysis proteins and one ATP-proton motive force protein. A total of ten proteins involved in TCA cycle increased in *C. jejuni* SVS 5001 to adapt to six days of 4oC cold storage. In *C. jejuni* SVS 5141, there were only four up-regulated proteins involved in the TCA cycle. *C. jejuni* SVS 5001 was the only strain with increased protein expression of oxidative defence proteins in this proteomic study. Compared with the water-isolated strain, the clinically-isolated *C. jejuni* SVS 5001 relied more on aerobic reparation to provide energy during cold adaptation.

This comparative study suggested that an infection did not significantly increase cold-tolerance of *C. jejuni*, but made this pathogen take a longer time to enter the stage of cold adaption; moreoever, an infection caused a huge proteomic alteration in *C. jejuni* and affected this pathogen's energy metabolism pathways and oxidative defence systems.

## **Chapter 7 Final Remarks**

## 7.1 General discussion

Despite being generally regarded as a fragile bacterium; *C. jejuni* has established itself as the world's leading cause of food-borne gastroenteritis. How this fragile microorganism survives outside of host and, subsequently, infects humans has attracted many researchers' attentions. There are many environmental stresses encountered by *C. jejuni* while it lives outside of host. To survive harsh conditions, this pathogen need to react simultaneously to a wide variety of stresses. Among them, the cold stress response of *C. jejuni* is the one of stress response systems worth further study. To better understand how this leading food-borne pathogen responds to cold will be useful for food industry in developing better intervention strategies to reducethe prevalence of *C. jejuni* in food and therefore improve food safety and protect public health.

Bacterial cold survival ability is known to be dependent upon bacterial cold stress response systems, which govern the expression of large numbers of genes and, consequently, maintain the stability of cellular equilibrium under cold conditions (Digel et al., 2008). Alteration of gene expression in a bacterium under cold stress is, therefore, a key to interpreting the cold stress response mechanisms employed by the bacterium. To decipher gene expression changes under cold stress, several strategies have been described, including comparative genomics, transcriptomics, 1DE MS, 2DE proteomics (On et al., 2006; Stintzi and Whitworth, 2003; Lazaro et al., 1999; Zhang et al., 2009).

Two approaches have been employed in this study, namely, 1DE and iTRAQ labelling gel-free proteomics. 1DE was used for roughly comparing the protein banding profiles of all samples and selecting meaningful samples for further iTRAQ labelling proteomic analysis. The iTRAQ proteomic analysis is a MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tags for relative and absolute quantification

(Wiese et al., 2007) and is presented here. *C. jejuni* protein extracts were labelled with isobaric taps, then identified and comparative quantified through liquid chromatography-MS and iTRAQ data analysis.

To my knowledge, this was the first description of iTRAQ labelling proteomics of C. jejuni, although many other 2DE proteomics of C. jejuni have been described (Kalmokoff et al., 2006; Zhang et al., 2009; Liu et al., 2012). The present iTRAQ labelling proteomics has identified 236 proteins from three C. jejuni strains. The genome of C. jejuni NCTC 11168 contains approximately 1699 predicted genes, which is predicted to encode 1654 proteins (Parkhill et al., 2000). In this study, only 236 proteins were identified and the coverage of the identification was 14.2%. A previous approach to obtain comprehensive proteomic profiles of C. jejuni NCTC 11168 through 2-DE/MS combined 2-DLC/MS/MS had identified 195 proteins and achieved 11.8% coverage for protein identification (Zhang el al., 2013). Other recent research used in-gel digestions combined with nanoflow LC-MS/MS and achieved a 86% coverage of identification (Liu et al., 2012). The method of protein sampling and the protein identification was not likely to cause such significant difference in the number of protein identification, as the three studies all used whole-cell lysates for protein preparation and LC-MS/MS for protein identifed. However, the numbers of LC-MS/MS replicated havea significant impact on the coverage of protein identification. Liu et al. (2012) detected 1428 C. jejuni proteins and achieved 86% coverage of identification through replicating the LC-MS/MS experiment 126 times. Moreover, the protein digestion method could have considerable impact on the coverage of protein identification. Liu et al. (2012) and this study both used wholecell protein extraction for protein digestion, and achieved a higher coverage in protein identification than Zhang et al. who excised the entire visualized spots on 2-DE gels for protein digestion.

Apart from protein identification and proteomic map construction for *C. jejuni*, the research performed during this project has analysed and compared the alteration of protein expression in three different *C. jejuni* strains under cold stress. The research revealed differences in the impact of cold shock and cold adaptation in *C. jejuni* 

protein expression, and the various mechanisms used by different *C. jejuni* strains to fulfil their energy demands to respond to cold stress. The study also found a human infection changed the cold stress response protein profile of *C. jejuni*. The most important findings from this project follow.

This study found that C. jejuni managed its protein expression in very different ways to respond to cold shock and cold adaptation. C. jejuni NCTC 11168 reprogrammed its protein biosynthesis dramatically to respond to cold shock. It significantly altered expression of 104 of 235 proteins identified to respond after six hours of cold shock. Twenty-eight ribosomal proteins, eight energy metabolism proteins, five chemotaxis proteins and five cell envelope proteins have been found increase their expression during cold shock. Meanwhile, four oxidative stress defence proteins were downregulated. Four genetic information processing proteins and three DNA biosynthesized proteins stopped their expression during cold shock. Compared with six hours of cold shock, six days of cold storage caused fewer changes in protein expression in C. jejuni NCTC 11168. Only 19 C. jejuni NCTC 11168 proteins were upregulated in response to six days of cold storage. This suggested C. jejuni NCTC 11168 dramatically altered its physiological characteristics in response to cold shock. While in the cold shock stage, it increased protein synthesis and energy metabolism, while slowing down its DNA synthesis. After the first few hours of cold shock, C. jejuni NCTC 11168 cells entered a cold adaptation period where its physiological characteristics may have changed back to normal, as its proteomic profile in cold adaptation period was similar to the proteomic profile of cells without cold exposure.

Through comparing protein expression alterations in *C. jejuni* SVS 5001 and NCTC 11168 during their cold shock period, this study found that the two strains have very different profiles for their cold-induced energy metabolism proteins. *C. jejuni* SVS 5001 increased both anaerobic and aerobic respiration pathway proteins in response to cold shock, while *C. jejuni* NCTC 11168 only increased expression of the proteins involved in anaerobic respiration. The two strains managed their protein expression in two different modes to fulfil energy requirements in cold shock conditions

suggesting that the mechanisms of energy metabolism employed by *C. jejuni* might contribute to the strain-specific differences in cold tolerance of this pathogen.

This study also found that both *C. jejuni* NCTC 11168 and *C. jejuni* SVS 5001 increased expression of large numbers of ribosomal proteins and cell envelope proteins in response to cold shock. Ribosomal proteins played critical roles in protein biosynthesis. A previous study also found that ribosomes were able to act as sensors of cold shock in *E. coli* (VanBogelen and Neidhardt, 1990). The cell envelope protein was important for cell wall and plasma membrane structural integrity. The increased ribosomal protein and cell envelope proteins in the two strains suggested *C. jejuni* might employ similar cold response mechanisms to regulate its ribosome and cell envelope proteins in response to cold shock.

