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Abstract of a thesis submitted for the 

Degree of M.Appl.Sci. 

 

Voluntary Food Intake of Pregnant and 

Non-pregnant Red Deer Hinds During 

the Gestating Period 

 

by 

I.C. Scott 

 

Efficient venison production systems rely in New Zealand on maximal growth of 

deer calves before their first winter. This is facilitated by earlier calving (i.e. March 

conception for October/November calving). However, previous research has shown 

that hinds conceiving early in the breeding season have a longer gestation length than 

those conceiving later, negating some of the gains of achieving early conception. It is 

hypothesised that a moderate energy imbalance during the last trimester of pregnancy 

influences fetal growth trajectory resulting in variation of gestation length. While 

young red deer, adult stags and non-pregnant hinds exhibit a photoperiod-mediated 

reduction in voluntary food intake (VFI) during winter, it is not known if this occurs 

in pregnant hinds. Such a decrease in VFI would exacerbate a moderate energy 

imbalance during the third trimester of pregnancy. The objective of this study was to 

test the hypothesis that pregnancy status does not affect the photoperiod-mediated 

reduction in VFI of red deer hinds during winter. Seven pregnant (P) and seven non-

pregnant (NP) hinds were housed indoors in individual pens from April to November 

where they were offered daily an ad libitum pelleted ration. Food intake was 

measured daily and hinds were weighed and body condition scored (BCS) fortnightly. 
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In addition, blood samples were collected at 4-week intervals to determine plasma 

concentrations of two appetite regulating hormones, leptin and ghrelin. Mean (± 

SEM) live weight (LW) on 27 April was 117.1 ± 6.0 kg and 124.1 ± 10.3 kg for P and 

NP hinds, respectively. On average, P hinds gained 74 g/day and NP hinds lost 27 

g/day (P < 0.05) in autumn. Mean live weight (LW) of both groups then increased for 

the remainder of the study with no significant difference between groups during 

specific time periods. Body condition score (BCS) of both groups increased during 

autumn and winter (P > 0.05), but whereas BCS of P hinds decreased, that of NP 

hinds increased in spring (-0.001 BCS units/day vs. 0.006 BCS units/day; P < 0.05). 

Pregnancy status of the hinds had no significant effect on mean VFI throughout the 

trial except for the last five days before parturition when VFI of P hinds decreased 

dramatically (P < 0.001). Mean VFI of both groups was significantly higher about 1 

May and 1 November than 1 July (0.72 ± 0.05, 0.69 ± 0.03 and 0.58 ± 0.05 MJME/kg 

LW respectively; P < 0.05). There was a significant negative correlation of gestation 

length with mean VFI during the study period (P< 0.05), such that, for every 0.1 

MJME/kg LW
0.75

/day increase in mean VFI, gestation length decreased by 6.4 days. 

Pregnancy status had no significant effect on plasma concentration of leptin or ghrelin 

at any of the sampling times (P > 0.05). Circulating leptin concentration was 

associated significantly (P < 0.01) with BCS, but not VFI. Results from this study 

support the hypothesis that pregnancy status does not affect the photoperiod-mediated 

depression in VFI of red deer hinds during winter. It is suggested that to mitigate 

effects of the observed moderate energy imbalance during the last third of pregnancy, 

farmers should ensure hinds are in good condition going in to winter and that high 

quality feed is available throughout gestation. 

 

Keywords: red deer; adult; hinds; non-pregnant; pregnant; voluntary food intake; 

gestation length; day length; live weight; body condition; leptin; ghrelin       
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Chapter 1: Introduction 

 

1.1 The problem stated 

 
Efficient venison production relies on maximal growth of the red deer calf before 

its first winter (birth – 6 months of age). To this end, significant research effort has 

been expended to advance the calving date of red deer hinds to better align the 

nutritional demands of a lactating hind with pasture growth and quality under New 

Zealand lowland farming conditions (see review: Asher et al., 1996). However, it 

would appear that evolution has ensured robust compensatory mechanisms are in 

place to counter such attempts to advance calving date. 

Recent research has shown that hinds conceiving early in the breeding season have 

a longer gestation length than those conceiving late, and conversely, those conceiving 

late in the breeding season have a shorter gestation length (Scott et al., 2008a). Also, 

Asher et al. (2005a) reported that a moderate energy intake imbalance during the last 

trimester of pregnancy in red deer was compensated for by varying gestation length to 

ensure optimal birth weight at the time of parturition. 

It is well documented that red deer have a photoperiod-mediated reduction in their 

food intake during „short days‟ (Pollock, 1975; Kay, 1979; Simpson et al., 1983/84; 

Suttie et al., 1984; Suttie & Simpson, 1985), and Scott et al. (2008a) hypothesised 

that the ensuing moderate energy intake imbalance between seasons mediates the 

observed variation in gestation length; a photoperiod-induced reduction in hind food 

intake during winter may impact on the ability of early-conceiving hinds to meet the 

increasing energy demands of the rapidly growing fetus during the last third of 

pregnancy. 

However, although seasonal change of voluntary food intake (VFI) has been well 

documented for young growing red deer of both sexes and for adult stags (Pollock, 

1975; Milne et al., 1978;  Kay, 1979; Simpson et al., 1983/84; Suttie et al., 1984; 

Suttie & Simpson, 1985; Suttie et al., 1987; Loudon et al., 1989; Semiadi et al., 1994; 

Webster et al., 2000), there is a paucity of such data for adult hinds (Blaxter et al., 

1974; Suttie & Simpson, 1985; Loudon et al., 1989), and there appears to be no 

published data on seasonal VFI of pregnant red deer hinds. 
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1.2 Nature and scope of the investigation 

  

This thesis reports on a study designed to investigate the effect of season and 

pregnancy status on VFI of adult red deer hinds throughout the gestating period. The 

study was undertaken as the first step in testing the hypothesis of Scott et al. (2008a) 

that early-conceiving hinds have a longer gestation length than those that conceive 

later because of seasonal variation in VFI, and hence fetal growth trajectory. The 

stated hypothesis is that pregnancy status does not affect the photoperiod-mediated 

reduction in VFI of red deer hinds during winter. 

The literature review begins by emphasising that red deer evolved in temperate 

regions of Europe where seasonal variations in temperature and food availability are 

much greater than here in New Zealand; the few generations red deer have been in 

New Zealand are insufficient to overcome endogenous seasonal rhythms that are 

synchronised with the European environment. It then outlines known factors that 

affect calving date and VFI, before describing how hunger and satiety are regulated. 

The body of the thesis describes how the study was managed, reports on the results 

from analyses of the data collected, and then discusses the results with reference to 

the findings from other studies. A concluding chapter summarises the main findings 

from the study and identifies its weaknesses and how it may have been improved, 

before suggesting areas of future research to substantiate inferences made. The 

concluding paragraph makes a recommendation to New Zealand deer farmers on the 

management of pregnant hinds.     
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Chapter 2: Review of the Literature  

 

2.1 From Europe to New Zealand 

 

Red deer (Cervus elaphus) evolved in temperate regions of Europe (Whitehead, 

1972) where seasonal extremes in temperature and feed availability strongly influence 

animal survival. This has lead to markedly seasonal annual rhythms of reproduction, 

growth, feed intake and pelage changes (Lincoln & Short, 1980; Suttie & Simpson, 

1985). The first liberations of red deer in New Zealand occurred in the latter half of 

the 19
th

 century and were primarily of the Scottish subspecies C. e. scoticus sourced 

from the UK. They thrived under predator-free conditions in large expanses of forest 

and alpine grasslands to rapidly establish wild populations throughout the country 

(Wodzicki, 1950). Through capture and enclosing behind fences these animals have 

formed the base of the New Zealand deer farming industry (Yerex, 1982).  

In the northern latitudes of Europe the prevailing conditions have dictated a highly 

seasonal pattern of autumn conception and early summer calving for survival of the 

species (Lincoln & Guinness, 1973). Calves born very early or late in the season are 

less likely to survive as neonates than those born at the peak of calving (Iason & 

Guinness, 1985). Early born calves are subjected to a high risk of post-natal mortality 

due to inclement weather, and although feed availability is such that late-born calves 

are able to meet their nutritional needs for immediate survival, they have insufficient 

time to lay down the body reserves necessary to survive their first winter (Clutton-

Brock et al., 1982). However, under New Zealand lowland farming conditions, 

pasture quality and feed availability are generally high in spring and low in summer 

and autumn (Litherland et al., 2002) resulting in a misalignment of peak pasture 

quality and the nutritional demands of a lactating hind and her offspring (see review: 

Asher et al., 1996). To date, efforts to advance the calving date of farmed red deer 

appear to be partly offset by robust and complex adaptations of reproductive 

processes that have evolved to ensure offspring are born at the optimal time for 

survival. Few generations of red deer have been exposed to the New Zealand farming 

environment, and there has been insufficient time for selection pressure to have 

modified their inherent seasonality. The challenge for the New Zealand deer farmer, 

therefore, is to mitigate the effects of evolutionary adaptation of red deer to climatic 
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conditions in the northern latitudes of Europe so as to better align feed availability 

with nutritional demand of the lactating hind under New Zealand lowland pastoral 

conditions.  

     

2.2 Factors affecting calving date  

   

Time of conception has generally been regarded as the main driver of calving date, 

with gestation length of red deer considered to be genetically fixed at around 233 days 

(Guinness et al., 1971; Kelly & Moore, 1977). Until recently, little attention has been 

paid to the possibility that time of parturition may be regulated by changes in 

gestation length (Asher, 2007). For instance, Guinness et al. (1978) reported that wild 

hinds had a 5-day longer gestation length than captive hinds and noted that this may 

have been due to captive animals receiving supplementary feeding. However, they 

concluded that gestation length varies little and that differences in calving date are 

most likely to be influenced by factors affecting the time of conception.  

 

2.2.1 Conception date 

 

Seasonal breeding is an adaptive response of animals to their environment to 

ensure that offspring are born at the optimal time for their survival. Red deer are 

„short day-breeders‟, with onset of the breeding season occurring in autumn and 

parturition in summer (Lincoln & Short, 1980). In an effort to advance calving date a 

number of strategies to advance the period of conceptions have been applied to red 

deer hinds. Hormonal events regulating oestrous cycles of red deer are intrinsically 

the same as those of other domestic ruminant species and the procedures used are 

based primarily on those used for sheep (see review: Haresign, 1992). 

 

Melatonin treatment 

Photoperiod is the primary environmental cue that entrains the annual reproductive 

cycle of seasonally breeding animals. This was first noted for red deer by Marshall 

(1937) after the species was translocated from various countries in Europe to New 

Zealand. It was observed in all instances that when stags were translocated from one 

hemisphere to the other, they readily adjusted their cycles to those of the indigenous 

population. Similarly, hinds translocated from New Zealand to England adapted their 
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oestrous cycles to the English seasons within two years. Experimental evidence to 

corroborate that observation was subsequently reported from various studies that 

manipulated photoperiod in a number of temperate cervid species: red deer 

(Jaczewski, 1954; Suttie et al., 1984; Suttie & Simpson, 1985; Webster & Barrell, 

1985), sika deer (Cervus nippon: Goss, 1969a, b; Goss and Rosen, 1973) and fallow 

deer (Dama dama: Schnare & Fischer, 1987).   

Melatonin is secreted from the pineal gland during the hours of darkness and is the 

principal transducer of photoperiodic information to the brain (see review: Arendt, 

1986). When melatonin is administered during long photoperiods the recipient 

essentially perceives a short photoperiod. This has been demonstrated to induce early 

onset of the breeding season in a number of species: sheep (Kennaway et al., 1982, 

Arendt et al., 1983), goat (Chemineau et al., 1986), white-tailed deer (Odocoileus 

virginianus: Bubenik, 1983), fallow deer (Asher et al., 1988) and red deer (Adam & 

Atkinson, 1984; Webster & Barrell, 1985; Adam et al., 1986; Fisher et al., 1988). The 

methodology for delivering melatonin used in early studies was impractical in a 

commercial situation, as it involved the administration of daily doses of melatonin, 

either orally in the feed (Adam & Atkinson, 1984), or by injection (Webster & 

Barrell, 1985). The development of small constant-release implants (e.g. Regulin), 

developed for out-of-season breeding of sheep in Australia, provided a practical tool 

for deer. Treatment required only one or two implants in deer and advanced oestrus 

and conception by up to 8 weeks in fallow deer does (Asher et al., 1988) and 4-5 

weeks in red deer hinds (Fisher et al., 1988; see review: Asher et al., 1993). Although 

practical and effective, the use of melatonin implants is perceived as a high-

intervention procedure and „unnatural‟. It has found little favour as a management 

tool to advance conception date in the New Zealand deer farming industry.     

