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Abstract of a Dissertation submitted in partial fulfilment of the 

requirements for the Degree of BAgSci. (Hons). 

Abstract 

Temporal variations in arsenic, copper and lead concentrations in Christchurch 

municipal compost and their accumulation in Canterbury soils 

 

by 

Arnoldus De Jager 

 

Arsenic (As) is a naturally occuring element in soils. It is a non essential trace metal that can have 

toxic effects in both plants and animal at relatively low concentrations. Anthropogenic sources 

of As have included its use in insecticides, herbicides and defoliants in the past while today its 

commonly used in agricultural production include mining and smelting of non-ferrous metals from 

runoff or mine tailing waste or smelter emissions.  It is widely used as a feed additive for poultry and 

swine, and the resulting manures can contain elevated As concentrations. Minor sources of As are 

also derived from phosphate fertilisers, and fossil fuel combustion. 

This study was completed to investigate the potential sources of the seasonal elevated 

concentrations of As in Christchurch municipal compost and to investigate potential issues arising 

from the application of the compost product to agricultural soils in terms of trace metal 

accumulation. 

Results indicated a significant trend in As where concentrations were at a minimum during winter 

while also having significant positive correlations with both chromium (Cr) and copper (Cu). 

Additionally, As had a significant negative correlation with average Christchurch temperatures, which 

all suggested CCA treated timber could be a possible source of the variation due to the burning of the 

treated timber and subsequent addition of the ashes to the green waste bins. 

An accumulation model was also formulated to attempt to quantify the accumulation of As, Cu, and 

lead (Pb) within agricultural soil to.     

Keywords: Municipal solid waste, MSW, chromated copper arsenate, CCA, treated timber, Lead.   
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Chapter 1 

Introduction: Municipal compost 

Waste management policy in New Zealand cities as well as in other countries around the world is 

increasingly looking to composting as a potential way of minimising the amounts of waste going into 

landfill. This is becoming a more serious problem with the exponentially expanding global population 

producing more and more waste every year.  

Municipal compost is a potential long-term solution as it diverts some of the material from the 

landfill. This is achieved by separating out and subsequently composting the organic fraction of 

municipal solid waste (MSW), which can then be reused as a soil conditioner and fertiliser.  The 

organic fraction commonly consists of household food waste as well as garden green 

waste and makes up about 65% of the total MSW (Kaldjian, 1988). Hence, the 

separation and composting of this waste is considered a relatively cost-effective way of reducing a 

substantial amount of waste going into landfills while also producing a saleable product thathas 

benefits for arable production in terms of nutrient supply and enhanced soil properties (Epstein, 

Chaney, Henry, & Logan, 1992; Eriksen, Coale, & Bollero, 1999; Wolkowski, 2003). The main issue 

with the use of municipal compost is the presence and potentially high concentrations of trace 

metals and other micronutrients which can accumulate within soils and potentially pose threats 

to agricultural productivity and human health.   

Arsenic is a non-essential trace metal in both plants and animals. It has been used in the past as 

insecticides, herbicides and defoliants in agricultural production. This includes inorganic salts and 

various organic compounds of both arsenite (As[III]) and arsenate (As[V]) (Peterson, Benson, & Zieve, 

1981). Arsenic is naturally found in some sedimentary rock and in geothermally active 

areas (Peterson et al., 1981). Anthropogenic sources of As include mining and smelting of non-

ferrous metals from runoff or mine tailing waste or smelter emissions.  It is also widely used as a feed 

additive for poultry and swine, and the resulting manures can contain elevated As concentrations. 

Minor sources of As are also derived from phosphate fertilisers, fossil fuel combustion (including land 

disposal of fly ash and from municipal sewage sludges (O’Neill, 1990; Peterson et al., 1981).    
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Chapter 2 

Sources and management of trace metals in municipal compost: 

2.1 Municipal compost background: 

2.1.1 Potential benefits and issues: 

Potential benefits as well as potential issues arising from the application of municipal compost 

is directly affected by overall compost quality. Compost quality in turn is highly dependent on 

sources of variation within the compost such as composting facility design, composting procedure, 

compost maturity and feedstock source and the proportions used (Hargreaves, Adl, & Warman, 

2008).   