*C. jejuni* SVS 5001 and *C. jejuni* SVS 5141 were isolated from the same waterborne outbreak. The difference between the two isolates was the former had infected humans; the later was a water-isolated environmental source. Through comparing their protein expression in the cold adaptation stage, our study found the clinical isolate altered its protein expression more substantially than the environmental source isolate. To adapt to cold temperatures, *C. jejuni* SVS 5001 increased a total of 135 proteins' expression. The number of increased proteins in cold adapted *C. jejuni* SVS 5141 was 86. The up-regulated proteins in *C. jejuni* SVS 5141 appeared to be a subset of the up-regulated proteins in *C. jejuni* SVS 5001. A previous study had suggested better survival ability resulted in higher chancea of infecting humans (On et al., 2006). Our study found infection caused huge protein expression changes in *C. jejuni* in response to cold stress, which affected this pathgen's energy metabolism and oxidative defences.

## 7.2 Conclusions

The present study was the first to describe the construction of a proteomic map for *C. jejuni* through iTRAQ labelling proteomics. The proteomic map constructed using iTRAQ labelling approach contained 236 proteins and achieves 14.2% of protein identification coverage. Apart from protein identification and proteomic map

construction for *C. jejuni*, the study focused on comparative analysis of protein expression alteration in three different *C. jejuni* strains under cold stress. The present comparative proteomics has led to a better understanding of ways in which *C. jejuni* response to cold shock and adapts to low temperatures. Through comparative analysis, the study found cold shock and cold adaptation in *C. jejuni* are two completely different stages from the angle of their proteomic profiles. Moreover, the study found different *C. jejuni* strains used similar mechanisms to regulate its ribosome and cell envelope in response cold stress, but they employed various mechanisms to fulfil their energy demands. This study also disclosed that a human infection can causehuge alteration in protein expression in *C. jejuni* under cold stress, and the proteomic alteration affected its energy metabolism and oxidative defences.

### 7.3 Future directions

The present comparative proteomic analysis has not only presented a comprehensive protein map for the three *C. jejuni* strains, but also revealed protein expression alterations affected by cold shock and cold adaptation. The work presented in this study could be continued in a number of ways.

An obvious way is continuing to study cold stress response mechanisms employed by all *C. jejuni* strains to cope with cold. For example, these three strains all increased their cell envelope proteins and ribosomal proteins in response to cold stress. The large numbers of ribosomal protein that increased in all strains in response to cold stress is worth a more in depth investigation. That such a large number of bacterial ribosomal proteins increased their expression in response to cold stress was, to my knowledge, the first time this has been described.

Another line of research could be to focus on the differences in the cold stress response mechanisms employed by different *C. jejuni* strains. The present study found *C. jejuni* SVS 5001 activated both anaerobic and aerobic respiration pathways to fulfil its increasing energy demands in response cold shock, while *C. jejuni* NCTC 11168 only increased expression of the proteins that were involved in anaerobic

respiration when it encountered cold shock. The differences inenergy metabolism in the two strains under cold shock is worth to study further, as it may be the key to interpreting why cold tolerance in *C. jejuni* is strain-dependent.

This study indicated that passage through humans from a cooler environmental origin caused proteomic alteration in cold shock and cold adapted *C. jejuni* cells. To confirm the relationship between human infections, the cold survival ability of *C. jejuni*, and re-adaptation to other environments, more isolates are need for comparative study, to determine if the pathways involved are the same or different. The other findings suggest differing protein responses; yet the diversity of such reponses is as yet undetermined.

There is a long way to go towards fully interpreting the cold stress response of *C. jejuni*. The iTRAQ labelling proteomics is one tool that may lead to new insights into this complex stress response.

## References

Abu-Halaweh M, Bates J and Patel BK.(2005). Rapid detection and differentiation of pathogenic *Campylobacter jejuni* and *Campylobacter coli* by real-time PCR. *Res Microbiol*, 156: 107–114.

Adam M, Contzen M, Horlacher S and Rau J. (2006). Prevalence of *Campylobacter spp*. in poultry meat and raw milk using PCR, conventional cultural methods and Fourier transform infrared spectroscopy. *Berl Munch Tierarztl Wochenschr*, 119: 209–215.

Alary M and Nadeau D. (1990). An outbreak of *Campylobacter* enteritis associated with a community water supply. *Can J Public Health*. 81: 268-271.

Allos BM. (2001). *Campylobacter jejuni* infections: update on emerging issues and trends. *Clinl Infect Dis*, 32(8): 1201-1206.

Alter T, Gürtler M, Gaull F, Johne A and Fehlhaber K. (2004). Comparative analysis of the prevalence of *Campylobacter spp*. in retail turkey and chicken meat. *Arch Lebensmittelhyg*, 55: 60–63.

Altekruse SF, Stern NJ, Fields PI and Swerdlow DL. (1999). *Campylobacter jejuni*—an emerging foodborne pathogen. *Emerg Infect Dis*, 5(1): 28-35.

Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ and Dunman PM. (2006). Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. *J Bacteriol*, 188:6739–6756.

Armengaud J. (2013). Microbiology and proteomics, getting the best of both worlds. *Environ Microbiol*, 15(1): 12-23.

Baker M, Sneyd E and Wilson N. (2006a). Is the major increase in notified campylobacteriosis in New Zealand real? *Epidemiol Infect*, 6:1-8.

Baker M, Wilson N, Ikram R, Chambers S, Shoemack P and Cook G. (2006b). Regulation of chicken contamination urgently needed to control New Zealand's serious campylobacteriosis epidemic. *N Z Med J*, 119(1243): U2264.

Barer MR and Harwood CR. (1999). Bacterial viability and culturability. *Adv Microb Physiol*, 41: 93-137.

Bashor MP, Curtis PA, Keener KM, Sheldon BW, Kathariou S and Osborne JA. (2004). Effects of carcass washers on *Campylobacter* contamination in large broiler processing plants. *Poult Sci*, 83: 1232-1239.

Bièche C, de Lamballerie M, Chevret D, Federighi M and Tresse O. (2012). Dynamic proteome changes in *Campylobacter jejuni* 81–176 after high pressure shock and subsequent recovery. *J Proteomics*, 75: 1144–1156.

Blaser M. (1997). Epidemiologic and clinical features of *Campylobacterjejuni* infections. *J Infect Dis*, 176 Suppl(2):5103–5105.

Blaser MJ and Engberg J. (2008). Clinical aspects of *Campylobacter jejuni* and *Campylobacter coli* infection, p. 99-121. In Nachamkin I, Szymanski CM, and Blaser MJ (ed.), Campylobacter, 3rd ed. American Society for Microbiology, Washington, DC.

Bohaychuk VM, Gensler GE, King RK, Manninen KI, Sorensen O, Wu JT, Stiles ME and McMullen LM. (2006). Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada. *J Food Prot*, 69:2176–2182.

Bolton FJ, Hinchliffe PM, Coates D and Robertson L. (1982). A most probable number method for estimating small numbers of *Campylobacters* in water. *J Hyg*, 89(2): 185-190.

Bolton FJ and Coates D. (1983). A study of the oxygen and carbon dioxide requirements of thermophilic *campylobacter*. *J Clin Pathol*, 36: 829-834.

Bolton FJ, Sails AD, Fox AJ, Wareing DR and Greenway DL. (2002). Detection of *Campylobacter jejuni* and *Campylobacter coli* in foods by enrichment culture and polymerase chain reaction enzyme-linked immunosorbent assay. *J Food Prot*, 65: 760–767.