 

Gonadotrophin treatments 

Whereas melatonin treatment alters the animal‟s perception of the prevailing 

photoperiod, administration of exogenous gonadotrophins (e.g. eCG, LH, FSH) or 

gonadotrophin-releasing hormone (GnRH) over-rides photoperiod control (by 

compensating for the lack of endogenous secretion from the pituitary gland during 

anoestrus) to stimulate ovarian activity before onset of the normal breading season.  
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Exogenous progesterone (e.g. CIDR
® 

device) plus equine chorionic gonadotrophin 

(eCG) in low doses (200 - 300 i.u.) has been used to effect 3-5 week advances in 

onset of oestrus in red deer (Adam et al., 1985; Fisher et al., 1986; Moore & Cowie, 

1986; Fisher et al., 1989) and fallow deer (Asher & Smith, 1987). However, the 

response was variable and, although ovulation was induced in a large proportion of 

hinds and does, fertility (as assessed from birthing records) was generally poor. Also, 

higher doses of eCG resulted in superovulatory responses (Fisher & Fennessy, 1987; 

Asher & Smith, 1987) and the inherent problems associated with the ensuing multiple 

births. 

Low doses of GnRH administered over 48 h, either as pulsed injections or as 

continuous venous infusions, induced fertile oestrus in progestagen-primed anoestrous 

ewes, without the concomitant increase in ovulation rate associated with eCG 

(McLeod & Haresign, 1984). This approach has been tried in both red deer (Fisher et 

al., 1986; Fisher et al., 1989; Duckworth & Barrell, 1991) and fallow deer (Asher & 

Macmillan, 1986), but again, fertility was generally poor and Duckworth & Barrell 

(1991) attributed this to abnormal hormonal and behavioural patterns. 

The use of progesterone priming in conjunction with low doses of eCG is 

commonly used to synchronise ovulation for artificial insemination and embryo 

transfer programmes and may be used to advance conception date when used in this 

context, but has found little favour in the New Zealand deer industry to advance 

conception date per se.          

  

Early stag introduction 

In the wild, red deer stags begin to rut about a month before hinds come into 

oestrus. The herding and roaring activity of the rutting stag is thought to promote a 

degree of oestrous synchrony within the hind harem (Lincoln & Guinness, 1973). 

However, in the farmed situation, stags are not usually joined with hinds until after 

calf weaning in March (Audigé et al., 1999), thus denying hinds the early social 

interaction with stags that may happen in the wild.  

Introduction of rams to anoestrous ewes (termed „joining‟ in New Zealand) pre-

conditioned by a period of isolation from rams induces, within a few minutes, an 

increase in pulse frequency of luteinising hormone (LH) secretion. This stimulates 

follicular growth and subsequently oestradiol secretion which, in turn, leads to an LH 

surge and ovulation (see review: Martin et al., 1986). This phenomenon is referred to 
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as the „ram effect‟ and is used widely in Australia as a management tool to induce 

lambing synchrony and for out-of-season breeding systems (Reeve & Chamley, 

1984). Since the first published report of the „ram effect‟ in sheep by Underwood et 

al. (1944), there have been numerous studies in a variety of species on the effect of 

joining males with anoestrous females: goats (Shelton, 1960; Ott et al., 1980), pigs 

(Brooks & Cole, 1970), cattle (Skinner & Bonsma, 1964; Macmillan et al., 1979; 

Scott & Montgomery, 1987), buffaloes (Bubalus bubalis: Gokuldas et al., 2010), 

Eld‟s deer (Cervus eldi: Hosack et al., 1999), reindeer (Rangifer tarandus: Shipka et 

al., 2002) and red deer (Moore & Cowie, 1986; Fisher et al., 1995; Scott et al., 2005). 

Early stag joining is low intervention, low cost and „natural‟, but the resultant 

advance in calving date in red deer is modest and variable. Moore & Cowie (1986) 

joined vasectomised stags with a group of adult hinds for 15 days before entire stags 

were joined on 22 March. They reported that more teased (20/39) than non-teased 

(5/42) hinds conceived within the first 10 days of joining. Likewise, Fisher et al. 

(1995) reported an 8 day advance in onset of ovarian activity in pubertal hinds that 

were joined with stags from 18 January compared to those remaining isolated from 

stags until after the commencement of the breeding season. In contrast, Scott et al. 

(2005) ran „spiker‟ (15-18 month old) stags with pubertal hinds at a ratio of 1:8 from 

15 January and reported no difference in mean conception date, or pregnancy rate, 

compared to pubertal hinds joined with the same ratio of „spiker‟ stags on 2 March. 

However, young stags exhibit little rutting behaviour (Lincoln, 1971), and the authors 

considered that this may have influenced their ability to induce early oestrus in 

pubertal hinds. Also, there is evidence that the „ram effect‟ is dependent on depth of 

anoestrous at time of male introduction (Martin et al., 1980; Scott & Johnstone, 1994) 

and joining stags with pubertal hinds well in advance of their normal onset of oestrus 

may have nullified the ability of hinds to respond to stag introduction.  

 

Early weaning 

Lactating red deer hinds in the wild are reported to have reduced fertility (Guinness 

et al., 1978) and later conception dates (Mitchell & Lincoln, 1973) than their non-

lactating contemporaries, but this could be attributed to their poorer body condition at 

mating (Hamilton & Blaxter, 1980). Early weaning (i.e. before the rut) of farmed red 

deer in a drought year resulted in hinds conceiving earlier than those that were 

weaned post-rut (Pollard et al., 2000). This was also attributed to the pre-rut weaned 
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hinds having a higher autumn body condition score (BCS) than those that were 

weaned post-rut. However, Loudon et al. (1983) suggested that the suckling stimulus 

of the calf has an inhibitory effect on resumption of ovarian activity in red deer, as has 

been shown in beef cows (Montgomery, 1982). This is corroborated for red deer from 

the data of Adam et al. (1985) who reported that lactating hinds started ovarian cycles 

10 days later and conceived 16 days later than did weaned hinds, but considered that 

this was not likely to have been a body condition effect (Hamilton & Blaxter, 1980), 

because all hinds were in good body condition throughout the study. Also, Garcia et 

al. (2002) reported that progesterone levels remained basal for several months after 

calving, except in a hind that lost her calf just after parturition. That hind showed two 

consecutive oestrous cycles in the month following calving, and they suggested that 

this was indicative of the suckling stimulus having an inhibitory effect on the 

resumption of ovarian cyclic activity. Regardless of the causative mechanism, in all 

cases, hinds that were weaned pre-rut conceived earlier than contemporaries that were 

weaned post-rut. Early weaning is a non-invasive management practice that may be 

used to advance calving date on New Zealand deer farms.   

 

Genetic selection 

The red deer species has evolved within a wide range of latitudinal and 

longitudinal habitats, exposing them to large climatic variation and resulting in 

discrete populations with pronounced phenotypic and genotypic differences (i.e. 

subspecies). The red deer consists of at least 23 recognised subspecies which increase 

in size in a west-to-east cline from Western Europe to North America (Whitehead, 

1993). Habitat and size variation between the subspecies may be associated with 

differences in onset of the breeding season and gestation length so as to synchronise 

calving with the time of greatest feed availability within each respective environment. 

For instance, Asher et al. (2000) reported that the mean onset of first oestrus was 9 

days later for Western European red deer (C. e. scoticus) than for hybrids with North 

American wapiti (C.e. nelsoni). Furthermore, Scott et al. (2006) found that Western 

European red deer initiate rutting activity, and calve, 2 to 3 weeks later than Eastern 

European red deer (C. e. hippelaphus), indicating genetic differences between 

subspecies in response to the prevailing photoperiod.   

 There is also wide variation in conception date between individual deer of the 

same subspecies and the development of molecular DNA techniques such as single 
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nucleotide polymorphism (SNP) chips may allow screening of animals for genes that 

regulate seasonal reproduction (Nicoll, 2010). 

 

2.2.2 Gestation length 

 

Gestation length is defined as the period of time from conception to parturition and 

has generally been considered to be genetically fixed within limits for any given 

species. Although no one fundamental mechanism is considered to ensure 

maintenance of pregnancy or the initiation of parturition, it is thought that the initial 

mechanism for the timing of birth may be activated when certain prerequisite 

developmental events have occurred in the fetus (see review: Jenkin & Young, 2004). 

Thus, fetal genotype is probably the single most important determinant of gestation 

length (Racey, 1981). This is amply demonstrated in red deer subspecies where there 

is large variation in observed mating - birth intervals ranging from 233 ± 1-4 days for 

Scottish red deer (Guinness et al., 1971; Kelly & Moore, 1977) to 247 ± 5 days for 

North American wapiti (Haigh, 2001), with hinds gestating F1 crossbred fetuses 

having a mean gestation length intermediate between parental genotypes (Asher et al., 

2005b). Other modifiers of gestation length may include maternal age and body mass, 

fetal gender and environment (e.g. season, temperature and feed availability; Racey, 

1981). 

For example, Asher et al. (2005a) observed that differential nutrition during the 

last trimester of pregnancy influenced fetal development and that there was a negative 

correlation between duration of pregnancy and change in hind live weight between 

days 130 and 220 of pregnancy. Similarly, an increase in gestation length of 4-6 days 

was demonstrated in white-tailed deer by Verme (1965) when feed intake was 

severely restricted during pregnancy. Also, timing of births occurred earlier for 

Alaskan moose (Alces alces) cows with the thickest rump fat during pregnancy 

(Keech et al., 2000).  Asher et al. (2005a) hypothesised that a gestation length-

compensatory mechanism ensured that parturition occurred when an optimal calf birth 

weight had been reached. However, no such mechanism was demonstrated when red 

deer hinds were artificially inseminated with semen from a wapiti bull and the authors 

considered that the higher growth requirements of a crossbred fetus may override any 

mechanism to control gestation length at the expense of calf growth rate (Asher et al., 

2005b). Mulley (1989) reported slower fetal growth rate and lower birth weight, but 
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no change in gestation length, when fallow deer were subject to modest levels of feed 

deprivation in the second and third trimesters of pregnancy, indicating that such 

compensatory mechanisms are not universal across cervid species. Furthermore, a 

number of studies have shown that nutritional deprivation during late pregnancy in 

sheep and cattle is invariably associated with a contradictory shortening of gestation 

length (Alexander, 1956; Alexander et al., 1957; Bewg et al., 1969; Tudor, 1972; 

Waldham et al., 1979).      

 

Time of mating has been reported to affect gestation length significantly in several 

ruminant species including sheep (Davies et al., 1966), goats (Mellado et al., 2000), 

cattle (Piedrafita et al., 2000), dromedary (Camelus dromedaries: Elias et al., 1991), 

alpacas (Lama pacos: Davis et al., 1997), bison (Bison bison: Berger, 1992), reindeer 

(Rowell & Shipka, 2009), fallow deer (Asher et al., 1988) and red deer (Garcia et al., 

2006; Scott et al., 2008a), although the mechanism for this is yet to be elucidated. 

Asher et al. (1988) treated fallow deer with melatonin implants and achieved up to 8 

weeks advancement in oestrus/conception which was associated with a significantly 

longer gestation period. They conjectured that the prevailing photoperiod may 

influence initiation of parturition. Berger (1992) proposed that late-breeding bison 

females in good condition shorten gestation to synchronise births with other females, 

but no similar adjustment was noted among females in poor condition. Garcia et al. 

(2006) observed that red deer hinds artificially induced to conceive early in the 

breeding season had longer gestation lengths than those conceiving later. They 

hypothesised that there was a compensatory mechanism in place that extended 

gestation period to ensure parturition matched food production. Similarly, Scott et al. 