Effects on soil physical properties: 

Municipal compost is a good source of organic matter (OM) with a low bulk density. Surveys of 

municipal compost found on average 20% of total compost carbon (C) was organic C, 8% was 

carbonate C, and 71% was residual C. Additionally most of the humic substances in the compost 

was humic acid with a humic acid to fulvic acid ratio of 3.55. Humic acid is more stable than fulvic 

acid and has been associated with an improved soil buffering capacity (He, Logan, & Traina, 

1995). The increased OM also resulted in an improved soil water holding capacity and overall soil 

structure (Hernando, Lobo, & Polo, 1989). Additionally when applying the compost consistently the 

soil C:N ratio also increases (Crecchio, Curci, Pizzigallo, Ricciuti, & Ruggiero, 2004; Garcıa-Gil, Ceppi, 

Velasco, Polo, & Senesi, 2004; Montemurro, Maiorana, Convertini, & Ferri, 2006; Perucci, 1990). The 

application of a compost with a good C:N ratio (25-30:1) could therefore result in a soil C:N ratio that 

is better suited to the needs of soil microbes which would result in less losses of N out of the 

system (less surplus N) and better overall productivity (McLaren & Cameron, 1996).  Application rates 

of 30 and 60 t/ha of municipal compost increased aggregate stability of soil which also improved 

overall soil structure (Hernando et al., 1989). Additionally, the process of composting has benefits of 

killing all or most pathogens and reducing the prevalence of bad odours within the MSW feedstock 

while the final product also has benefits in reducing the rate of germination of weeds when applied 

to agricultural soils (Jakobsen, 1995).   

Effects on soil microbiological properties: 

Soil microbiological properties are most sensitive to changes in the soil environment (Pankhurst, 

Doube, & Gupta, 1997).  Increases in soil biomass N, C, S and P have been observed immediately 

following the application of MSW compost and up to 1-5 months after application (Perucci, 1990). 

Soil basal respiration rate (used to monitor microbial activity) was also seen to increase in MSW 
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amended soils and would last up to eight years after application (Pascual, García, & Hernandez, 

1999). Additionally, the application of MSW compost showed significant increases in enzyme activity 

within the soil (Perucci, 1990).  Therefore, the amendment of soils with municipal compost can 

improve soil microbiology and enzymatic activity.  

Effects on soil chemical properties: 

Application of municipal compost has been observed to increase soil pH and which is considered an 

advantage (Mkhabela & Warman, 2005). The increase is usually proportional to application rate and 

is believed to be due to the mineralisation of carbon and resulting production of OH- ions by ligand 

exchange as well as the introduction of basic cations from within the compost (Mkhabela & Warman, 

2005). An alkaline pH is considered advantageous because micronutrients and metal cations are 

commonly more available for plant uptake under acidic conditions (Brady & Weil, 

1996).  Therefore, trace metal availability could potentially be managed by controlling compost pH.  

A potential issue is the resulting increase in surrounding soil electrical conductivity (EC) following the 

application of municipal compost. Excess salts and sodium (Na) concentration in soil can have 

negative effects on soil structure and plant growth.  Soil EC is commonly used as an indicator of soil 

salinity and salt content as it relates to the amount of dissolved solutes within the soil (Brady & Weil, 

1996). The EC in municipal compost was found to be higher than that of agricultural soils in a US soil 

survey with EC levels of 3.69-7.49dS/m and 0-4 dS/m respectively (Brady & Weil, 1996). A study 

found that municipal compost applied at rates of 40-120 t/ha proportionately increased the soil 

EC (Iglesias-Jimenez & Alvarez, 1993; Walter, Martínez, & Cuevas, 2006). It is suspected that the EC 

content in municipal compost is mostly associated with feedstock used and the compost facility 

procedure (Hicklenton, Rodd, & Warman, 2001).  

Although municipal compost applies a wide range of soil nutrients (N, P, K, S), it is believed to be a 

poor source of plant available nitrogen (N). Phosphorus (P) and potassium (K) were found to be 

supplied at equivalent rates to mineral fertiliser (deHaan, 1981; Eriksen et al., 1999; Iglesias-Jimenez 

& Alvarez, 1993), whereas only about 10-21% of total N in municipal compost is made plant available 

in the first year of application (deHaan, 1981; Eriksen et al., 1999; Iglesias-Jimenez & Alvarez, 1993). 

For this reason, some reports have claimed municipal compost to be a poor source of available N and 

less effective in the first year in supplying N when compared to mineral fertiliser and concluded they 

require application rates over 200 t/ha to effectively supply N to the soil plant system (Iglesias-

Jimenez & Alvarez, 1993). This high application rate often leads to the main problem of over-supply 

of micronutrients and trace metals to agricultural soil. Additionally, it has been that at application 

rates over 200 t/ha some downward movement of phosphorus (P) was observed in the soil 

profile (M. Zhang, Heaney, Henriquez, Solberg, & Bittner, 2006).  
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Additionally, MSW may contain elevated concentrations of persistent organic toxins from materials 

within the feedstock such as pesticides, oils, solvents, and the ink on paper products (Epstein, 1996). 