KokotovicB and On SLW.(1999). High-resolution genomic fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* by analysis of amplified fragment length polymorphisms. *FEMS Microbiol Lett*, 173: 77-84.

Brás AM, Chatterjee S, Wren BW, Newell DG, Ketley JM. (1999). A novel *Campylobacter jejuni* two-component regulatory system important for temperature-dependent growth and colonization. *J Bacteriol*, 181: 3298–3302.

Burg D, Ng C, Ting L and Cavicchioli R. (2011). Proteomics of extremophiles. *Environ Microbiol*, 13: 1934-1955.

Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW and Leach SA. (1998). Extended survival and persistence of *Campylobacter spp*. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. *ApplEnviron Microbiol*, 64:733–741.

Butzler JP. (2004). *Campylobacter*, from obscurity to celebrity. *Clin Microbiol Infect*, 10: 868-876.

Butzler JP and Oosterom J. (1991). Campylobacter: pathogenicity and significance in foods. *Int J Food Microbiol*, 12: 1–8.

Butzler JP, Dekeyser P, Detrain M and Dehaen F. (1973). Related Vibrio in Stools. *J Pediatr*, 82: 493-495.

Calder L, Manning K and Nicol C. (1998). Case-control study of Campylobacteriosis epidemic in Auckland. *Auckland: Auckland Healthcare*, 1998.

Cardinale E, Perrier-Gros-Claude JD, Tall F, Cissé M, Guèye EF and Salvat G. (2003). Prevalence of *Salmonella* and *Campylobacter* in retail chicken carcasses in Senegal. *Rev Elev Med Vet Pays Trop*, 56: 13–16.

Carpousis AJ. (2007). The RNA degradosome of *Escherichia coli*: an mRNA-degrading machine assembled on RNase E. *Annu Rev Microbiol*, 61: 71–87.

Carter PE, McTavish SM, Brooks HJ, Camphell D, Collins-Emerson JM, Midwinter AC and French NP. (2009). Novel clonal complexes with an unknown animal reservoir dominate *Campylobacter jejuni* isolates from river water in New Zealand. *Appl Environ Microbiol*, 75(19): 6038-6046.

Cason J and Berrang ME. (2002). Variation in numbers of bacteria on paired chicken carcass halves. *Poutl Sci*, 81: 126-133.

CDC (Centers for Disease Control and Prevention). (2000). Preliminary FoodNet data on the incidence of foodborne illness-selected sites, United States, 1999. MMWR Morb Mortal Wkly Rep, 49(10):201-205.

CDC (Centers for Disease Control and Prevention). (2010, Dec 16).List of *Campylobacter* species and subspecies. Retrieved September 20, 2014, from <a href="http://phinvads.cdc.gov/vads/ViewValueSet.action?id=A1F86821-0409-E011-87A0-00188B39829B">http://phinvads.cdc.gov/vads/ViewValueSet.action?id=A1F86821-0409-E011-87A0-00188B39829B</a>

CDC (Centers for Disease Control and Prevention). (2012). Trends in foodborne illness in the United States, 2012. Retrieved from http://www.cdc.gov/features/dsfoodnet2012/

Chan KF, Tran HL, Kanenaka RY and Kathariou S. (2001). Survival of clinical and poultry-derived strains of *Campylobacter jejuni* at a low temperature (4°C). *Appl Environ Microbiol*, 67: 4186-4191.

Clark CG, Price L, Ahmed R, Woodward DL, Melito PL, Rodgers FG, Jamieson F and Ciebin B. (2003). Characterization of waterborne outbreak-associated with *Campylobacter jejuni*, Walkerton, Ontario. *Emerg Infect Dis*, 9: 1232-1241.

Cloak OM, Duffy G, Sheridan JJ, Blair IS and McDowell DA. (2001). A survey on the incidence of *Campylobacter spp*. and the development of a surface adhesion polymerase chain reaction (SA-PCR) assay for the detection of *Campylobacter jejuni* in retail meat products. *Food Microbiol*, 18:287–298.

Colwell RR and Huq H. (1994). Vibrios in the environment: viable but nonculturable Vibrio cholera, p. 117-133. In Kaye M, Blake PA and Olsvik O(ed), Vibrio cholerae and Cholera: Molecular Global Perspectives, 1st ed. American Society for Microbiology, Washington, DC.

Corry JEL and Atabay HI. (2001). Poultry as a source of *Campylobacter* and related organisms. *J Appl Microbiol*, 90: 96S–114S.

Cui S, Ge B, Zheng J and Meng J. (2005). Prevalence and antimicrobial resistance of *Campylobacter* spp. and *Salmonella* serovars in organic chickens from Maryland retail stores. *Appl Environ Microbiol*, 71: 4108–4111.

de Groot A, Dulermo R, Ortel P, Blanchard L, Guerin P, Fernandez B, Vacherie B, Dossat C, Jolivet E, Siguier P, Chandler M, Barakat M, Dedieu A, Barbe V, Heulin T, Sommer S, Achouak W and Armengaud J. (2009). Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. *PLoS Genet*, 5(3): e1000434.

Debruyne L, Gevers D and Vandamme P. (2008). Taxonomy of the Family Campylobacteraceae, p. 3-25. In Nachamkin I, Szymanski CM, and Blaser MJ (ed.), *Campylobacter*, 3rd ed. American Society for Microbiology, Washington, DC.

Dedieu L, Pagès JM, Bolla JM. (2002). Environmental regulation of *Campylobacter jejuni* major outer membrane protein porin expression in *Escherichia coli* monitored by using green fluorescent protein. *Appl Environ Microbiol*, 68(9):4209–4215.

Dedieu L, Pagès JM, Bolla JM. (2008). The omp50 gene is transcriptionally controlled by a temperature-dependent mechanism conserved among thermophilic *Campylobacter* species. *Res Microbiol*, 159(4):270–278.

Denton KJ and Clarke T. (1992). Role of *Campylobacter jejuni* as a placental pathogen. *J Clin Pathol*, 45: 171-172.

Devane ML, Nicol C, Ball A, Klena JD, Scholes P, Hudson JA, Baker MG, Gilpin BJ, Garrett N and Savill MG. (2005). The occurrence of *Campylobacter* subtypes in environmental reservoirs and potential transmission routes. *J Appl Microbiol*, 98: 980-990.

Dickins MA, Franklin S, Stefanova R, Schutze GE, Eisenach KD, Wesley I and Cave MD. (2002). Diversity of *Campylobacter* isolates from retail poultry carcasses and from humans as demonstrated by pulsed-field gel electrophoresis. *J Food Prot*, 65: 957–962.

Digel I, Kayser P and Artmann GM. (2008). Molecular processes in biological thermosensation. *J Biophysics*, 2008: ID 602870. Retrieved from <a href="http://dx.doi.org/10.1155/2008/602870">http://dx.doi.org/10.1155/2008/602870</a>

Dingle KE, Colles FM, Wareing D, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems R, Urwin R and Maiden M. (2001). Multilocus sequence typing system for *Campylobacter jejuni*. *J Clin Microbiol*, 39: 14-23.

Dufourc EJ, Smith ICP and Jarrell HC. (1984). Role of cyclopropanemoieties in the lipid properties of biological membranes: a deuterium NMR structural and dynamical approach. *Biochem*, 23:2300–2309.