(2008a) reported a negative correlation between conception date and gestation length 

such that for every 10 days difference in conception date there was a change in 

gestation length of from 1.9 – 4.9 days across different populations. Interestingly, they 

found no significant effect for hind age, hind live weight, calf gender, birth weight, 

sire genotype and year. They postulated that the observed effect of conception date on 

gestation length is mediated by the nutritional status of hinds entering the final 

trimester of pregnancy. That is, early conceiving hinds enter the final trimester of 

pregnancy when their VFI is lower than that of late conceiving hinds, resulting in 

differing fetal growth trajectories and thus different lengths of gestation. 
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2.2.3 Summary: calving date 

 

A misalignment of quality feed availability and feed demand of the lactating hind 

and her growing calf is often seen as a limiting factor for efficient venison production 

under New Zealand pastoral farming systems. While there are tools available that may 

advance conception date by up to 2 months (e.g. melatonin implants), there is 

reluctance within the New Zealand deer farming industry to implement those that 

involve administration of exogenous hormones. It is perceived that such usage 

detracts from the New Zealand marketing image of being „clean and green‟. 

Management practices that do not require the use of exogenous hormones are more 

modest in the gains they may achieve. Also, calving date is a function of both 

conception date and gestation length, and it has been found recently that for every 10 

day advance in conception date, gestation length increases by about 3 days, 

exacerbating the situation. Little is known about how change in gestation length is 

achieved, but it is likely that there is an association with nutrition of the hind in late 

gestation. 

 

2.3 Factors affecting voluntary food intake  

 

As an adaptation to living in temperate zones with predictable seasonal cycles of 

food abundance in summer and scarcity in winter, many animals exhibit seasonal 

variation in VFI, body mass and energy metabolism that do not reflect actual changes 

in food availability, but are a function of physiological changes in response to 

predictors of the seasonal environment (see review: Loudon, 1994). Such an 

adaptation is thought to have evolved so that less energy is expended on foraging for 

food during times of scarcity (Kay & Staines, 1981). Seasonal animals are also 

assumed to maintain an appropriate body mass which varies depending on 

circumstances such as age, reproductive status or season („sliding set-point‟). Body 

mass is thought to be maintained within this „set-point‟ through changes in food 

intake or energy expenditure (see review: Keesey & Hirvonen, 1997). Evidence of 

such a mechanism was demonstrated in white-tailed deer (Ammann et al., 1973) and 

red deer (Webster et al., 2000) when dry matter intake (DMI) of diets containing a 

wide range of energy densities was altered by the animals so that energy intakes and 

growth rates were similar on all diets. Similarly, Scott et al. (2008b) reported that 
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DMI of lactating red deer hinds was significantly influenced by energy density of the 

diet, resulting in little difference in total energy intake between hinds fed pellets 

containing 10.3 or 12.5 MJME/kg DM. Also, in the study of Webster et al. (2000), 

energy intake of red deer changed with season, providing evidence that the „set-point‟ 

changes with season. In a different approach, Ryg (1983) interpreted an inverse 

relationship between a hormonally-induced weight change and rate of weight change 

post-treatment as evidence for a functional „set-point‟ for body weight in reindeer 

(Rangifer tarandus tarandus) .      

 

2.3.1 Endogenous circannual rhythms 

 

Endogenous circannual rhythms act as internal clocks so that animals can adjust 

their physiology and behaviour to annual cycles of seasonal change in their 

environment. Photoperiod is the main source of predictive environmental information, 

or Zeitgeber, that entrains endogenous circannual rhythms that continue with a 

periodicity of about one year even in the absence of any external cues (see review: 

Gwinner, 1986). Compelling evidence of endogenous circannual rhythms was first 

demonstrated by Pengelley & Fisher (1957) in golden-mantled ground squirrels 

(Spermophilus lateralis) that were maintained for two years under constant 

photoperiod (light:dark, 12:12) and temperature conditions. Annual cycles of food 

intake, body condition and time of hibernation of these animals were similar to those 

of free-living squirrels.  A seasonal endogenous rhythm has also been shown to 

regulate reproduction in sheep (Karsch et al., 1989) and VFI in red deer (Simpson et 

al., 1983/84; Brinklow & Loudon, 1990; Heydon et al., 1993). 

 

2.3.2 Photoperiod 

 

The advantages of a mechanism whereby VFI matches that of food supply in 

animals living in highly seasonal environments are well recognised. Early studies by 

French et al. (1956) demonstrated a seasonal pattern of hunger in white-tailed deer 

such that VFI is maximal in summer and minimal in winter, and this cycle has since 

been reported for several ruminant species (see review: Rhind et al., 2002). Initial 

evidence for photoperiodic entrainment of the seasonal change of VFI was provided 

by the translocation of deer from the northern to southern hemisphere (Marshall, 
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1937) and detailed studies on red deer subjected to artificial photoperiod have since 

confirmed this. Pollock (1975) imposed on a group of male red deer an artificial daily 

photoperiod sequence of normal amplitude but with a 6-month period; temperature 

was not controlled. Under this photoperiod regimen two cycles of increased VFI, 

growth and antler development were compressed into one year. VFI reached its peak 

as daily photoperiod approached its longest duration and declined after the shortest 

day. Further studies supporting photoperiodic entrainment of the seasonal pattern in 

VFI have been conducted on cattle, sheep and red deer (Peters et al., 1978; Kay, 

1979; Simpson et al., 1983/84; Suttie et al., 1984; Suttie & Simpson, 1985). 

   

2.3.3 Temperature 

 

Animals living in temperate habitats are subjected to yearly variation in 

photoperiod, temperature and availability of food. Although seasonal variation in VFI 

is entrained by photoperiod (Section 2.3.2) it may also be modified by temperature. 

Energy requirements and food intake increase with exposure to low temperatures and 

conversely decrease with exposure to heat (see review: Baile & Forbes, 1974) and 

thus regulate body temperature in accordance with the „thermostatic‟ theory of 

Brobeck (1948).  

Ullrey et al. (1969) conducted a study in which pregnant white-tailed deer does 

were kept in outdoor pens for 9 weeks during late winter/early spring and exposed to 

temperatures that varied between -32.4 and 10.4 
o
C. They found no significant 

relationship between daily maximum, minimum and mean temperatures and average 

daily VFI. However, in a second study there was a significant relationship between 

mean weekly temperature and weekly VFI (Ullrey et al., 1970) in support of the 

„thermostatic‟ theory.  

In a study conducted in a less harsh environment where the mean daily winter 

minimum and maximum temperatures were 1.1 and 10.7 
o
C respectively, Webster et 

al. (1997) reported that there was no significant effect of housing on dry matter intake 

(DMI) and live weight gain (LWG) of red deer stags fed ad libitum, but animals kept 

outdoors on a restricted diet had a higher DMI and LWG than those kept indoors. 

They concluded that animals restricted to near zero growth need to eat more to 

counteract the effects of a colder environment. From relationships between the 

metabolisable energy intake (MEI) and LWG of red deer stags fed outdoors or 
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indoors during winter, Fennessy et al. (1981) calculated their maintenance energy 

requirements to be 0.85 and 0.57 MJME/kg LW
0.75

/day, respectively. 

 

2.3.4 Reproductive status 

 

As discussed in the previous section (2.3.2), seasonal variation of VFI is mediated 

by photoperiod, independent of reproductive status. However, the lower amplitude of 

VFI cycles observed in castrated, compared to entire, red deer stags (Kay, 1979; 

Loudon et al., 1989) indicates that gonadal steroids modulate amplitude of the VFI 

cycles. Anukulkitch et al. (2006) found also that gonadal status affects the pattern of 

VFI in Soay sheep. VFI of both entire and castrated rams was high under a 16 h 

light:8 h dark photoperiod (LP) and declined to a nadir between 12 and 18 weeks after 

shifting to a 8 h light:16 h dark photoperiod (SP). However, VFI of gonad-intact 

animals then recovered after 20 to 30 weeks exposure to SP during which time that of 

castrated animals remained low. This period coincided with testicular regression and 

declining blood testosterone concentrations, purportedly due to photorefractoriness of 

the gonad-intact rams, indicating that high levels of testosterone suppress VFI. 

Similarly, VFI of castrated sheep was depressed by intravenous infusions of oestradiol 

(Forbes, 1971). 

Pregnancy is a dynamic state and to ensure reproductive success the energy 

demands of the developing fetus must be met at all stages of gestation. Nicol & 

Brookes (2007) calculated the total energy requirement for the entire pregnancy of a 

red deer hind to be 55 MJME/kg birth weight above maintenance. During the last 

third of pregnancy the fetal and maternal components of pregnancy gain about 70% of 

their final mass in reindeer (Roine et al., 1982) and red deer (Adam et al., 1988a), and 

it was estimated that the additional energy requirements for pregnant above non-

pregnant hinds increases from 1.7 to 5.0 MJME/day during that time (Adam et al., 

1988b). Paradoxically however, VFI of cattle and sheep fed concentrates has been 

shown to decline in the last few weeks of pregnancy and this may be related to high 

circulating levels of oestrogens at this time (Forbes, 1971). There appears to be no 

published data on VFI of red deer hinds throughout gestation. 
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2.3.5 Physical limitation 

 

Ruminants are distinct from other animals in that they have a four compartment 

stomach consisting of the rumen, reticulum, omasum and abomasum. Initially food is 

ingested without much chewing and then later the ingesta is regurgitated, masticated 

and re-swallowed in a repeated process known as rumination, with larger material 

being selectively regurgitated. This process not only breaks down the plant cell wall 

for easier fermentation in the rumen, but also reduces particle size for passage through 

the reticulo-omasal orifice (Van Soest, 1982). Thus, the amount of time spent 

ruminating is influenced by the type of diet consumed; high fibre, poor quality forage 

requires more rumination time than concentrates. Campling & Freer (1966) reported 

that physical limitations of gut capacity set an upper limit to food intake of cows, and 

hence the rate of ingesta passage through the reticulo-omasal orifice may limit 

voluntary intake of long roughages such as hay and dried grass. However, ruminal 

capacity is adaptable over a period of time and therefore unlikely to be a limiting 

factor to VFI over long periods (Baile & Forbes, 1974). Forbes (1969) reported a 

significant negative relationship between the volume of rumen contents and the 

volume of uterus plus other abdominal organs in sheep and considered that 

competition for abdominal space in obese and pregnant animals may limit VFI.   

 

2.3.6 Summary: voluntary food intake 

 

Many animals that inhabit temperate zones have seasonal cycles of VFI that 

continue in the absence of any external cues. This circannual endogenous rhythm is 

entrained by photoperiod and is an adaptation to living in an environment with 

predictable seasonal cycles of food availability. However, although photoperiod is the 

primary environmental factor regulating VFI, temperature may also affect hunger. 

Animals living in a cold environment require more energy to maintain body 

temperature than those living in a warm environment and thus eat more. Similarly, 

energy requirements to meet the demands of the growing fetus increase dramatically 

in the last third of gestation. However, little is known about the effect of photoperiod, 

hormones and physical limitations of the rumen on VFI of the pregnant hind. Does a 

pregnant hind eat enough to support the rapidly growing fetus, or is pregnancy 

maintained at the expense of her body reserves?   
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2.4 Regulation of hunger and satiety 

 

To survive, all animals must continuously balance food intake with energy 

expenditure. Those living in temperate environments face the additional challenge of 

contending with seasonally fluctuating extremes of temperature and food availability. 

Although it has been known for some time that many animals living in such an 

environment have a „sliding set-point‟ body mass which is maintained through 

changes in food intake or energy expenditure (section 2.3) and that VFI is mediated 

by photoperiod (section 2.3.2), precisely how food intake is regulated is yet to be fully 

elucidated.   

 

2.4.1 Hypothalamus 

 

Hetherington & Ranson (1940) made electrolytic lesions to the hypothalamus in 

rats and reported that “at least one form of pathological obesity is directly traceable to 

a primary lesion in the hypothalamus” confirming the ideas of many previous 

investigators. Microscopic examination of the lesions allowed them to observe that 

destruction of the ventral portion of the hypothalamus was the most effective site for 

affecting adiposity. From these initial observations the concept developed that the 

ventral portion of the hypothalamus (VMN) controlled satiety while the lateral area of 

the hypothalamus (LHA) controlled hunger. However, much of the research was 

carried out on rodent species (rats and mice) that do not have seasonal cycles of VFI 

and were subject to severe short-term food deprivation, or carried a genetic 

abnormality. Using hypothalamo-pituitary disconnected sheep, Lincoln et al. (2001) 

provided convincing evidence that arcuate hypothalamic systems were responsible for 

generating long-term rhythms of VFI, body weight and energy balance in a seasonal 

animal. 