The most prevalent organic toxins have been found to be phthalate esters such as dioxin/furans and 

polychlorinated biphenyls (PCB) which were found at higher concentrations in mechanically 

separated vs source separated MSW (Logan, Henry, Schnoor, Overcash, & McAvoy, 1999).   

2.2 Common trace metals in municipal compost: 

Compost source material is believed to be the main factor that determines which trace metals are 

present in the compost and at what concentrations (He, Traina, & Logan, 1992). MSW compost 

will commonly have As, cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead 

(Pb), and zinc (Zn) present at detectable levels with the highest levels usually seen in Zn 

and Pb (Zennaro, Cristofori, Formigoni, Frignani, & Pavoni, 2005). However, these concentrations can 

vary largely, especially when factors such as feedstock, source separation vs mechanical sorting are 

considered, as well as any differences in composting procedure.   

Trace metals occur ubiquitously in the environment as they originate from within the earth’s crust 

and as such can occur in soils simply as a result of the weathering process. Additionally, there are 

other anthropogenic sources which have come about due to urbanisation and industrialisation 

though, namely agricultural sources, industrial sources, domestic effluent, and atmospheric sources.   

2.2.1 Arsenic chemistry, bioavailability and phyto-availability: 

Arsenic commonly occurs in soil as arsenite (As[III], mostly in flooded soils), arsenate 

(As[V], most common species in aerobic soils) as well as in methylated forms (much lower 

concentrations) such as mono-methyl arsonic acid (MMA) and di-methyl arsonic acid (DMA). High 

application rates of As to soils can lead to As phytotoxicity in crops (Steevens, Walsh, & Keeney, 

1972). This is not as likely though because As has a very similar chemistry to P and plant uptake is 

achieved by the same pathway meaning P competitively inhibits As uptake (transporters have a 

higher affinity for P than As) (Meharg, Naylor, & Macnair, 1994). Both ions are also 

strongly sorbed onto clay and iron oxide/hydroxide surfaces in soil (Asher & Reay, 1979; Meharg et 

al., 1994; O’Neill, 1990; Ullrich-Eberius, Sanz, & Novacky, 1989). Thus, arsenate concentration in soil 

solution is commonly quite low.   Unlike P, As translocation to the plant shoot is relatively low 

meaning the roots are the main area where any As phytotoxicity damage occurs meaning aerial plant 

parts are commonly relatively low in As (<2 mg/kg), and crop damage or failure is expected before it 

becomes a human health hazard (O’Neill, 1990; Peterson et al., 1981). In animals, arsenate 

and arsenite are toxic, however organic As compounds (such as arsenobetaine) are much less 
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toxic (Mertz & Underwood, 1986). This is believed to be because they are not metabolised and are 

rapidly excreted.  

2.2.2 Copper  chemisty, bioavailability and phyto-availability: 

Copper is an essential nutrient in both plants and animals. It commonly occurs at 2-25 µg/g in plants 

with Cu deficiency observed at between 2-5 µg/g and toxicity at levels above 25-40 µg/g (Hemphill, 

1972). Cu has a very low bioavailability, meaning toxicity in both ruminants and humans occur 

infrequently (Epstein et al., 1992). When municipal composts and even sewage sludges with normal 

concentrations of Cu have been applied to land, even at high application rates, no Cu phytotoxicity 

was observed. Only when Cu content exceeded 2000 mg/kg and  was applied to highly acidic soils did 

some plants show Cu phytotoxicity (Marks, Williams, & Chumbley, 1980; Webber, Soon, Bates, & 

Haq, 1981) This is believed to be due to its ability to form complexes with organic compounds which 

reduce its bioavailability (Hernando et al., 1989). Furthermore, it is believed only a small fraction of 

total Cu is leachable (Tisdell & Breslin, 1995).  