Eberhart-Phillips J, Walker N, Garrett N, Bell D, Sinclair D, Rainger W and Bates M. (1997). Campylobacteriosis in New Zealand: results of a case-control study. *J Epidemiol Community Health*, 51: 686–691.

EFSA and ECDC. (2013). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2011. *EFSA Journal*, 11(4): 3129.

EFSA BIOHAZ Panel. (2011). Scientific opinion on *Campylobacter* in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. *EFSA Journal*, 9(4): 2105.

Engberg J, Gerner-Smidt P, Scheutz F, Nielsen EM, OnWSL and Mølbak K. (1998). Waterborne *Campylobacter jejuni* infection in a Danish town-a 6-week continuous source outbreak. *Clin Microbiol Infect*, 4: 648–656.

ESR New Zealand. (2012). Annual report foodborne disease in new Zealand 2011. Retrieved from http://foodsafety.govt.nz/elibrary/industry/foodborne-disease-nz-doc.pdf

Eyles RF, Brooks HJ, Townsend CR, Burtenshaw GA, Heng NC, Jack RW, and Weinstein P. (2006). Comparison of *Campylobacter jejuni* PFGE and Penner subtypes in human infections and in water samples from the Taieri River catchment of New Zealand. *J Appl Microbiol*, 101:18–25.

Fernandez H, Vera F, Villanueva MP and García A. (2008). Occurrence of *Campylobacter* species in healthy well-nourished and malnourished children. *Brazilian J Microbiol*, 39: 1–3.

Fitch BR, Sachen KL, Wilder SR, Burg MA, Lacher DW, Khalife WT, Whittam TS and Young VB. (2005). Genetic diversity of Campylobacter sp. isolates from retail chicken products and humans with gastroenteritis in Central Michigan. *J Clin Microbiol*, 43: 4221–4224.

Fitzgerald C, Whichard J and Nachamkin I. (2008). Diagnosis and antimicrobial susceptibility of *Campylobacter* species, p. 227-244. In Nachamkin I, Szymanski CM, and Blaser MJ (ed.), *Campylobacter*, 3rd ed. American Society for Microbiology, Washington, DC.

Food Standards Agency. (2010). UK research and innovation strategy for *Campylobacter*- in the food chain. Retrieved from

 $\underline{http://www.food.gov.uk/sites/default/files/multimedia/pdfs/campylobacterstrategy.pdf}$ 

French N. (2008). Human campylobacteriosis in the Manawatu. No. FDI/236/2005. Wellington: New Zealand Food Safety Authority (NZFSA).

Friedman CR. (2000). Epidemiology of *Campylobacter jejuni* infections in the United States and other industrialised nations, p. 121-138. In Nachamkin I (ed.), *Campylobacter*, 2nd ed. American Society for Microbiology, Washington, DC.

Frost JA, Kramer JM and Gillanders SA. (1999). Phage typing of *Campylobacter jejuni* and *Campylobacter coli* and its use as an adjunct to serotyping. *Epidemiol Infect*, 123:47–55.

Gadiel D. (2010). The economic cost of foodborne disease in New Zealand. Applied Economics Pty Ltd; Retrieved from <a href="http://www.foodsafety.govt.nz/elibrary/industry/economic-cost-foodborne-disease/foodborne-disease.pdf">http://www.foodsafety.govt.nz/elibrary/industry/economic-cost-foodborne-disease/foodborne-disease.pdf</a>

Gao H, Yang ZK, Wu L, Thompson DK and Zhou J. (2006). Transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and Mutational analysis of classical cold shock proteins. *J Bacteriol*, 188(12): 4560-4569.

Garrity GM, Bell JA and Lilburn T. (2005). Order I. Campylobacterales ord. nov. In Garrity GM (Ed.), Bergey's Manual of Systematic Bacteriology: Volume Two: the Proteobacteria. 2ed. New York: Springer.

Garosi P, Pearson BM, Hughes R., Jorgensen F, Humphrey T and Wells J. (2003). Role of a two-component signal transduction system in oxidative stress resistance in *Campylobacter jejuni.Int J Med Microbiol*, 293: 78-78.

Ge Z, Schauer DB and Fox JG. (2008). In vivo virulence properties of bacterial cytolethal-distending toxin. *Cell Microbiol*, 10(8): 1599-1607.

Ghafir Y, China B, Dierick K, De Zutter L and Daube G. (2007). A seven-year survey of *Campylobacter* contamination in meat at different production stages in Belgium. *Int J Food Microbiol*, 116: 111–120.

Goldstein J, Pollitt NS and Inouye M. (1990). Major cold shock protein of *Escherichia coli*. *Proc Natl Acad Sci USA*, 87: 283-287.

Graumann PL and Marahiel MA. (1998). A superfamily of proteins that contain the cold-shock domain. *Trends Biochem Sci*, 23: 286-290.

Graumann P, Schröder K, Schmid R and Marahiel MA. (1996). Cold shock stress-induced proteins in Bacillus subtilis. *J Bacteriol*, 178: 4611–4619.

Graves PR and Haystead TAJ. (2002). Molecular Biologist's guide to proteomics. Microbiol. *Mol Biol Rev*, 66: 39-63.

Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croyatto A and Raoult D. (2009). High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. *PLoS ONE*, 4: e8423.

Guerry P. (2007). *Campylobacter* flagella: not just for motility. *Trends Microbiol*, 15:456–461.

Häddad N, Burns CM, Bolla JM, Prévost H, Fédérighi M, Drider D and Cappelier JM. (2009). Long-term survival of *Campylobacter jejuni* at low temperatures is dependent on polynucleotide phosphorylase activity. *Appl Environ Microbiol*, 75: 7310–7318.

Han K, Jang SS, Choo E, Heu S and Ryu S. (2007). Prevalence, genetic diversity, and antibiotic resistance patterns of *Campylobacter jejuni* from retail raw chickens in Korea. *Int J Food Microbiol*, 114: 50–59.

Hanninen ML, Haajanen H, Pummi T, Wermundsen K, Katila ML, Sarkkinen H, Miettinen I and Rautelin H. (2003). Detection and typing of *Campylobacter jejuni* and *Campylobacter* 

coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl Environ Microbiol, 69: 1391-1396.

Hazeleger WC, Janse JD, Koenraad PMFJ, Beumer RR, Rombouts FM and Abee T. (1995). Temperaturedependent membrane fatty acid and cell physiology changes in coccoid forms of *Campylobacter jejuni*. *Appl Environ Microbiol*, 61: 2713–2719.

Hazeleger WC, Wouters JA, Rombouts FM and Abee T. (1998). Physiological activity of *C. jejuni* far below the minimal growth temperature. *Appl Environ Microbiol*, 64: 3917-3922.

He QY and Chiu JF. (2003). Proteomics in biomarker discovery and drug development. *J Cell Biochem*, 89: 868-886.

Healing TD, Greenwood MH and Pearson AD. (1992). *Campylobacter* and enteritis. *Rev Med Microbiol*, 3: 159-167.

Hong J, Kim JM, Jung WK, Kim SH, Bae W, Koo HC, Gil J, Kim M, Ser J and Park YH.(2007). Prevalence and antibiotic resistance of *Campylobacter* spp. isolated from chicken meat, pork, and beef in Korea, from 2001 to 2006. *J Food Prot*, 70: 860–866.

