A synergistic mitigation technology for nitrate leaching and nitrous oxide emissions for pastoral agriculture

H.J. Dia*, K.C. Camerona, A. Robertsb

- ^a Centre for Soil and Environmental Research, PO Box 84, Lincoln University, Lincoln 7647, Christchurch, New Zealand.
- ^b Ravensdown, P O Box 608, Pukekohe, New Zealand.
- *Corresponding author: hong.di@lincoln.ac.nz

Introduction

- Nitrate (NO₃⁻) leaching from agricultural land into groundwater is a major environmental issue worldwide.
- Nitrous oxide (N₂0) is a potent greenhouse gas. In New Zealand, agricultural greenhouse gas emissions account for nearly 50% of the national inventory.
 One third of the agricultural greenhouse gas emissions is N₂0.
- The major source for both NO₃⁻ leaching and N₂O emissions is nitrogen (N) from animal urine excreted onto grazed pasture soil.
- Here we report a mitigation technology which is synergistic for the reduction of both NO₃⁻ leaching and N₂O emissions and also for the improvement of pasture yield.

Materials and Methods

- Soil ammonia oxidizing bacteria (AOB) population abundance was determined by real-time PCR by targeting the functional *amoA* gene.
- Nitrate leaching losses were determined using undisturbed soil monolith lysimeters (50-80 cm diameter by 70-120 cm depth).
- Nitrous oxide emissions were determined using closed chamber methods.
- The nitrification inhibitor dicyandiamide (DCD), was applied in a liquid form at the rate of 10 kg ha⁻¹, twice per annum, once in the autumn and once in late winter/early spring; as per commercial practice for 'eco-n' technology.
- Fresh dairy cow urine was collected and applied at 1000 kg N ha⁻¹.
- The pasture was a mixture of perennial ryegrass (Lolium perenne)/white clover (Trifolium repens).

Acknowledgments

We thank Ravensdown, NZ Ministry of Science and Innovation, Ministry of Agriculture and Fisheries, The Pastoral 21 Consortium, Pastoral Greenhouse Gas Research Consortium (PGGRC) and Lincoln University for funding.

Results and discussion

• Ammonia oxidizing bacteria population abundance was significantly inhibited by the application of DCD.

Figure 1. *amoA* gene copy numbers of ammonia oxidizing bacteria as affected by urine and DCD (Di *et al.*, 2009a).

 Nitrate leaching losses were decreased by about 60% from cow urine patches by the use of DCD.

Figure 2. Nitrate-N concentrations in the drainage water from urine-treated lysimeters with or without DCD (Di et al., 2009b).

• Nitrous oxide emissions were decreased by about 60% from cow urine patch areas by DCD.

Figure 3. Daily N_2O fluxes from urine-treated lysimeters with or without DCD (Di *et al.*, 2010).

• Pasture yield was significantly increased by up to 20% with the use of DCD.

Figure 4. Pasture yield from urine-N applied at different rates as affected by DCD (Di and Cameron, 2007).

- Recent on-farm paddock scale pasture yield measurements across NZ (132 data sets) showed a 19% average pasture yield response to DCD (eco-n) (Carey et al., 2012).
- Other microbial communities, such as methanotrophs were not affected by DCD (Di et al., 2011).

Conclusions

- The nitrification inhibitor DCD was highly effective in inhibiting the soil AOB population and produced significant decreases in nitrate leaching and nitrous oxide emissions; as well as significant increases in pasture yield.
- DCD has been shown not to affect other non-target soil microbial communities.
- Spray application of DCD ('eco-n') is therefore an effective synergistic mitigation technology to reduce environmental impacts and improve the sustainability of grazed grassland.

References

- Carey, P.L. Jiang, S. and Roberts, A.H. (2012). Pasture dry matter responses to the use of a nitrification inhibitor: a national series of New Zealand farm trials. New Zealand Journal of Agricultural Research. http://dx.doi.org/10.1080/00288233.2011.644628.
- Di, H.J. and Cameron, K.C. (2007). Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor a lysimeter study. *Nutrient Cycling in Agroecosystems* 79, 281-290.
- Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O'Callaghan, M., Bowatte, S. and He, J.Z. (2009a). Nitrification driven by bacteria and not archaea in nitrogen rich grassland soils. *Nature Geoscience 2*: 621-624.
- Di, H.J., Cameron, K.C., Shen, J.P., He, J.Z., Winefield, C.S. (2009b). Nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. *Soil Use and Management* 25: 454-461.
- Di, H.J., Cameron, K.C., Sherlock, R.R., Shen, J.P., He, J.Z. and Winefield, C.S. (2010). Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. Journal of Soils and Sediments DOI 10.1007/s11368-009-0174-x. 10: 943-954.
- Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O'Callaghan, M., Bowatte, S. and He, J.Z. (2011). Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. *Journal of Soils and Sediments*. 11: 432-439. DOI 10.1007/s11368-010-0318-z.