2.2.3 Lead chemistry, bioavailability, phyto-availability: 

Lead is a non-essential nutrient for both plants and animals. However, phytotoxicity is only likely in 

highly contaminated soils; because Pb is strongly adsorbed by soils. Additionally, plants grown in 

fertile (high/adequate phosphorus content) soils don’t tend to accumulate Pb as transport is 

inhibited by phosphorus (P) (Epstein et al., 1992). Therefore, it was found that the potential risk 

of Pb in municipal compost to animals and humans was more from direct ingestion of Pb from such 

things as Pb based paints than the accumulation within plants. Adsorption of different forms of Pb is 

complex but the bioavailability of Pb within soils, municipal compost and sewage sludges has low 

bioavailability within monogastric animals and ruminants unless present at very high 

concentrations (Chaney, Mielke, & Sterrett, 1989). Additionally, only a small amount 

of Pb within municipal compost is believed to be leachable (Tisdell & Breslin, 1995).  

2.2.4 Other non-essential trace  metals: 

Cadmium is not essential for plant growth and animals and can lead to toxicity within animals. 

Phytotoxicity has mostly been observed in acidic soils but has been found to be non-toxic to plants 

under natural conditions (Gough, 1979). Zinc commonly occurs at 70-200 times higher 

concentrations in Cd enriched soils, therefore Zn would become phytotoxic long before Cd toxicity 

was seen (Epstein et al., 1992).   
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Mercury is a non-essential nutrient for both plants and animals, and toxicity is possible. 

However, Epstein et al. (1992) found no evidence of excessive accumulation of Hg in both food crops 

or the liver of livestock grazing municipal compost amended pastures.  

2.2.5 Essential trace metals: 

Nickel is essential for plants and animals; however, deficiency is seldom seen. Nickel phytotoxicity 

occurs in most plant species at levels of exceeding 25-50 µg/g in leaves. However, toxicity occurs 

at lower levels in plants than animals so can be managed. Epstein et al. (1992) found MSW composts 

were usually low in Ni unless co-composted with high Ni sewage sludges.  

Zinc is essential for plants and animals. Many plants show signs of deficiency at levels below 15-20 

µg/g, while toxicity is seen at over 400mg/kg. Marks et al. (1980) found phytotoxicity to only 

occurred at high concentrations of Zn in sewage sludges when applied to very acidic soils (pH<5.5). 

Zn tolerance and requirements within animals are much more complex as it is affected by several 

nutrients and elements. As with Ni, toxicity is seen in plants before harmful concentrations in animal 

tissues are reached (Epstein et al., 1992)   

Chromium is a non-essential nutrient to plants but essential to animals. Chromium is found within 

the soils Cr3+ and Cr6+ where Cr6+ is believed to be more bioavailable soluble and thus more 

bioavailable than its counter-part. Chromium toxicity is believed to be around 5-100mg/g dependent 

on speciation and accumulation (Oliveira, 2012).   

2.3 Sources of trace metals in municipal compost: 

2.3.1 Plant residues: 

The most common source (not necessarily the highest concentrations but the most widely 

occurring) of trace metals in municipal compost would be from the residues left behind in waste 

plant tissue such as leaf and root material after the plants have accumulated any background and 

elevated trace metal concentrations from the soil.  Any removed and disposed plant material that 

may contain these trace metals would then be added to the municipal compost.   

2.3.2 Industrial residues: 

Industrial sources of trace metals in municipal compost could include mining, and refinement 

processes (mine spoil and tailings, transport of ore, smelting and metal finishing and recycling of 

metals). Mining is known to emit Al, As, Cd, Hg, Mn, Pb, U, and V depending on the type of 

mining (Nagajyoti, Lee, & Sreekanth, 2010). Coal mines are sources of As, Cd, Fe which can enrich the 

soils surrounding the mine directly or indirectly while soil contamination can also occur from the 
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erosion and water runoff of mine waste. High temperature processing of metals such as castings and 

smelting can release metals in vapor and particulate forms. This can lead to the potential release of 

As, Cd, Cu, Pb, Sn, and Zn which combine with water to form aerosols in the atmosphere. They are 

then either dispersed by wind (dry dispersion) or precipitated in rainfall (wet dispersion) causing 

contamination of water as well as soil (Nagajyoti et al., 2010). Other industrial sources could include 

the processing of plastics, textiles, microelectronics, and paper processing (Nagajyoti et al., 2010).  

2.3.3 Animal residues: 

Farmed animals such as poultry and pigs are often fed certain feeds with additives to aid in 

production. Some of these additives are high in certain trace metals and could therefore potentially 

find their way either into the meat or simply into the environment through the animal manure. Trace 

metals such as As, Cu, Cd, and Zn were found in animal manures. Arsenic was believed to come from 

compounds added to pig and poultry feeds to improve weight gain, feed efficiency and pigmentation 

in poultry. Copper was believed to be from the use of footbaths in the dairy industry and as growth 

promoters in both pigs and poultry. The Cd levels were not considered to be due to direct additions 

of Cd, but that it was present as an impurity in mineral supplements such as Zn sulphate and Zn 

oxide. The Zn levels were found to mainly be attributed to its use as a medicine for scouring in pigs, 

and for multiple uses in poultry (growth, feather and skeletal development, and reproduction) (F. 