Discoveries on the role of the hypothalamus in control of hunger and satiety have 

been incremental in the last decade and it has been demonstrated that the concept of 

the LHA as the „hunger centre‟ and the VMN as the „satiety centre‟ is too simplistic. 

Many more hypothalamic nuclei and neuronal circuits that interact with the brainstem 

and higher cortical centres are involved in the regulation of hunger and satiety (see 

review: Suzuki et al., 2010).  
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2.4.2 Leptin and ghrelin 

 

Food intake of a healthy young rat is so precisely adjusted to its energy needs that 

its fat stores remain almost constant, but rats in which the hypothalamus has been 

destroyed eat ravenously and become obese. Brobeck (1946) suggested that food 

intake is controlled by a thermosensitive hypothalamic centre as part of the normal 

regulation of body temperature, but this was refuted by Kennedy (1953) who 

proposed that food intake is determined by some limiting factor involved in the 

synthesis or transport of fat, thus maintaining stability in body weight and fat stores: 

the „lipostatic‟ theory.  

It was not until four decades later that this concept was validated with the 

discovery of the hormone leptin (Zhang et al., 1994) and subsequent research which 

found that the rate of leptin secretion is correlated with total fat mass of the animal 

(see review: Reidy & Weber, 2000). Leptin is expressed predominantly by white 

adipose tissue, but is expressed also in brown fat, muscle, mammary gland, stomach, 

pituitary, placenta, ovary and liver. It is thought that leptin from adipose tissue may 

act in the long-term, whereas stomach leptin acts rapidly and transiently. Plasma 

factors indicative of nutritional status such as glucose, amino acids and insulin that are 

released at the time of food intake stimulate leptin secretion (see review: Cammisotto 

et al., 2010). Leptin acts in the arcuate nucleus (ARC) of the hypothalamus and 

inhibits expression of agouti-related peptide (AgRP) from neuropeptide Y (NPY) 

neurons and also activates pro-opiomelanocortin (POMC) cells to release melanocyte 

stimulating hormone (α-MSH) and promote satiety (Gao & Horvarth, 2007). Much of 

the research on leptin has been carried out on humans and laboratory rodents, but it is 

also well characterised in farm animals. Although the gene sequence varies between 

species, homology of the bovine leptin gene with that of human and mouse is 82% to 

88% (see review: Wylie, 2010). 

Ghrelin was initially purified from rat stomach cells and identified as an 

endogenous ligand specific to the growth hormone secretagogue receptor (Kojima et 

al., 1999). However, it soon became evident that ghrelin played a significant role in 

the stimulation of feeding (Wren et al., 2000) and is the only known peripherally 

active orexigenic peptide. Ghrelin is secreted by the stomach and stimulates NPY 

neurons in the ARC to silence POMC firing and express AgRP, which promotes 

hunger and feeding by reducing the anorectic effect of α-MSH (Gao & Horvarth, 
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2007). Synthesis and secretion of ghrelin are regulated by nutritional state; levels rise 

in anticipation of food and decrease postprandially. Exogenous administration of 

ghrelin either peripherally or centrally causes a rapid transient increase in VFI in 

rodents, humans and ruminants (see review: Roche et al., 2008). Ghrelin is also 

considered to play a role in providing information on the long-term nutritional status 

of ruminants, since prolonged nutrient restriction in beef cattle results in a persistently 

elevated plasma ghrelin concentration (Wertz-Lutz et al., 2008). 

 

2.4.3 Anticipatory regulation 

 

Animals that have evolved in temperate regions adjust their VFI in anticipation of 

the seasonal changes in food supply by responding to annual changes in photoperiod 

(section 2.3). These long-term (anticipatory) changes in energy regulation require 

pathways other than those known to mediate short-term homeostatic regulation. 

Experimental evidence from the Siberian hamster (Phodopus sungorus), a species that 

displays wide seasonal variations in fat accretion, VFI and reproduction, suggests that 

a seasonally appropriate body weight is continually reset according to photoperiod 

(„sliding set-point‟; section 2.3) and that there is a photoperiod-induced change in 

leptin gene expression (see review: Adam & Mercer, 2001). More recently, Ebling & 

Barrett (2008) have hypothesised that thyroid hormone-dependent changes of 

hypothalamic connections and brain growth underlie seasonal cycles of food intake 

and body weight in the Siberian hamster. Furthermore, Bradley et al. (2010) have 

reported that changes in photoperiod alter the behavioural response to ghrelin and the 

ability of ghrelin to activate ARC NPY neurons in that species. In sheep, VFI is 

maximal during late summer/early autumn and is associated with increased expression 

of NPY (see review: Clarke, 2001). An in vitro study on sheep pineal explants by 

Zieba et al. (2011) has demonstrated that anorectic (leptin) and orexigenic (orexin B 

and ghrelin) peptides act on the pineal gland directly and its response to those 

hormones depends on daily photoperiod: during long days orexin B increased, and 

leptin decreased, melatonin secretion, while ghrelin had no effect; during short days 

leptin stimulated and ghrelin reduced melatonin secretion, while orexin had no effect; 

with the addition of leptin to ghrelin-treated explant cultures  melatonin secretion was 

increased compared with cultures supplemented with ghrelin alone during both 

photoperiods. The authors proposed that in seasonally breeding animals leptin and 
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ghrelin, together, contribute to the integrative control of energy balance and 

reproduction.      

  

2.4.4 Summary: hunger regulation 

 

To modulate feeding, peripheral signals reflecting both the short- and long-term 

energy status of the animal must be transmitted to the hypothalamus.  

It is known that two peptide hormones, leptin and ghrelin, play a major role in 

maintaining metabolic homeostasis in mammals. Their primary targets are the NPY 

neurons in the ARC of the hypothalamus; NPY is a potent orexigenic hormone. 

Ghrelin stimulates and leptin inhibits NPY expression and release and thus, the 

energy balance of animals is maintained partly by the antagonistic actions of these 

two hormones. Photoperiodic history is implicated in modulation of the effects of 

these hormones on neural pathways in seasonal animals.  

 

2.5 Conclusion 

 

Many animals that have evolved in temperate regions of the world respond to 

annual changes in daily photoperiod to adjust their VFI, body mass and energy 

metabolism in anticipation of the seasonal changes in temperature and food supply. 

When these animals are translocated to more hospitable climes their extant seasonal 

cycles may no longer reflect actual changes in temperature and food availability in 

their new environment, but are a function of an endogenous circannual rhythm 

involving complex physiological changes.  

It is known that photoperiod is the primary source of predictive environmental 

information that entrains endogenous circannual rhythms, although they may be 

modified by other Zeitgebers such as temperature. Melatonin is secreted by the pineal 

gland during the hours of darkness and is the principal transducer of photoperiodic 

information to the brain, in particular, the hypothalamus. Within the hypothalamus 

lies the arcuate nucleus (ARC), which has been demonstrated to be responsible for 

generating long-term rhythms of VFI, body weight and energy balance in sheep. The 

hormones leptin and ghrelin provide information to ARC neurons of the energy status 

of the animal: ghrelin promotes hunger and leptin promotes satiety. Thus, the energy 
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balance of animals is maintained partly by the antagonistic actions of these two 

hormones.  

To maximise the productivity of farmed venison supply systems requires that food 

availability matches energy demands at all times. For the hind and rapidly growing 

calf, energy demand is highest from late pregnancy through to weaning. The 

reproductive cycle of red deer has evolved to match perfectly food availability in the 

temperate regions of Europe. However, under New Zealand lowland farming systems 

pasture quality is often low during summer, limiting the genetic potential for calf 

growth. Better alignment of energy demand with food availability may be achieved by 

advancing calving date three or four weeks to coincide with the late-October spring 

flush of pasture growth.  

Non-invasive management tools such as genetic selection for early-calving hinds 

and joining stags with hinds at early (late February) weaning have been adopted by 

many farmers resulting in earlier calving dates. However, advances in calving date 

have not always matched those expected from known conception dates. It seems that 

red deer have evolved a robust mechanism that ensures offspring are born at the 

optimal time for survival in the temperate zones of Europe: for every ten days 

advance in conception date, gestation length increases by about three days, and vice-

versa. The mechanism for this adaptation is not understood, but it has been 

hypothesised that the observed effect of conception date on gestation length is 

mediated by the nutritional status of hinds entering the final trimester of pregnancy. It 

is known that there is a photoperiod-induced reduction of VFI in non-pregnant red 

deer hinds during winter. Therefore, energy intake of early-conceiving hinds may be 

insufficient to meet the requirements of a rapidly growing fetus during the last third of 

pregnancy, thus slowing fetal growth trajectory and delaying parturition. 

The present study is the first step in testing that hypothesis. Do pregnant red deer 

hinds have a reduced VFI during winter? 
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Chapter 3: Materials and Methods 

 

3.1 Experimental design overview 

 

The study was conducted in a single year at the AgResearch Invermay Research 

Centre located in Mosgiel, New Zealand (latitude 45
o
 51

'
 S) and involved individual 

housing of  pregnant and non-pregnant adult (> 3 year-old) red deer hinds from April 

to November, during which time they were fed an ad libitum diet of deer pellets plus 

5% lucerne chaff. Food intake was monitored daily to assess the effect of pregnancy 

status and season on voluntary food intake. 

All animal manipulations were approved by the AgResearch Invermay Animal 

Ethics Committee (Project Number 11700), as required in New Zealand by the 

Animal Welfare Act 1999. All procedures were conducted by fully trained staff from 

the Invermay Agricultural Centre and in accredited facilities (NZQA accreditation 

scheme). 

  

3.2 Animals and management 

 

After weaning in early March 2009, 12 F1 Cervus elaphus hippelaphus (E) x C. e. 

scoticus (W) red deer hinds were transported from the Invermay Hill Deer Farm to the 

Invermay Flat Deer Farm. They were run with 8 F1 (E x W) hinds already resident 

there that had not reared a calf and had been used previously for intensive blood 

sampling experiments, so were well habituated to handling. All twenty hinds were 

grazed on short pasture and gradually, over a 2-week period, habituated to eating 

standard deer pellets. The initial offer of pellets was 100 g per hind per day and 

increased daily in increments of 100 g per hind per day to a maximum of 1.5 kg 

pellets per hind per day. 

Care was taken to ensure allocation of hinds to treatment groups was balanced for 

hind history and live weight (LW). Eight hinds were allocated to remain non-pregnant 

(NP) and be housed indoors from 25 March (once habituated to pellets) until the end 

of the study. It was considered that stress associated with becoming accustomed to 

indoor housing may perturb the synchronised ovulation necessary for fixed-time 

artificial insemination; therefore, the remaining twelve hinds (P) remained outside on 



22 
 

short pasture and were fed pellets until 7 days post-artificial insemination. From the 

pool of twelve P hinds eight were selected, on their perceived suitability for indoor 

housing, to remain indoors from 8 April until about 24 h post-calving. The remaining 

four P hinds were kept as „reserves‟ and were fed pellets at pasture until it was evident 

they would not be needed for the study. They then went back under normal farm 

management. Pregnancy status of P hinds was determined by rectal ultrasound 

scanning on 1 May and 23 June. 

Hinds calved indoors to enable accurate calculation of gestation length; hinds and 

calves were weighed within 24 h of parturition before hind-calf pairs were returned to 

pasture. NP hinds remained indoors until the last P hind had calved. 

 

3.3 Oestrous synchronisation and artificial insemination 

 

Twelve P hinds received a 12-day hormone treatment to synchronise ovulation for 

fixed-time artificial insemination. On 18 March (Day 0), hinds received an 

intravaginal progesterone-releasing device (Eazi-breed CIDR
®
 type G; Pfizer New 

Zealand Ltd., Mt Eden, Auckland, NZ) which was replaced by a second CIDR
®

 

device on Day 9. The second CIDR
®
 device was removed between 1000 and 1030 h 

on Day 12 and the hinds concurrently injected with 180 i.u. equine chorionic 

gonadotrophin (Folligon, Intervet, Lane Cove, NSW, Australia). 

Transcervical artificial insemination began at 1800 h on 1 April, 56 h after CIDR
®

 

device removal, using cryopreserved semen from a single E stag. Pregnancy status 

was ascertained by rectal ultrasonography (5 MHz linear array transducer; Aloka 

SSD210: Aloka Co. Ltd., Japan) 28 and 83 days later.  