Hudson J, Nicol C, Wright J, Whyte R and Hasell SK. (1999). Seasonal variation of *Campylobacter* types from human cases, veterinary cases, raw chicken, milk and water. *J Appl Microbiol*, 87: 115–124.

Hughes R, Hallett K, Cogan T, Enser M and Humphrey T. (2009). The response of *Campylobacter jejuni* to low temperature differs from that of *Escherichia coli. Appl Environ Microbiol*, 75(19): 6292-6298.

Hutchinson DN, Bolton FJ, Hinchliffe PM, Dawkins HC, Horsley SD, Jessop EG, Robertshaw PA and Counter DE. (1985). Evidence of udder excretion of *Campylobacter jejuni* as the cause of milk-borne *campylobacter* outbreak. *J Hyg (Lond)*, 94: 205-215.

Hwang MN and Ederer GM. (1975). Rapid hippurate hydrolysis method for presumptive identification of group B *Streptococci. J Clin Microbiol*, 1: 114-115.

Ikram R, Chambers S and Mitchell P. (1992). A case control study to determine risk factors for campylobacter infection in Christchurch in the summer. *N Z Med J*, 107: 430–432.

Invitrogen Life Technologies. (2010). NuPAGE technical guide. Retrieved from <a href="http://tools.invitrogen.com/content/sfs/manuals/nupage\_tech\_man.pdf">http://tools.invitrogen.com/content/sfs/manuals/nupage\_tech\_man.pdf</a>

Issaq HJ, Conrads TP, Janini GM and Veenstra TD. (2002). Methods for fractionation, separation and profiling of proteins and peptides. *Electrophoresis*, 23: 3048-3061.

Jacobs BC, Belkum AV and Endtz HP. (2008). Guillain-Barre' syndrome and *Campylobacter* infection, p. 245–261. In Nachamkin I, Szymanski CM, and Blaser MJ (ed.), *Campylobacter*, 3rd ed. American Society for Microbiology, Washington, DC.

Jacobs-Reitsma WF. (2000). *Campylobacter* in the food supply, p. 467-481. In Nachamkin I and Blaser MJ (ed), *Campylobacter*, 2nd ed. American Society for Microbiology, Washington, DC.

Jones DM, Sutcliffe EM and Curry A. (1991). Recovery of viable but nonculturable *Campylobacter jejuni*. *J Gen Microbiol*, 137: 2477–2482.

Jones K. (2001). *Campylobacters* in water, sewage and the environment. *J Appl Microbiol*, 90:68S–79S.

Jones PG, Cashel M, Glaser G and Neidhardt FC. (1992). Function of a relaxed-like state following temperature downshifts in *Escherichia coli*. *J Bacteriol*, 174:3903–3914.

Jones PG, VanBogelen RA and Neidhardt FC. (1987). Induction of proteins in response to low temperature in *Escherichia coli*. *J Bacteriol*, 169: 2092-2095.

Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J and Szymanski CM. (2006). Proteomic analysis of *Campylobacter jejuni* 11168 biofilms reveals a role for the motility complex in biofilm formation. *J Bacteriol*, 188(12): 4312-4320.

Kell DBA, Kaprelyants S, Weichart DH, Harwood CR and Barer MR. (1998). Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. *A Van Leeuw J Microb*, 73: 169-187.

Kist M. (1986). Who discovered *Campylobacter jejuni/coli*? A review of hitherto disregarded literature. *Zentralbl Bakteriol Mikrobiol Hyg A*, 261:177-186.

Klena J. (2001). A survey of phenotypic and genetic methods used to identify and differentiate thermotolerant *Campylobacter* spp. strains. A report to the Ministry of Health Wellington: Ministry of Health. Available from: <a href="http://www.moh.govt.nz">http://www.moh.govt.nz</a>

Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA. (1985). A point-source outbreak of campylobacteriosis associated with consumption of raw milk. *J Infect Dis*, 152(3): 592-596.

Kullmann Y and Häger O. (2002). Untersuchungenzum Nachweis von *Campylobacter jejuni* und *Campylobacter coli* in Lebensmitteln. *Arch Lebensmittelhyg*, 53: 76–78.

Kwan PS, Birtles A, Bolton FJ, French NP, Robinson SE, Newbold LS, Upton M and Fox AJ. (2008). Longitudinal study of the molecular epidemiology of *C. jejuni* in cattle on dairy farms. *Appl Environ Microbiol*, 74: 3626-3633.

Lara-Tejero M and Galán JE. (2001). CdtA, CdtB and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. *Infect Immun*, 69:4358–4365.

Lázaro B, Cárcamo J, Audicana A, Perales I and Fernandez-Astorga A. (1999). Viability and DNA maintenance in nonculturable spiral *C. jejuni* cells after long-term exposure to low temperatures. *Appl Environ Microbiol*, 65: 4677-4681.

Lee M and Newell DG. (2006). *Campylobacter* in poultry: filling an ecological niche. *Avian Disease*, 50: 1-9.

Levin RE. (2007). *Campylobacter jejuni*: a review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. *Food Biotechnol*, 21(3-4): 271-347.

Liu X, Gao B, Novik V and Galán JE. (2012). Quantitative proteomics of intracellular *Campylobacter jejuni* reveals metabolic reprogramming. *PLoS Pathog*, 8(3): e1002562. doi:10.1371/journal.ppat.1002562

Luechtefeld NW, Reller LB, Blaser MJ and Wang WL. (1982). Comparison of atmospheres of incubation for primary isolation of *Campylobacterfetus* subsp. *jejuni* from animal specimens: 5% oxygen versus candle jar. *J Clin Microbiol*, 15: 53-57.

Mateo E, Cárcamo J, Urquijo M, Perales I and Fernández-Astorga A. (2005). Evaluation of a PCR assay for the detection and identification of *Campylobacter jejuni* and *Campylobacter coli* in retail poultry products. *Res Microbiol*, 156: 568–574.

Medema GJ, Schets FM, van de Giessen AW and Havelaar AH. (1992). Lack of colonisation of 1 day old chicks by viable non-culturable *Campylobacter jejuni*. *J Appl Bacteriol*, 72: 512–516.

Meeyam T, Padungtod P and Kaneene JB. (2004). Molecular characterization of *Campylobacter* isolated from chickens and humans in northern Thailand. *Southeast Asian J Trop Med Public Health*, 35: 670–675.

Miles AA and Misra SS. (1938). The estimation of bactericidal power of the blood. *J Hyg (Lond)*, 38:732-749.

Mitton B and Kranias EG. (2003). Proteomics: Its potential in the post-genome era. *Hellenic J Cardiol*, 44: 301-307.

Moen B, Oust A, Langsrud O, Dorrell N, Marsden GL, Hinds J, Kohler A, Wren BW and Rudi K. (2005). Explorative multi factor approach for investigating global survival mechanisms of *Campylobacter jejuni* under environmental conditions. *Appl Environ Microbiol*, 71: 2086–2094.