 

3.4 Indoor pens 

 

Sixteen indoor pens were located in a single covered, ventilated building that was 

adjacent to outdoor exercise yards and had raceway access to a weigh-box and deer 

handling facility (pneumatic crush). Pens (approximately 6 m
2
; Figure 3.1) had a 

concrete floor covered in deep-litter sawdust and were constructed with panel walls so 

that visual contact could be maintained between neighbouring hinds in adjacent pens. 

Natural lighting, provided by skylights, was supplemented by artificial lights that 

were timed to automatically switch on at sunrise and off at sunset each day. Data 
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published by the Royal Astronomical Society of New Zealand 

(http://www.rasnz.org.nz/) were used to set sunrise and sunset times for the lights, 

with no allowance made for Civil Twilight. 

Each pen was provided with a wooden food bin and a water nose-trough fitted with 

a float valve such that water was available ad libitum; both were fixed to a wall at a 

height of approximately 1 m (Figure 3.1). Faeces were removed and the sawdust 

raked daily; all sawdust in each pen was replaced at least once per month to prevent 

build-up of ammonia fumes from urine. 

 

3.5 Feeding 

 

Throughout the period of indoor confinement the diet consisted of a commercial 

pelleted deer food (Reliance Deer Nuts, Combined Rural Traders, Yaldhurst, 

Christchurch, NZ; Tables 2.1 & 2.2) plus 5% by weight lucerne chaff (10.5 MJME/kg 

DM; 22.9% crude protein) for adequate roughage to ensure maintenance of rumen 

function. Food not eaten (refusal) was collected each day and new food offered while 

the hinds were in outside exercise yards. To avoid acidosis from grain overload hinds 

were initially offered 1 kg pellets plus 5% lucerne chaff. Thereafter the food ration 

was adjusted to appetite daily according to the rule: if the refusal was < 10% of food 

offered, the new ration was increased by 200 g; if the refusal was > 10% of food 

offered, the ration remained the same as that on the previous day. Once per week a 

sample of the residual food was collected and weighed before and after drying for 24 

h at 65
o
 C to remove water and ascertain dry matter (DM) percentage; the value 

obtained was used to calculate daily DM intake of the hinds for that week. 

  

http://www.rasnz.org.nz/
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Figure 3.1: Indoor pen (approximately 6 m
2
) with deep-litter sawdust, food bin and 

water nose-trough. 
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Table 3.1 Ingredients of the commercial pelletised ration expressed as a percentage of 

the total weight as fed. 

 

Ingredient % total weight (as fed) 

Barley 69.7 

Wheat 17.0 

Soybean meal 9.0 

Limestone (36% Ca) 2.5 

Molasses 1.2 

Salt 0.6 

    

 

Table 3.2 Dry matter (% DM), total energy (MJME/kg DM) and nutrient composition 

of batches of the pelletised ration expressed as a percentage of dry matter (% DM).  

 

Nutrient As tested by 

manufacturer 

Batch #1 

6/3-15/4 

Batch #2 

16/4–5/5 

Batch #3 

6/5-21/6 

Batch #4 

22/6-24-9 

Dry matter (%) 

 

88.7 88.7 87.3 88.1 87.8 

Total energy 

(MJME/kg DM) 

12.7 12.3 13.0 12.7 13.0 

Lipid 

 

1.8 1.7 2.5 5.3 5.6 

Crude protein 

 

15.0 16.3 12.8 13.9 13.6 

Starch 

 

51.4 46.8 53.3 51.1 55.3 

Acid detergent 

fibre 

5.1 4.6 5.9 6 4.1 

Neutral detergent 

fibre 

18.4 20.8 22.5 19.3 20.3 

Ash 

 

5.7 2.2 1.8 1.7 2.0 
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3.6 Weighing and blood samples 

 

Hinds were weighed to the nearest 0.5 kg and assessed for body condition score 

(BCS) every fortnight. BCS was based on a 5-point scale (1 = emaciation and 5 = 

obesity) as described by Audigé et al. (1998) and was assessed by visual and 

palpation appraisal of the spine, sacrum and wings of the pelvis.  

From 23 April until 5 November, blood samples were collected at four-week 

intervals via jugular venepuncture into 10 ml evacuated tubes containing K3 EDTA as 

an anticoagulant. Because of the purported pulsatile nature of ghrelin and leptin 

secretion, hinds were bled at 20 minute intervals over one hour, beginning at 1330 h 

on each collection date. The samples were kept on ice until centrifuged at 4 
o 

C for 15 

min at 2,000 g within two hours of collection. Plasma was pipetted into separate 1 ml 

aliquots for measurement of leptin and active ghrelin concentrations. In addition, 

plasma aliquots for ghrelin analysis were acidified with 50 µl of 1 N HCl and 10 µl of 

phenylmethylsulfonyl fluoride was added as a protease inhibitor to preserve the 

integrity of the octanyl moiety of ghrelin, as required to measure the concentration of 

active ghrelin. Plasma was stored at -20 
o
C until assayed. 

 

3.7 Hormone assays 

 

Twenty-minute plasma samples were pooled for each animal on each sampling 

date before assay. Samples were thawed and mixed by a vortex stirrer before 250 µl 

of the 0, 20, 40 and 60 minute aliquots was pipetted into a separate tube to make 

pooled-hour plasma aliquots. Plasma concentrations of leptin and ghrelin were then 

measured from the pooled-hour plasma aliquots in duplicate 100 µl samples using 

commercially available radioimmunoassay (RIA) kits. All procedures were carried 

out in accordance with the manufacturer‟s protocol. The precipitate was collected by 

centrifugation at 4 
o
C for 25 minutes at 2,500 g and the supernatant discarded. Assay 

tubes containing pellets were counted for 1 minute on an automatic gamma counter 

(Wallac Wizard 1470, Perkin Elmer,Wellesley, MA, USA).  

Plasma leptin concentrations were measured using a multi-species leptin RIA kit 

(LINCO Research, Cat. # XL-85K, St. Charles, MO, USA). This kit has been 

validated previously for cervids (sika deer: Suzuki et al., 2004; reindeer: Soppela et 

al., 2008; red deer: Gaspar-López et al., 2009). The antibody used in the kit was 
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raised against human leptin in guinea pigs and the protocol recommends that ng/ml 

human equivalent (HE) is used as the unit of measure. The limit of sensitivity for the 

multi-species leptin kit is 1.0 ng/ml HE. Intra- and inter-assay coefficients of variation 

were 4.8 and 2.7% respectively. 

A rat active ghrelin RIA kit (LINCO Research, Cat. # GHRA-88HK, St. Charles, 

MO, USA) was used to measure plasma active ghrelin concentrations. The kit utilises 

an antibody which is specific for the biologically active form of ghrelin with the 

octanyl group on serine 3 and has a sensitivity of 7.8 pg/ml. Prior to analysing 

experimental samples, the kit was validated for cervine plasma by demonstrating 

parallelism to the standard curve of serially diluted cervine plasma (Figure 3.2). The 

intra- and inter-assay coefficients of variation were 11.2 and 7.8% respectively.  

 

 

 

 

 

Figure 3.2 Parallelism between percentage binding for serial dilutions of cervine plasma from 5 

hinds and the standard curve generated from the rat active ghrelin RIA kit. 
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3.8 Statistical analyses 

 

Data from before 27 April, while hinds were building up to an ad libitum food 

intake, were not included in any of the analyses. 

Effect of pregnancy status on changes in mean live weight (LW), body condition 

score (BCS) and VFI during specific time periods, and on plasma hormone 

concentrations at each sampling date, were analysed by analysis of variance 

(ANOVA), separately, fitting a term for pregnancy status. The time frames for VFI 

analyses were synchronised about date of parturition to compensate for the large 

variation in parturition date. For NP hinds, Day 0 was taken as the mean parturition 

date of P hinds. 

When calculating change in VFI between seasons, mean VFI over 3 days (except 

for Days -5 and 0 when the VFI recorded only on those days was used) around the 

start and end date of the specified times was used to allow for large daily variation of 

individual hind intake. For example, VFI for Day -200 was calculated as the average 

VFI value of Days -201, -200 and -199. A semi-parametric linear mixed model with 

smoothing spline was applied to the mean VFI data using REML in the statistical 

package GenStat Version 11. Pregnancy status (Trtmnt), day of year (DOY) and the 

interaction term (Trtmnt.DOY) were fitted as fixed effects. Individual hind (ID) and 

the interaction ID.DOY were fitted as random model terms. The covariance structure 

was defined by ID and ID.DOY by allowing unrestricted correlation structure, and the 

structure formed by definition of the whole matrix. The initial values for covariance 

matrix terms were determined by estimates from running the same model but with no, 

or simple, covariance structure. An overall spline (termed DOY in the spline model), 

separate treatment splines (Trtmnt.DOY) and individual hind splines (ID.DOY) were 

also fitted as part of REML. 

Webster et al. (2000) developed equations to model the way metabolisable energy 

intake for an animal at time t (MEI(t)) is partitioned into energy for maintenance of 

metabolic live weight (Em) and energy required for growth over the next day (Eg). If 

Em (MJ/kg
0.75

) is the amount of energy required to maintain 1 kg of metabolic body 

weight (LW
0.75

), Eg (MJ/kg LWG) is the energy required to increase body weight (W) 

by 1 kg and Er (MJ) is net energy retained in a growing animal, then: 
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1) MEI(t) = Em x LW
0.75

(t) + Er(t) 

2) W(t+1) = W(t) + Er(t) / Eg 

We can eliminate Er(t) between these equations and denote change in live weight 

by LWG(t+1), giving 

3) LWG(t+1) = W(t+1) – W(t) 

      = (MEI(t) – Em x LW
0.75

(t)) / Eg 

Equation 3) was fitted by multiple linear regression of LWG(t+1) on MEI(t) and 

LW
0.75

(t) for set time periods denoting  autumn, winter and spring to P and NP hinds 

separately. Em and Eg were then calculated from estimates of the regression models 

and using equation 3) thus: 

 LWGt+1) = (1 / Eg) x MEI(t) - (Em / Eg) x LW
0.75

(t) 

     = β2 x KJME + β1 x LW
0.75

(t) 

        Em = β1 / β2 x (-1)  

Separate log likelihood ratio tests comparing regression models were then used to 

test the effect of pregnancy status, and season, on the maintenance requirement of 

hinds. 

Regression lines were fitted to the mean data of each hind over the entire study 

period to explore the relationships between plasma hormone concentrations, gestation 

length and the variables reported.  
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Chapter 4: Results 

 

4.1 General 

 

One of the NP hinds did not adapt to being confined indoors and was removed 

from the study. The remaining hinds appeared to become well habituated to indoor 

housing conditions and took about two weeks to stabilise their ad libitum intake. One 

of the P hinds lost her pregnancy somewhere between the first (1 May) and second 

(23 June) ultrasound scan and her data were not included in the analysis. The 

remaining seven P hinds all had an unassisted calving and produced healthy singleton 

calves with birth weight ranging from 7.0 – 10.5 kg (mean = 9.8 kg), which is within 

the range expected from hinds grazed at pasture. 

  

4.2 Live weight and body condition score  

 

Mean live weight (± SEM) of P and NP hinds on 27 April (Day 117) was 117.1 ± 

6.0 kg and 124.1 ± 10.3 kg respectively. A number of NP hinds went through large 

fluctuations of VFI and lost weight during an initial „settling in‟ period, before 

regaining that weight; this was not so apparent in P hinds (Figure 1).  This resulted in 

a significant difference of 103 g/day (SED 40 g/day; P < 0.05) between P and NP 

hinds in mean live weight gain (LWG) during the first 42 days of the study (autumn). 

On average, P hinds gained 75 g/day while NP hinds lost 27 g/day between late April 

and early June (Days 117 – 159). Mean live weight (± SEM) of both treatment groups 

then increased through to the last weighing day before the start of calving (9 

November, Day 313), being 146.8 ± 9.9 kg and 147.9 ± 13.9 kg for P and NP hinds 

respectively. There were no significant differences between groups in rate of mean 

live weight change over specific time periods during winter and spring (Table 4.1). 
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Table 4.1 Mean hind live weight changes (g/day ± SED) over specified time periods 

of the study where Day 1 = 1 Jan. (N.S., not significant; *, P < 0.05). 