Mohan V. (2011). Molecular epidemiology of campylobacteriosis and evolution of *Campylobacter jejuni* ST-474 in New Zealand. (Doctoral dissertation). Retrieved from <a href="http://mro.massey.ac.nz/handle/10179/3253">http://mro.massey.ac.nz/handle/10179/3253</a>

Müllner P, Collins-Emerson JM, Midwinter AC, Carter P, Spencer SE, Logt P, Hathaway S and French NP. (2010). Molecular epidemiology of *Campylobacter jejuni* in a geographically isolated country with a uniquely structured poultry industry. *Appl Environ Microbiol*, 76: 2145–2154.

Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter AC, Collins-Emerson JM, Carter P, Hathaway S and French NP. (2009). Assigning the source of human

campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. *Infect Genet Evol*, 9(6):1311-1319.

Murphy C, Carroll C and Jordan KN. (2006). Environmental survival mechanisms of the foodborne pathogen *Campylobacter jejuni*. *J Appl Microbiol*, 100: 623-632.

Nachamkin I. (2002). Chronic effects of Campylobacter infection. Microbes. *Infect*, 4: 399-403.

Nadeau E, Messier S and Quessy S. (2002). Prevalence and comparison of genetic profiles of Campylobacter strains isolated from poultry and sporadic cases of campylobacteriosis in humans. *J Food Prot*, 65: 73–78.

Nara T, I Kawagishi, S Nishiyama, M Homma and Y Imae. (1996). Modulation of the thermosensing profile of the *Escherichia coli* aspartate receptor Tar by covalent modification of the methyl-accepting site. *J Biol Chem*, 271:17932–17936.

Newell DG. (2002). The ecology of *Campylobacter jejuni* in avian and human hosts and in the environment. *Int J Infect Dis*, 6 Suppl 3: S16-S21.

Oberhelman RA and Taylor DN. (2000). *Campylobacter* infections in developing countries, p. 139-153. In Nachamkin I and Blaser MJ (ed), *Campylobacter*, 2nd ed. American Society for Microbiology, Washington, DC.

Obiri-Danso K and K Jones. (1999). Distribution and seasonality of microbial indicators and thermophilic campylobacters in two freshwater bathing sites on the River Lune in northwest England. *J Appl Microbiol*, 87:822–832.

Oliver JD. (1993). Formation of viable but non culturable cells, p. 239-272. In Kjelleberg S (ed) *Starvation in Bacteria*. New York: Plenum Press.

On SLW. (2001). Taxonomy of *Campylobacter, Arcobacter, Helicobacter* and related bacteria: current status, future prospects and immediate concerns. *J Appl Microbiol*, 90: 1S–15S.

On SLW and Harrington C. (2000). Identification of taxonomic and epidemiological relationships among *Campylobacter* species by numerical analysis of AFLP profiles. *FEMS Microbiol Lett*, 193: 161-169.

On SLW, Dorrell N, Petersen L, Bang DD, Morris S, Forsythe SJ and Wren BW. (2006). Numerical analysis of DNA microarray data of *Campylobacter jejuni* strains correlated with survival, cytolethal distending toxin and haemolysin analyses. *Int J Med Microbiol*, 296(6):353–363.

Oyarzabal OA, Backert S, Nagaraj M, Miller RS, Hussain SK and Oyarzabal EA. (2007). Efficacy of supplemented buffered peptone water for the isolation of *Campylobacter jejuni* and *C. coli*from broiler retail products. *J Microbiol Methods*, 69: 129–136.

Padungton P and Kaneene JB. (2003). *Campylobacter* spp in human, chickens, pigs and their antimicrobial resistance. *J Vet Med Sci*, 65: 161-170.

Padungtod P and Kaneene JB. (2005). *Campylobacter* in food animals and humans in northern Thailand. *J Food Prot*, 68: 2519–2526.

Palmer SR, Gully PR, White JM, Pearson AD, Suckling WG, Jones DW, Rawes JCL and Penner JL. (1983). Water-borne outbreak of Campylobacter gastroenteritis. *Lancet*, 321: 287–290.

Parisi A, Lanzilotta SG, Addante N, Normanno G, Modugno GD, Dambrosio A and Montagna CO. (2007). Prevalence, molecular characterization and antimicrobial resistance of thermophilic *Campylobacter* isolates from cattle, hens, broilers and broiler meat in southeastern Italy. *Vet Res Commun*, 31: 113–123.

Park SF. (2002). The physiology of *Campylobacter* species and its relevance to their role as foodborne pathogens. *Int J Food Microbiol*, 74: 177–188.

Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM and Feltwell T. (2000). The genome sequence of the food-borne pathogen *Campylobacter jejuni* reveals hypervariable sequences. *Nature*, 403: 665–668.

Pearson AD, Greenwood M, Healing TD, Rollins DM, Shahamat M, Donaldson J and Colwell RR. (1993). Colonisation of broiler chickens by waterborne *Campylobacter jejuni.Appl Environ Microbiol*, 59: 987–996.

Prescott JF and Munroe DL. (1982). *Campylobacter jejuni* enteritis in man and domestic animals. *J Am Vet Med Assoc*, 181:1524-1530.

Qoronfleh MW, Debouck C and Keller J. (1992). Identification and characterization of novel low-temperature-inducible promoters of *Escherichia coli*. *J Bacteriol*, 174: 7902-7909.

Ramagli LS. (1999). Quantifying protein in 2-D PAGE solubilisation buffers. *Methods Mol Biol*, 112: 99-103.

Regonesi ME, Briani F, Ghetta A, Zangrossi S, Ghisotti D, Tortora P and Deho G. (2004). A mutation in polynucleotide phosphorylase from *Escherichia coli* impairing RNA binding and degradosome stability. *Nucleic Acids Res*, 32:1006–1017.

Richardson G, Thomas DR, Smith RM, Nehaul L, Ribeiro CD, Brown AG and Salmon RL. (2007). A community outbreak of *Campylobacter jejuni* infection from a chlorinated public water supply. *Epidemiol Infect*, 135: 1151-1158.

Rollins DM and Colwell RR. (1986). Viable but nonculturable stage of *Campylobacter jejuni* and its role in survival in the natural aquatic environment. *Appl Environ Microbiol*, 52: 531–538.

Rossi M, Debruyne L, Zanoni RG, Manfreda G, Revez J and Vandamme P. (2009). *Campylobacter avium* sp. nov., a hippuratepositive species isolated from poultry. *Int J Syst Evol Microbiol*, 59: 2364–2369.

Saha SK, Saha S and Sanyal SC. (1991). Recovery of injured *Campylobacter jejuni* cells after animal passage. *Appl Environ Microbiol*, 57: 3388–3389.

Savill MG, Hudson JA, Ball A, Klena JD, Scholes P, Whyte RJ, McCormick RE and Jankovic D. (2001). Enumeration of *Campylobacter* in New Zealand recreational and drinking waters. *J Appl Microbiol*, 91: 38-46.

Scallan E, Hoekstra R, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL and Griffin PM. (2011). Fooborne illness acquired in the United States- Major pathogens. *Emerg Infect Dis*, 17:7-15.

Seal BS, Hiett KL, Kuntz RL, Woolsey R, Schegg KM, Ard M and Stintzi A. (2007). Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of *Campylobacter jejuni*. *J Proteome Res*, 6: 4582–4591.

Sears A, Baker M, Wilson N, Marshall J, Mullner P, Campbell D, Lake R and French N. (2011). Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. *Emerg Infect Dis*, 17(6): 1007-1015.