 

Time period 

(1 = 1 Jan) Pregnant Non-pregnant SED P 

117 - 159 

(Autumn) 75 -27 40 * 

159 - 243 

(Winter) 108 123 36 N.S. 

243 - 313 

(Spring) 230 207 61 N.S. 

 

 

 

 

Table 4.2 Mean hind body condition score changes (BCS units/day ± SED) over 

specified time periods of the study where Day 1 = 1 Jan. (N.S., not significant; *, P < 

0.05) 

 

Time period 

(1 = 1 Jan) Pregnant Non-pregnant SED P 

117 - 159 

(Autumn) 0.014 0.005 0.004 N.S. 

159 - 243  

(Winter) 0.002 0.002 0.001 N.S. 

243 – 313 

 (Spring) -0.001 0.006 0.002 * 
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Figure 4.1 Profiles of individual (dotted line) and mean (solid line) live weight (kg) of pregnant 

(red) and non-pregnant (black) hinds. 

 

 

Figure 4.2 Profiles of individual (dotted line) and mean (solid line) body condition score (1 = 

emaciated, 5 = obese) of pregnant (red) and non-pregnant (black) hinds.  
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Mean body condition score (BCS) of hinds in both groups was higher on 9 

November (P, 4.0 ± 0.6; NP, 4.2 ± 0.9) than on 27 May (P, 3.4 ± 0.6; NP, 3.4 ± 1.1), 

but the pattern of BCS change during the study differed with pregnancy status (Figure 

4.2). Both P and NP hinds gained body condition during autumn and winter (P > 

0.05), but mean BCS of P hinds decreased, whereas that of NP hinds increased, during 

spring (P < 0.05; Table 4.2). 

 

4.3 Voluntary food intake 

 

Pregnancy status of the hinds had no significant (P > 0.05) effect on mean 

voluntary food intake (VFI) throughout the study except for the last five days before 

parturition when VFI of P hinds decreased dramatically (P < 0.001). This relationship 

held when VFI was expressed as both absolute intake (MJME), or when adjusted for 

metabolic live weight (MJME/kg LW
0.75

, Table 4.3). It is noted however, that there 

was a trend for P hinds to have lower VFI values for the entire duration of the study 

(Figure 4.3). Hind history (habituated or not habituated to handling) did not have a 

significant effect on hind VFI (P > 0.05) when included in the model. 

There was considerable between-hind and between-day variation in VFI. For 

example, one hind rarely exceeded a daily dry matter intake (DMI) of 1.6 kg while 

another regularly ingested more than 3.5 kg. Between-day intake of individual hinds 

often varied by more than 0.5 kg DM, with hinds on higher intakes, in particular, 

going through „feast and famine‟ cycles (Figure 4.4). 

Mean (± SEM) VFI of hinds over three consecutive days in early-autumn (30 April 

– 2 May), mid-winter (30 June – 2 July) and late-spring (31 October – 2 November) 

were 0.724 ± 0.054 MJME/kg LW
0.75

, 0.578 ± 0.029 MJME/kg LW
0.75 

and 0.686 ± 

0.034 MJME/kg LW
0.75

 respectively. On average, hind intake decreased by 0.146 ± 

0.060 MJME/kg LW
0.75

 from autumn to winter (P<0.05) and increased by 0.107 ± 

0.035 MJME/kg LW
0.75

 from winter to spring (P<0.01), seemingly aligned with the 

seasonal change in day length (Figure 4.5).  
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Table 4.3 Mean (± SED) change in hind daily voluntary food intake (VFI) over 

specified time periods of the study as calculated from regression analysis of the 

predicted mean daily voluntary food intake (VFI) and expressed as a) MJME and b) 

MJME/kg LW
0.75

 where Day 0 = day of parturition. Data have been normalised 

around days from calving to compensate for the wide variation in calving dates. Mean 

parturition date of the pregnant hinds (20 Nov) was taken as Day 0 for non-pregnant 

hinds. (N.S., not significant; ***, P < 0.001)    

 

a) Mean change in daily VFI (MJME) over specified time periods of the 

study 

Days before 

parturition Pregnant Non-pregnant SED P 

200-150 -6.507 -9.597 3.541 N.S. 

150 -100 0.993 2.301 2.607 N.S. 

100-50 2.746 5.880 2.136 N.S. 

50-20 3.212 0.939 3.430 N.S. 

20-5 -3.095 -0.906 5.370 N.S. 

5-0 -10.347 6.419 3.956 *** 

 

b) Mean change in daily VFI (MJME/kg LW
0.75

) over specified time periods 

of the study 

Days before 

parturition Pregnant Non-pregnant SED P 

200-150 -0.202 -0.251 0.103 N.S. 

150 -100 0.001 0.042 0.067 N.S. 

100-50 0.046 0.107 0.054 N.S. 

50-20 0.066 -0.001 0.084 N.S. 

20-5 -0.073 -0.040 0.123 N.S. 

5-0 -0.241 0.170 0.094 *** 
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Figure 4.3 Profiles of daily individual voluntary food intake (VFI) (top panel) and predicted mean 

VFI (bottom panel) of pregnant (red) and non-pregnant (black) hinds expressed as a) MJME and 

b) MJME/kg LW
0.75

 where Day 1 = 1 January. Dotted lines represent SEM from the spline model. 

The solid bar represents the period of parturition.   
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Figure 4.4 Examples of daily dry matter intake (kg) from two individual hinds demonstrating a) 

low mean intake with little daily variation and b) high mean intake with large daily variation. 
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Figure 4.5 Predicted mean daily voluntary food intake (MJME/kg LW
0.75

) of pregnant and non-

pregnant hinds relative to day length (hours between sunrise and sunset) during indoor feeding. 

 

The mean amount of energy required to maintain 1 kg of metabolic body weight 

(Em) and to increase live weight by 1 kg (Eg) was calculated from estimates of 

regression models regressing daily live weight gain on metabolic live weight (LW
0.75

) 

and metabolisable energy intake (MEI) as outlined in Section 3.8. The estimates were 

obtained by fitting the data of P and NP hinds for set time periods corresponding to 

autumn, winter and spring to the same model, separately (Table 4.4). The estimates of 

Em for NP hinds in autumn may be artificially high because two hinds in that group 

were gluttonous at the beginning of indoor confinement, had widely fluctuating 

intakes and lost body weight. It is worth noting that standard error of the mean (SEM) 

values are high for both groups in winter and autumn, but not spring. Separate 

likelihood ratio tests were then used to test the effect of pregnancy status, and season, 

on Em of hinds. A significant amount of the extra variation was explained by 

pregnancy status in winter and spring (P < 0.01), but not autumn (P > 0.05). Overall, 

there was a significant difference (P < 0.0001) in the regression relationships between 

seasons for the maintenance requirements of hinds. 
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Table 4.4 Multiple linear regression of daily live weight gain regressed on metabolic live weight (at the start of each set time period) and 

mean metabolisable energy intake over set time periods corresponding to autumn, winter and spring. Em (± SEM) is the mean amount of 

energy required to maintain 1 kg of metabolic body weight (MJ/kg
0.75

) and Eg (± SEM) is the mean amount of energy required to increase 

live weight by 1 kg (MJ/kg). Separate log likelihood ratio tests comparing regression models were then used to test the effect of pregnancy 

status on the maintenance requirement of hinds at each season with P being the probability that treatment does not explain the variation 

between fitted lines. (N.S., not significant; **, P < 0.01)  

 

 

 

Time period 

(1 = 1 Jan) 

Pregnant Non-pregnant  

 

P 

Em 

(MJ/kg
0.75

) 

SEM Eg 

(MJ/kg) 

SEM Em 

(MJ/kg
0.75

) 

SEM Eg 

(MJ/kg) 

SEM 

 (Autumn) 

117-159 

 

0.377 

 

0.369 

 

138.2 

 

160.2 

 

0.818 

 

0.242 

 

148.9 

 

259.2 

 

N.S. 

 (Winter) 

159-243 

 

0.292 

 

0.251 

 

89.99 

 

78.22 

 

0.343 

 

0.279 

 

78.98 

 

79.85 

 

** 

 (Spring) 

243-313 

 

0.410 

 

0.062 

 

40.98 

 

9.75 

 

0.487 

 

0.068 

 

45.71 

 

11.56 

 

** 
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4.4 Leptin 

 

Pregnancy status had no significant effect on mean plasma leptin concentration at 

any of the sampling times (Table 4.5) and there was no discernable seasonal pattern of 

circulating leptin concentration (Figure 4.6).  

Intake of individual hinds was not associated with their plasma leptin concentration 

(Figure 4.7). However, there was a significant relationship between BCS and 

circulating leptin concentration (r
2
 = 0.411, P < 0.01, Figure 4.8), such that, for every 

0.5 unit increase in mean BCS mean circulating leptin concentration increased by 

0.275 ng/ml human equivalents (HE).   

 

 

Table 4.5 Mean concentration of plasma leptin (ng/ml HE ± SED) at each sampling 

date. (N.S., not significant) 

 

Sampling date Pregnant Non-pregnant SED P 

23 Apr 1.881 2.310 0.335 N.S. 

21 May 1.899 2.093 0.274 N.S. 

17 Jun 1.940 1.844 0.224 N.S. 

16 Jul 2.074 2.350 0.491 N.S. 

13 Aug 2.107 2.123 0.372 N.S. 

10 Sep 2.326 2.271 0.383 N.S. 

8 Oct 2.090 2.263 0.385 N.S. 

5 Nov 1.949 2.203 0.390 N.S. 
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Figure 4.6 Mean plasma leptin concentration (ng/ml HE) of pregnant (red) and non-pregnant 

(black) hinds. The error bars are the SED at each sampling date.  
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Figure 4.7 Profiles of daily voluntary food intake (MJME/kg LW
0.75

) of individual pregnant (red) 

and non-pregnant (black) hinds and their corresponding plasma concentrations of leptin (blue) and 

ghrelin (green).    
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Figure 4.8 Regression of mean body condition score (BCS, 1 = emaciated, 5 = obese) with mean 

concentration of circulating leptin (ng/ml HE) of pregnant (red) and non-pregnant (black) hinds. 

 

 

4.5 Ghrelin 

 

Pregnancy status had no significant effect on mean concentration of plasma ghrelin 

at any of the sampling times (Table 4.6). Mean concentration of circulating ghrelin 

increased from April to July and then decreased (Figure 4.9), but there was no 

significant relationship between mean plasma ghrelin concentration and season. 

Intake of individual hinds was not associated with level of circulating ghrelin. (Figure 

4.7).  
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Table 4.6 Mean concentration of plasma ghrelin (pg/ml ± SED) at each sampling 

date. (N.S., not significant) 

 

 

Sampling date Pregnant Non-pregnant SED P 

23 Apr 136.8 122.8 31.9 N.S. 

21 May 204.0 225.1 40.5 N.S. 

17 Jun 209.4 309.1 49.0 N.S. 

16 Jul 260.4 360.3 87.7 N.S. 

13 Aug 225.0 276.0 47.7 N.S. 

10 Sep 223.3 308.9 46.0 N.S. 

8 Oct 197.7 248.3 38.9 N.S. 

5 Nov 222.3 308.1 84.7 N.S. 

 

 

 

 

 

Figure 4.9 Mean plasma ghrelin concentration (pg/ml) of pregnant (red) and non-pregnant (black) 

hinds. The error bars are the SED at each sampling date.  
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4.6 Gestation length 

 

Mean gestation length of the hinds was 233.00 ± 2.32 (mean ± SEM) days with the 

first hind calving on 13 November and the last on 2 December. There was a 

significant negative correlation of gestation length with mean VFI during the study 

period (r
2
 = 0.51; P< 0.05) such that, for every 0.1 MJME/kg LW

0.75
/day increase in 

mean VFI, gestation length decreased by 6.4 days (Figure 4.10). Calf birth weight, but 

not sex, was associated significantly (r
2
 = 0.75; P < 0.05) with gestation length. 

Gestation length decreased by 4.8 days for every 1 kg increase in calf birth weight. 

Gestation length was not correlated significantly with hind live weight and BCS or 

circulating levels of leptin and ghrelin. 