Sebald ER and Veron M. (1963). Base DNA content and classification of vibrios (In French; Teneur en bases da IADN et classification des Vibrions). *Annales de L'institut Pasteur* (*Paris*), 105: 897-910.

Sheppard SK, Dallas JF, Strachan NJ, MacRae M, McCarthy ND, Wilson DJ, Gormley FJ, Falush D, Ogden ID, Maiden MC and Forbes KJ. (2009). *Campylobacter* genotyping to determine the source of human infection. *Clin Infect Dis*, 48: 1072–1078.

Siemer BL, Harrington CS, Nielsen EM, Borck B, Nielsen NL, Engberg J and On SLW. (2004). Genetic relatedness among *Campylobacter jejuni*erotyped isolates of diverse origin as determined by numerical analysis of amplified fragment length polymorphism (AFLP) profiles. *J Appl Microbiol*, 96: 795-802.

Silva J, Leite D, Fernandes M, Mena C, Gibbs PA and Teixeira P. (2011). *Campylobacter spp.* as a food borne pathogen: a review. *FMICB*, 2: 200 doi: 10.3389/fmicb.2011.00200

Simmons G, Callaghan M, Wilson M and Nicol C. (2002). An investigation into a mid-winter increase in *Campylobacter* infection Auckland. *Auckland: Public Health* 

Sinensky M. (1974). Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in *Escherichia coli*. *Proc Natl Acad Sci USA*, 71:522–525.

Skirrow MB. (1977). Campylobacter enteritis: a "new" disease. The BMJ, 2: 9-11.

Skirrow MB. (1994). Diseases due to *Campylobacter*, *Helicobacter* and related bacteria. *J Comp Pathol*, 111: 113-149.

Skirrow MB and Blaser MJ. (2000). Clinical aspects of *Campylobacter* infection, p. 69-88.In Nachamkin I and Blaser MJ (ed), *Campylobacter*, 2nd ed. American Society for Microbiology, Washington, DC.

Sopwith W, Birtles A, Matthews M, Fox A, Gee S, Painter M, Regan M, Syed Q, and Bolton E. (2008). Identification of potential environmentally adapted *Campylobacter jejuni* strains, United Kingdom. *Emerg Infect Dis*, 14:1769–1773.

Stintzi A and Whitworth L. (2003). Investigation of the *Campylobacter jejuni* cold-shock response by global transcript profiling. *Genome Lett*, 2: 18–27.

Stock JB, Ninfa AJ and Stock AM. (1989). Protein phosphorylation and regulation of adaptive responses in bacteria. *Microbiol Rev*, 53(4): 450–490.

StoughtonRB and Friend SH. (2005). How molecular profiling could revolutionize drug discovery. *Nat Rev Drug Discov*, 4: 345–350.

Suzuki H and Yamamoto S. *Campylobacter* contamination in retail poultry meats and byproducts in Japan: A literature survey. *Food Control* (in press, 2008).

Suzuki H and Yamamoto S. *Campylobacter* contamination in retail poultry meats and byproducts in the world: A literature survey. (2009). *J Vet Med Sci*, 71(3): 255-261.

Tauxe R, Kruse H, Hedberg C, Potter M, Madden J and Wachsmuth K. (1997). Microbial hazards and emerging issues associated with produce: a preliminary report to the National Advisory Committee on Microbiologic Criteria for Foods. *J Food Prot*, 60: 1400–1408.

Terzieva SI and McFeters GA. (1991). Survival and injury of *Escherichia coli*, *Campylobacter jejuni*, and *Yersiniaenterocolitica* in stream water. *Can J Microbiol*, 37:785–790.

Thieringer HA, Jones PG and Inouye M. (1998). Cold shock and adaptation. *BioEssays*, 20: 49–57.

Tholozan JL, Cappeleir JM, Tissier JP, Delattre JP and Federighi M. (1999). Physiological characterisation of viable-but-nonculturable *Campylobacter jejuni* cells. *Appl Environ Microbiol*, 65: 1110–1116.

Thomas C, Hill DJ and Mabey M. (1999). Evaluation of the effect of temperature and nutrients on the survival of *Campylobacter* spp. in water microcosms. *J Appl Microbiol*, 86: 1024-1032.

US Food and Drug Administration. (2006). National antimicrobial resistance monitoring system for enteric bacteria (NARMS) 2005 retail meat annual report. Available at <a href="http://www.fda.gov/cvm/2005NARMSAnnualRpt.htm.Accessed 1 July 2013">http://www.fda.gov/cvm/2005NARMSAnnualRpt.htm.Accessed 1 July 2013</a>.

US Food and Drug Administration. (2003). Foodborne pathogenic microorganisms and natural toxins handbook. Available at <a href="http://www.fda.gov/food/foodborneillnesscontaminants/causesofillnessbadbugbook/ucm0700">http://www.fda.gov/food/foodborneillnesscontaminants/causesofillnessbadbugbook/ucm0700</a> 24.htm

Valdivieso-Garcia A, Harris K, Riche E, Campbell S, Jarvie A, Popa M, Deckert A, Reid-Smith R and Rahn K. (2007). Novel *Campylobacter* isolation method using hydrophobic grid membrane filter and semisolid medium. *J Food Prot*, 70: 355–362.

VanBogelen RA and Neidhardt FC. (1990). Ribosomes as sensors of heat and cold shock in *Escherichia coli. Proc Natl Acad Sci U S A*, 87(15): 5589-5593.

Vandamme P. (2000). Taxonomy of the family Campylobacteraceae, p. 3-27.In Nachamkin I and Blaser MJ (ed), *Campylobacter*, 2nd ed. American Society for Microbiology, Washington, DC.

Vandamme P and Goossens H. (1992). Taxonomy of *Campylobacter*, *Arcobacter*, and *Helicobacter*: a review. *Zentralblatt fur Bakteriologie*, 276: 447-472.

Vandamme P, Debruyne L, De Brandt E and Falsen E. (2010). Reclassification of Bacteroidesureolyticus as *Campylobacter* ureolyticus comb.nov., and emended description of the genus *Campylobacter*. *Int J Syst Evol Microbiol*, 60:2016–2022.

Wiese S, Reidegeld KA, Meyer HE and Warscheid B. (2007). Protein labelling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. *Proteomics*, 7(3): 340-350.

Willimsky G, Bang H, Fischer G and Marahiel MA. (1992). Characterization of cspB, a Bacillussubtilis inducible cold shock gene affecting cell viability at low temperatures. *J Bacteriol*, 174: 6326–6335.

Wilson N. (2005). A systematic review of the aetiology of human campylobacteriosis in New Zealand. *Wellington: NZ Food Safety Authority*. Retrieved from <a href="http://www.nzfsa.govt.nz/science-technology/research-projects/campy-aetiol/campy-aetiol.pdf">http://www.nzfsa.govt.nz/science-technology/research-projects/campy-aetiol/campy-aetiol.pdf</a>

Wilson IG and Moore JE. (1996). Presence of *Salmonella* spp. and *Campylobacter* spp. in shellfish. *EpidemiolInfect*, 116: 147–153.

Wolffe AP. (1994). Structural and functional-properties of the evolutionarily ancient Y-box family of nucleicacid binding-proteins. *BioEssays*, 16: 245–251.

Wong TL, On SLW and Michie H. (2006). Campylobacter in New Zealand: reservoirs, sources and the labyrinth of transmission routes. *N Z J Environ Health*, 29(2): 1-6.