 

 

 

 

Figure 4.10 Regression of mean voluntary food intake (MJME/kg LW
0.75

) during the study period 

with gestation length.  
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Chapter 5: Discussion 

 

The results from the current study support the hypothesis that pregnancy status of 

red deer hinds has no significant effect on the, presumed, photoperiod-mediated 

reduction of VFI during winter. VFI of both P and NP hinds decreased by about 20% 

from autumn to mid-winter (1 May – 1 July) and then recovered to pre-winter levels 

by the end of spring (1 November). The amplitude of the change in VFI between 

autumn, winter and spring in the present study was similar to that reported previously 

for non-pregnant red deer hinds (Suttie & Simpson, 1985; Loudon et al., 1989). 

Although seasonal cycles in VFI of housed red deer offered ad libitum access to a 

concentrate diet have been well documented for young growing deer of both sexes, 

adult stags and non-pregnant adult hinds (see review: Loudon, 1994), this appears to 

be the first observation reported for pregnant red deer. 

Body mass of seasonal animals is maintained within a „sliding set-point‟ which 

varies depending on age, reproductive status and season. Hunger is thought to be a 

consequence of seasonal changes in growth rate, rather than its cause (Kay, 1988). 

Thus, a seasonally appropriate body mass is maintained through changes in food 

intake or energy expenditure in response to photoperiod (Adam & Mercer, 2001). 

Previous studies of housed red deer fed an ad libitum pelleted diet have reported that 

the body weight cycle is associated with that of VFI (Simpson et al., 1983/84; Suttie 

& Simpson, 1985; Suttie et al., 1987; Loudon et al., 1989; Semiadi et al., 1994; 

Webster et al., 2000), presumably because change in energy intake is a consequence 

of seasonal changes in growth rate (Webster et al., 2000). Similarly, in the present 

study, VFI was lower in winter when LWG was about half of that in spring. 

In the present study the overall daily energy intake required to maintain 1 kg of 

metabolic body weight (Em) was significantly different between seasons, increasing 

1.4-fold from winter to spring. Silver et al. (1969) found that the fasting metabolic 

rate of white-tailed deer increased 1.8-fold between winter and summer, and Holter et 

al. (1976) reported that Em of young white-tailed deer increased from 0.50 MJME/kg 

LW
0.75

/day in winter to 0.75 MJME/kg LW
0.75

/day (i.e. 1.5-fold) in summer. Simpson 

et al. (1978) reported a smaller increase in Em requirements of weaned male red deer 

calves, increasing from below 0.45 MJME/kg LW
0.75

/day in winter, to 0.50 MJME/kg 

LW
0.75

/day in summer. Conversely, Webster et al. (2000) found no evidence of 
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significant variation in Em between seasons in male red deer calves. The overall Em of 

housed weaned male red deer calves fed a concentrate diet was calculated to be 0.45 ± 

0.22 MJME/kg LW
0.75

, and the overall energy intake required to increase body weight 

by 1 kg (Eg) was 53 ± 8.5 MJME/kg LWG. This compares to 0.33 ± 0.21 MJME/kg 

LW
0.75

 and 90.41 ± 45.21 MJME/kg LWG
0.75

, respectively, in the present study, 

indicating that adult hinds may require less energy to maintain body weight, but more 

for LWG, than young stags. However, the small sample sizes and large between-hind 

variations in VFI and LWG in the present and published studies result in large error 

values, making it difficult to interpret differences both within and between studies. 

Furthermore, such estimates must be interpreted with caution because of errors 

associated with the assumed partitioning of energy intake, especially since seasonal 

effects on the efficiency of energy utilisation will be confounded with age in the study 

of Webster et al. (2000) and pregnancy status (present study). The latter may be 

substantiated by there being a significant difference in Em between P and NP hinds 

during winter and spring, but not in autumn. The fetus begins to grow rapidly in the 

last third of pregnancy (Adam et al., 1988a), and thus initiates differences in nutrient 

partitioning as P hinds ensure the energy requirements of the growing fetus are met 

(Augustine et al., 2008).  

Large variation in both VFI and LWG was a feature of the present study. Some 

hinds went through cycles of high and low VFI, which resulted in fluctuations in live 

weight, possibly through variation in gut fill. A diet high in readily available 

carbohydrates, such as in the present study, may reduce intake due to acidosis (Elam, 

1976). Although the ration on offer contained 5% lucerne for roughage to ensure 

maintenance of rumen function, greedy hinds consuming large quantities of pellets 

may have suffered from acidosis and reduced their intake, recovered, and then 

repeated the cycle. Alternatively, those hinds may have been actually regulating their 

intake to maintain an appropriate „energy balance‟ (Scott et al., 2008b). Other hinds 

consumed a more modest amount of food throughout the study with little variation in 

live weight. It was noted also that some animals appeared more „nervous‟ than others, 

and from the state of the sawdust bedding, they spent considerable time pacing up and 

down the pen. Such hinds would expend more energy than others that stayed calm and 

would therefore require a higher food intake to maintain live weight (Simpson et al., 

1978).  Also, acute stress leads to increased secretion of corticotrophin-releasing 

factor, which can cause centrally mediated changes in feeding (Krahn et al., 1984). 
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Unfortunately, instances of altered hind behaviour were not recorded and it is not 

possible to substantiate these arguments.   

Pregnancy is a dynamic state and to ensure reproductive success the energy 

demands of the developing fetus must be met at all stages of gestation. In nutritionally 

poor environments red deer hinds may conceive successfully one year but fail the next 

because of poor body condition at the time of the rut (Mitchell et al., 1976). During 

the last third of pregnancy the fetal and maternal components of pregnancy gain about 

70% of their final mass in red deer (Adam et al., 1988a), and it was estimated that the 

additional energy requirements for pregnant, above non-pregnant, hinds increases 

from 1.7 to 5.0 MJME/day during that time (Adam et al., 1988b). Asher et al. (2005a) 

reported that housed pregnant hinds allowed ad libitum access to a concentrate diet 

increased their daily VFI from 0.6-0.7 MJME/kg LW
0.75

 (~ 20 MJME) at Day 150 of 

gestation to 0.8-0.9 MJME/kg LW
0.75

 (~ 29 MJME) at Day 210, an increase in daily 

VFI of ~ 9 MJME, almost double the estimate of Adam et al. (1998b). However, the 

estimate of Adam et al. (1998b) was derived from measuring chemical components of 

the conceptus and makes no allowance for increased body condition of the hinds, as 

occurred in the study of Asher et al. (2005a).  

Surprisingly, P hinds in the present study did not increase their VFI in the last third 

of pregnancy above that of NP hinds during the corresponding period. This is 

counterintuitive, as one would expect P hinds to require more food than NP hinds, to 

meet the energy demands of the growing fetus.  Between Day 130 (mid-July) and Day 

210 (late October) of gestation, P hinds increased their daily VFI by 6.0 MJME and 

NP hinds increased their daily VFI by 6.9 MJME during the same period. 

Paradoxically, however, P hinds tended to gain more live weight than NP hinds, 

although eating less. This may, in part, be explained by the more efficient use of 

nutrients during pregnancy (Brockway et al., 1963). Moreover, although BCS of non-

pregnant hinds increased from 1 September to 9 November, that of pregnant hinds 

decreased, indicating a moderate energy imbalance during the last trimester of 

pregnancy. In effect, hind body condition (i.e. fat) served as an energy store and fat 

was mobilised when VFI was insufficient to meet the energy demands of the fetus. 

Likewise, pregnant Svalbard reindeer (Rangifer tarandus platyrhyncus) have large fat 

reserves in autumn which are used primarily during the last two months of gestation 

and early lactation, presumably to ensure reproductive success (Tyler, 1987). 
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Nicol & Brookes (2007) calculated the total energy requirement above 

maintenance for the entire pregnancy of a red deer hind to be 55 MJME/kg calf birth 

weight. It is possible to make a similar calculation for P hinds in the present study and 

compare that value with the amount of energy required for growth of the fetus as 

calculated by Nicol & Brookes (2007), thus. Mean calf birth weight was 9.8 kg, which 

would equate to the total energy requirement of P hinds during pregnancy being 539 

MJME above maintenance of NP hinds for the same period. Mean Em and LW of NP 

hinds during the study was 0.51 MJME/kg LW
0.75

/day and 132.5 kg, respectively; i.e. 

total maintenance requirement of a NP hind for 233 days was 4640 MJME. Mean VFI 

of P hinds during the study was 22.2 MJME/day or 5173 MJME for the mean 233-day 

gestating period; i.e. 533 MJME above maintenance of NP hinds during the same 

period. In other words, only 6 MJME less than the 539 MJME estimated for fetal 

growth according to the calculations of Nicol & Brookes (2007). 

While validating the calculations of Nicol & Brookes (2007), such an estimate for 

the whole gestating period is rather simplistic and does not reflect the true dynamics 

of energy demand throughout pregnancy. P hinds gained both LW and BCS in the 

first two thirds of pregnancy, before continuing to gain LW but lose BCS in the final 

third of pregnancy, when 70% of fetal growth occurs (Adam et al., 1988a). During 

that time much of the energy for fetal growth came „off the back‟ of the hinds and 

highlights the need for hinds to be in good body condition going in to winter. It seems 

that the observed depression in VFI during winter results in an inability of the hind to 

meet the demands of a rapidly growing fetus through nutritional intake alone, 

resulting in an energy shortfall which is met by body reserves during the last third of 

pregnancy. Consideration must be given also to the fact that hinds in the present study 

were housed indoors and had access to an ad libitum ration of high quality food. 

Fennessy et al. (1981) found that the winter maintenance requirement of stags 

outdoors was about 50% higher than that for stags indoors, which would exacerbate 

the negative energy balance under pastoral farming conditions. Hinds in the present 

study gained body mass throughout winter, but the general pattern of LW change for 

pregnant red deer at pasture includes a slight weight loss during winter (Fennessy et 

al., 1981; McNeill et al., 2010).  

VFI of the P hinds reached a peak about 3 weeks before parturition then decreased 

gradually until a precipitous drop in the few days immediately preceding calving. 

Such a depression in VFI as parturition approaches occurs also in cows and sheep, 
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and may in these species result in metabolic disorders such as ketosis and 

hypocalcaemia (Ingvartsen & Andersen, 2000; Melendez et al., 2006). There is a 

significant negative relationship between the volume of rumen contents and the 

volume of uterus plus other abdominal organs in sheep (Forbes, 1969). It is possible, 

therefore, that physical size of the uterus and conceptus in the final stages of 

pregnancy limits abdominal space available for other organs, thus restricting volume 

of the rumen (Forbes, 1969). However, hinds in the present study received a high 

quality diet of pellets containing > 12.5 MJME/kg as compared to a low quality hay 

diet fed to ewes in the study of Forbes (1969). Therefore, it is unlikely that 

competition for abdominal space limited VFI in this study. It is worth noting, 

however, that competition for abdominal space in the final weeks of pregnancy may 

possibly restrict intake of hinds on low quality feed at pasture. A more plausible 

explanation for the observed decrease in VFI of P hinds is an effect of the progressive 

increase in oestrogen levels during the second half of pregnancy, reaching a peak 3 to 

0 days before parturition (Tucker, 1985). Intravenous infusions containing quantities 

of oestrogens similar to those secreted in late pregnancy depressed VFI of castrated 

male sheep fed a concentrate diet (Forbes, 1971). In addition, corticotrophin-releasing 

factor (CRF) has been demonstrated to decrease VFI in rodents (Richard, 1998) and 

sheep (Ruckebusch & Malbert, 1986). Therefore, the CRF-mediated increase in 

circulating maternal cortisol that is observed in the periparturient period (Tucker, 

1985) may also play a role in the precipitous decline in VFI observed at that time in 

the present study.  