Wong TL, Hollis L, Cornelius A, Nicol C, Cook R and Hudson JA. (2007). Prevalence, numbers, and subtypes of *Campylobacter jejuni* and *Campylobacter coli* in uncooked retail meat samples. *J Food Prot*, 70: 566–573.

Wooldridge KG and Ketley JM. (1997). *Campylobacter*-host cell interactions. *Trends Microbiol*, 5:96-102.

Workman SN, Mathison GE and Lavoie MC. (2005).Pet dogs and chicken meat as reservoirs of *Campylobacter* spp. in Barbados. *J Clin Microbiol*, 43: 2642–2650.

Xia Q, Muraoka WT, Shen Z, Sahin O, Wang H, Wu Z, Liu P and Zhang Q. (2013). Adaptive mechanisms of *Campylobacter jejuni* to erythromycin treatment. *BMC Microbiol*, 13: 133. Doi: 10.1186/1471-2180-13-133.

Xiong J. (2009). Survival of animal-derived Campylobacter strains in raw and pasteurized milk, and the roles of capsule in campylobacter survival in vitro, and in chick colonization. Master Thesis. North Carolina State University: U.S.A. http://www.lib.ncsu.edu/resolver/1840.16/1045.

Yamanaka K and Inouye M. (2001). Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in *Escherichia coli*. *J Bacteriol*, 183:2808–2816.

Young KT, Davis LM and Dirita VJ. (2007). *Campylobacter jejuni*: molecular biology and pathogenesis. *Nat Rev Microbiol*, 5: 665–679.

Zhang MJ, Xiao D, Zhao F, Gu YX, Meng FL, He LH, Ma GY and Zhang JZ. (2009). Comparative proteomic analysis of *Campylobacter jejuni* cultured at 37°C and 42°C. *Jpn J Infect Dis*, 62(5): 356-361.

Zhang MJ, Gu YX, Di X, Zhao F, You YH, Meng FL and Zhang JZ. (2013). In Vitro protein expression profile of *Campylobacter jejunis*train NCTC11168by two-dimensional gel electrophoresis and mass spectrometry. *Biomed Environ Sci*, 26(1): 48-53.

# **Appendix 1:Protein Quantification**

Protein quantification for *C. jejuni* whole-cell protein extract used in this study was a modified Bradford assay (Ramagli, 1999). The protocol of this modified Bradford assay is as follow:

Firstly, a standard curve was prepared by using a dilution series (0.05-0.5mg/ml) of ovalbumin. The preparation of the series of ovalbumin shows as Table Appendix 1. Standard ovalbumin (2mg/ml) was diluted with lysis buffer (which had been used at protein extraction) to get  $50\mu$ l protein mixture containing 5 to  $50\mu$ g of protein, and then added  $25\mu$ l 0.1N HCl and  $25\mu$ l water into the  $50\mu$ l protein mixture to make several dilutions of ovalbumin standard containing from 5 to  $50\mu$ g of protein in  $100\mu$ l solution (Table Appendix 1).

**Table Appendix 1**. Preparation of a series diluted ovalbumin standards for the modified Bradford assay.

| Vial | Volume of 50% | Volume of 1mg/ml       | 0.1N  | Distilled | Final         |
|------|---------------|------------------------|-------|-----------|---------------|
|      | lysis buffer  | ovalbumin (the         | HCl   | water     | ovalbumin     |
|      | (the lysis    | 2mg/ml standard        |       |           | concentration |
|      | buffer /water | ovalbumin/lysis buffer |       |           |               |
|      | ratio is 1:1) | ratio is 1:1)          |       |           |               |
| А    | 0 μΙ          | 50 μΙ                  | 25 μΙ | 25 μΙ     | 0.5 mg/ml     |
| В    | 10 μΙ         | 40 μΙ                  | 25 μΙ | 25 μΙ     | 0.4 mg/ml     |
| С    | 20 μΙ         | 30 μΙ                  | 25 μΙ | 25 μΙ     | 0.3 mg/ml     |
| D    | 25 μΙ         | 25 μΙ                  | 25 μΙ | 25 μΙ     | 0.25 mg/ml    |
| Е    | 30 μΙ         | 20 μΙ                  | 25 μΙ | 25 μΙ     | 0.2 mg/ml     |
| F    | 35 μΙ         | 15 μΙ                  | 25 μΙ | 25 μΙ     | 0.15 mg/ml    |
| G    | 40 μΙ         | 10 μΙ                  | 25 μΙ | 25 μΙ     | 0.1 mg/ml     |
| Н    | 45 μΙ         | 5 μΙ                   | 25 μΙ | 25 μΙ     | 0.05 mg/ml    |
| T    | 50 μΙ         | 0 μΙ                   | 25 μΙ | 25 μΙ     | 0             |
|      |               |                        |       |           | mg/ml=blank   |

Then, 3.5 ml of Coomassie Brilliant Blue G-250 dye reagent was added to the dilutions of ovalbumin standard and the contents were vortexed gently to mix. The absorbance of the dilution series of ovalbumin were measured at 595 nm wavelength using spectrometer (PG T60U UV Visible spectrophotometer). The absorbance reading finished in 5 min after adding Coomassie Blue G-250 dye reagent. Basing on the absorbance reading of the serial protein solutions, a standard curve and a formula for the standard curve was created.



Figure Appendix 1. Protein concentration standard curve

The concentration of the protein extraction samples were examined based on the formula for the standard curve. 25µlsamples mixed with 25µl 0.1NHCl and 50µl waters, and then added3.5 ml of Coomassie Brilliant Blue G-250 dye reagent and vortex mixed gently. The absorbance of sample was read at 595 nm wavelength and reading finished in 5 min after adding Coomassie Brilliant Blue regent. Amounts of *C. jejuni* whole cell protein in samples were determined through interpolating the sample's absorbance onto the formula of the standard curve.

# **Appendix 2: One-way ANOVA Statistical Test Cell Death Rate**

We had calculated the death cell rate at different time points for the three strains with percentage, the results are shown at the table 4.1. To compare cell death rates of the three strains at this 8 day cold exposure experiement, One-way ANOVA statistics test were performed. The statistics test results show as the following table.

Table Appendix 1. Comparation of 3 strains' death cell rate (percentage)

|      | NCTC 11168 | SVS 5001 | SVS 5141 |
|------|------------|----------|----------|
| 1    | 53.5       | 28.1     | 41.9     |
| 2    | 55         | 26.1     | 53.5     |
| 3    | 57         | 54.2     | 61.6     |
| 4    | 55         | 52.3     | 50       |
| 5    |            | 52.3     | 50       |
| n    | 4          | 5        | 5        |
| X    | 55.125     | 42.600   | 51.400   |
| s    | 1.436      | 14.188   | 7.117    |
| Xave | 49.321     |          |          |

| source     | df | SS       | MS      | F      | P-value |
|------------|----|----------|---------|--------|---------|
| treatments | 2  | 382.216  | 191.108 | 2.0731 | 0.1722  |
| error      | 11 | 1014.048 | 92.186  |        |         |
| total      | 13 | 1396.264 |         |        |         |

P value of this one-way ANOVA test is 0.1722, which is greater than 0.05. There are no statistically significant differentces between the three strains' average death cell rate as determined by one-way ANOVA (P=0.1722).