Mean plasma leptin concentration varied between 1.84 and 2.35 ng/ml HE in the 

present study, a range similar to that reported previously by researchers using the 

multi-species leptin RIA kit on cervid plasma (Suzuki et al., 2004; Soppela et al., 

2008; Gaspar-Lopez et al., 2009). Leptin is secreted primarily by white adipose tissue 

and there is a positive relationship between body fatness and circulating leptin levels 

in both monogastric (Morgan & Mercer, 2001; Mustonen et al., 2005; Klok et al., 

2007) and ruminant (Delavaud et al., 2000; Suzuki et al., 2004) species. Gaspar-

López et al. (2009) found also that the relationship between leptin and BCS differed 

with season and plasma testosterone concentration in Iberian red deer (C. e. 

hispanicus) stags, suggesting a role for gonadal steroids in the modulation of leptin 

secretion.  In addition, it has been shown that leptin secretion is modulated by daily 

photoperiod in ruminants, independently of food intake, body fatness and gonadal 
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feedback (Bocquier et al., 1998; Soppela et al., 2008). Furthermore, photoperiod has 

an effect on sensitivity of the hypothalamus to leptin in seasonal mammals, becoming 

leptin resistant during „long days‟ and leptin sensitive during „short days‟ (Rousseau 

et al., 2003; Adam et al., 2006; Zieba et al., 2007). Such a mechanism enables fat 

deposition during summer and mobilisation during winter as occurred in the P hinds 

of the present study, but no significant relationship was found between plasma leptin 

concentration and VFI, stage of season or pregnancy status. There was, as expected, a 

positive relationship between plasma leptin concentration and BCS, suggesting that 

level of adiposity plays the dominant role in determining the concentration of leptin 

circulating in red deer. 

Pregnancy has been reported to alter sensitivity of the hypothalamus to leptin in 

rats, with leptin unable to suppress VFI in pregnant rats, as it does in non-pregnant 

animals (Grattan et al., 2007; Ladyman et al., 2009). Thus, despite elevated plasma 

leptin concentration, pregnancy in rats is associated with hyperphagia and increased 

fat mass. There was no evidence of such leptin resistance during pregnancy in the 

present study; VFI of pregnant hinds did not increase above that of NP hinds. 

Moreover, BCS decreased in the last third of pregnancy, as did circulating leptin 

concentration. 

Pregnancy status had no significant effect on plasma ghrelin concentration and 

there was no significant association between food intake and level of circulating 

ghrelin. However, it is noted that there was a trend for both food intake and ghrelin 

concentration to be lower in P than NP hinds from June until the end of the study. 

Ghrelin is thought to play a minor role in modulating long-term seasonal body weight 

cycles, but acts predominantly as a short-term regulator of feeding by playing a 

pivotal role in the initiation of feeding. This role has been firmly established in 

monogastric species (Wren et al., 2000; Tschöp et al., 2000: Nakazato et al., 2001), 

but is less certain in ruminants. In cows, plasma ghrelin concentration decreased 1 h 

after feeding before recovering to pre-feeding levels (Hayashida et al., 2001). In 

sheep, it has been shown to increase immediately prior to, as compared to an hour 

before, a scheduled meal and then decline rapidly during feeding (Sugino et al., 

2002). However, changing the feeding pattern modified time of ghrelin increase and 

the authors considered that the observed increases may have been mediated by a 

conditioned emotional response, rather than hunger. Harrison et al. (2008) injected 

ghrelin through intracerebroventricular cannulae into oestradiol-implanted castrated 
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male sheep in „long-day‟ (LD) or „short- day‟ (SD) photoperiods. They found that 

ghrelin increased VFI in LD but not SD. A similar response has been reported in 

Siberian hamsters, a seasonal rodent (Bradley et al., 2010). In contrast, Iqbal et al. 

(2006) reported that neither intracerebroventricular nor intravenous ghrelin injection 

stimulated VFI in ovariectomised ewes, and concluded that ghrelin does not play a 

significant role in regulating ingestive behaviour in that species. However, the study 

was undertaken during the breeding season when day length was shortening, and with 

regard to the study of Harrison et al. (2008), ewes may have become refractory to the 

VFI stimulatory effects of ghrelin. 

In the present study, hinds were allowed ad libitum access to food and water, and 

the blood sampling regimen began at the same time on each occasion (1330 h). 

However, food rations were changed at about the same time each day (0830 – 1030 h) 

and hinds invariably began eating as soon as they were returned to their pen. It is 

possible, therefore, that blood sampling took place at the nadir of ghrelin secretion, 

masking a possible difference in hunger between P and NP hinds. There was no 

significant effect of season on circulating levels of ghrelin. This is in agreement with 

Harrison et al. (2008) who found that mean levels of circulating endogenous ghrelin 

were not different between LD and SD. However, the possibility that the present 

samples were obtained at the nadir of daily ghrelin concentrations means that any 

seasonal effects may have been masked by the time of sampling. 

There was a 19-day spread in calving date despite all hinds conceiving to artificial 

insemination on 1 April and having ad libitum access to high quality food. Asher et 

al. (2005a) reported a negative correlation between duration of pregnancy and change 

in hind live weight during late pregnancy in hinds on differing planes of nutrition. 

They hypothesised that fetal induction of parturition is dependent on attainment of a 

critical size, ensuring birth of a viable neonate. In the present study, gestation length 

was negatively correlated with energy intake and heavier calves had a shorter 

gestating period than lighter calves. This supports the hypothesis that variation in 

gestation length compensates for variation in fetal growth under conditions of a 

moderate maternal energy imbalance (Asher et al., 2005a). It is interesting to note that 

6 out of 7 calves had a birth weight (BW) in the range 9.5-10.5 kg; the remaining calf 

had a BW of only 7.0 kg after 245 days gestation. The hind giving birth to this calf 

consumed approximately 0.2 MJME/ kg LW
0.75

 less than contemporaries for much of 

the study and entered winter (8 June) with a BCS 1.1 unit less than the average for P 
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hinds on that date. It would appear that in the face of a more severe energy imbalance, 

prolonged gestation length was unable to compensate fully for the reduced fetal 

growth trajectory. In this instance, the calf was born at a lower birth weight, as has 

been reported previously for red deer (C. e. scoticus) on the Isle of Rhum, Scotland 

(Albon et al., 1983), North American wapiti (Thorne et al., 1976) and red deer 

gestating wapiti (C. e. roosevelti) x red deer calves (Asher et al., 2005b). 

This study supports the hypothesis that pregnancy status has no significant effect 

on the photoperiod-mediated depression in VFI of red deer hinds during winter. It is 

inferred that pregnant hinds are unable to overcome an endogenous cycle of VFI and 

therefore cannot increase their VFI to meet the energy demands of a rapidly growing 

fetus in the last third of gestation. Instead, the extra energy required to support the 

pregnancy is attained through mobilisation of the hinds‟ body energy reserves, i.e. fat. 

This highlights the importance of ensuring that pregnant hinds are in good body 

condition going in to winter, and that high quality feed is available throughout 

gestation.  
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Chapter 6: Conclusion 

 

This thesis reports on a study designed to test the hypothesis that pregnancy status 

has no affect on the photoperiod-mediated decline in VFI during winter. 

There was no significant difference between P and NP hinds in mean VFI 

throughout the study except for the last five days before parturition when VFI of P 

hinds plummeted, strongly supporting the stated hypothesis. Apparently, this has not 

been reported previously in red deer. Intake was significantly lower in winter than 

autumn or spring, seemingly aligned with day length. However, the study was not 

designed to test if VFI was modulated by photoperiod, therefore, it can only be stated 

that VFI of both P and NP red deer hinds was lower in winter, than in autumn and 

spring. 

Except for autumn, LWG of both groups was similar, winter LWG being about 

half that in spring. However, BCS of P hinds declined, whereas that of NP hinds 

continued to increase, during spring, indicating mobilisation of fat to meet the energy 

requirements of the rapidly growing fetus. It is hard to conceptualise the evolutionary 

advantage of a mechanism whereby an animal will lose body condition to support 

fetal growth when food is available in abundance. However, it must be remembered 

that deer evolved in the northern latitudes of Europe, where seasonal variation in 

climate and food availability are more extreme; from abundance in summer, to 

scarcity in winter. The endogenous cycle of body growth and VFI is thought to have 

evolved to parallel that of the seasons so that less energy is expended on foraging for 

food during times of scarcity. As in the present study, pregnant Svalbard reindeer 

accumulate fat reserves over the summer which are then mobilised primarily during 

the last two months of gestation and early lactation to ensure reproductive success. 

The female of the species has thus evolved a fat-biased metabolism to cope with the 

demands of producing offspring in a harsh environment. 

A secondary objective of the study was to measure at different stages of the season 

the concentrations of two known appetite regulating hormones, leptin and ghrelin, 

circulating in the body. It was considered that plasma concentration of these 

hormones may be indicative of the energy status of the hinds, and indeed, the 

concentration of plasma leptin was associated with BCS, as expected. However, no 

significant difference between P and NP hinds in circulating concentrations of either 
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leptin or ghrelin was detected at any of the sampling times during the study, despite P 

hinds having a negative energy balance in the last third of pregnancy. This indicates 

that red deer hinds may have an altered sensitivity of the hypothalamus to these 

hormones during pregnancy, as has been reported for leptin in other seasonal 

mammals. Although this study was not designed to test such a hypothesis, it would 

appear that VFI of red deer hinds may be modulated by a change in sensitivity of the 

hypothalamus to leptin and ghrelin, rather than any variation in concentrations of 

these hormones circulating in the body. 

The design of this study was appropriate to test the stated hypothesis and new 

knowledge on VFI of pregnant red deer has been obtained. A power analysis based on 

data from a previous study indicated 6-8 animals per group would be sufficient to 

detect with 80% confidence a difference in VFI between seasons at the 5% level of 

significance. Indeed, the present study detected a significant difference in VFI 

between autumn and winter (P < 0.05) and winter and spring (P < 0.01).  However, 

conclusions drawn from the study may have been more robust if more animals were 

included in the study. For instance, a retrospective power analysis of actual data from 

the study indicated that 24 animals per group would be required to detect with 80% 

confidence a significant difference (P < 0.05) between P and NP hinds in mean VFI 

during spring. However, such a large number of animals would probably preclude 

individual penning of animals and would therefore require some sort of automated 

feeding station to accurately determine individual animal intakes in a group situation. 

Unfortunately, this would introduce the possibility of behavioural problems due to the 

hieratical nature of red deer. It is difficult to recommend a practical solution to the 

conundrum of having sufficient animal numbers to detect a significant difference 

between treatments, and the study being practical from a management perspective. In 

the present study more uniformity in animal history (habituated to handling, reared a 

calf) and initial LW (94.5 - 168.0 kg) and BCS (2.5 – 4.5) may have helped reduce 

some of the large standard errors observed, enabling seemingly large differences 

between mean values to reach significance. However, it was considered ethically 

responsible to include in the study the eight animals that had, in previous studies, 

become habituated to handling. Unfortunately a limited number of animals of the 

same F1 (E x W) genotype were available from the farm to make up the required 

number of hinds. Nonetheless, including hind history as a variable in the VFI model 

did not reach significance.  
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From the results of this study a mechanism of how pregnant hinds meet the energy 

demands of pregnancy in the face of reduced VFI during winter and early spring has 

been inferred, and a recommendation on how to manage pregnant hinds to mitigate 

these effects has been made. Further research to elucidate the inference that hinds are 

unable to overcome an endogenous cycle of VFI to meet the demands of pregnancy 

would require using an artificial LD photoperiod during winter/early spring. If the 

inference is correct, pregnant hinds on such a regime would eat more and produce 

heavier calves and/or have a shorter gestating period than those exposed to natural 

day length. 

The present study was the first step in testing the hypothesis that early-conceiving 

hinds have a longer gestating period than those conceiving later because of variation 

in VFI and fetal growth trajectory. A 2 x 2 factorial study is in progress as the second 

stage of testing that hypothesis (I.C. Scott, unpublished). Hinds were artificially 

inseminated mid-March or late-April, housed inside and fed an ad libitum or 

maintenance ration of concentrated pellets; conceptus volume was measured by 

computer tomography (CT) scan at 120, 150, 180 and 210 days of pregnancy. If the 

hypothesis is correct, fetal growth trajectory and gestation length will be similar in 

both groups of early-conceiving hinds and late-conceiving hinds on the maintenance 

ration, but the fetus will grow quicker, and gestation length will be shorter, in late-

conceiving hinds on the ad libitum ration. 

In conclusion, this study was undertaken with the intention of providing New 

Zealand lowland deer farmers with a management tool to mitigate the effects of 

evolutionary adaptation of red deer to climatic conditions in the northern latitudes of 

Europe. Earlier calving (mid-October) better aligns feed availability with nutritional 

demand of the lactating hind under New Zealand lowland pastoral conditions, 

enabling the calf to express its maximum genetic growth potential. To achieve the 

New Zealand Deer Industry goal of “more, heavier and earlier”, farmers must ensure 

early-conceiving hinds are in good body condition going in to winter and that high 

quality feed is available throughout gestation.    
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