Zhang, Li, Yang, & Li, 2012).  

2.3.4 CCA treated timber waste: 

The most common and widely used form of treated timber globally is CCA (chromated copper 

arsenate) treated timber. In New Zealand and in general all around the world CCA treated timber is 

manufactured to meet a specific ratio of [Cr]:[Cu]:[As]. This is usually referred to as type C or type 1 

and is also defined in NZS3640:2003 as seen in the Table 2.1 below, while the different hazard class 

woods also require certain retention levels of trace metals in them (table 2.2) (T. Smith, Personal 

communication, May 16, 2017).   

The CCA mixture is applied to oven dried timber according to the class of timber which is dependent 

on its end use as seen in Table 2.3.  

Table 2.1  specification for the ratio as percentages of total treatment solution as set out by 
NZS3640:2003. 

Copper 

(%) 
Chromium 

(%) 
Arsenic 

(%) 
23 - 25  38 - 45  30 - 37  

(Standards_New_Zealand, 2003) 
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Table 2.2 Minimum concentration of CCA mixture in different classes of timber 

H3.2  H4  H5  H6*  
0.37%   0.72%  0.95%  0.4%  

Expressed as percentages on wt/wt. 
* Concentration based solely on Cu content  
H3.2, H4, and H5 based on sum of all element contents together.  
(Standards_New_Zealand, 2003)  
 

Table 2.3 Common timber use by hazard class rating 

Timber hazard class rating  Description  

H1  
The treatment level for low hazard situations where timber is not 
exposed to the weather. Its major use is for framing timber and 

interior linings. This is split into two categories.  

H1.1  Timber used in situations protected from the weather, dry in 
service and where resistance to borer only is required.  

H1.2  Timber used in situations protected from the weather but where 
there is a risk of moisture exposure conducive to decay.  

H2  This level is similar to H1 but includes an insecticidal treatment to 
protect against termite attack for use in Australia.  

H3  
For moderate decay situations where timber is exposed to the 

weather but is not in contact with the ground. This is also split into 
two categories.  

H3.1  
Timber used outdoors above ground, exposed to the weather – 

generally in non-structural applications; i.e. fascia boards, 
weatherboards.  

H3.2  
Timber used outdoors above ground, exposed to weather or 

protected from the weather but with a risk of water entrapment; 
i.e. decking, fencing and pergolas.  

H4  Used in high decay areas such as ground contact or fresh water. 
Generally used for fence posts and landscaping timbers.  

H5  

Used for severe decay hazard risks such as ground contact where 
conditions of severe or continuous wetting may occur. End uses for 

this hazard class are house piles and poles, retaining walls, crib 
walling and horticultural supports.  

H6  
This hazard class is for marine use. Wharf piles and fenders, marine 
and jetty components regularly immersed in seawater or estuarine 

ground.  
(NZTPC, 2004) 

CCA treated timber could potentially be a significant source of As, Cr and Cu in municipal compost. 

This could occur by dumping and composting of intact waste wood or as ash following burning of the 

treated timber. CCA treated timber has historically been believed to be the main source of As in 

municipal compost (Epstein et al., 1992).  The trace metals could potentially leach out of the waste 

wood over time and enter the compost as leachate or as ash when residential home owners burn 
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treated wood for heating and discard the ashes with their garden waste. In New Zealand timber is 

only treated at hazard rating H3.2 and above therefore if the assumption is made that most residents 

would have H3.2 and H4 timber in higher supply than other grades of treated timber (H5 and H6 

more specialised end uses – Table 2.3). This would mean the likely concentration of CCA present 

before burning would be between 0.37 and 0.72% m/m which translates to about 2.4 kg CCA 

oxides/m3 and 4.7 kg CCA oxides/m3 respectively.  Therefore, 30-37% which can be averaged to 34% 

and would result in between 0.82 kg and 1.60 kg of As retained in the timber.  

 A study observing the combustion of CCA treated timber found that at high and low burning 

temperatures a substantial amount of As was volatilised and in general unstable within the resultant 

ash but when burnt between 500 and 600°C between about 65 and 88% of total As was accounted 

for within the ash respectively. If its assumed most household fireplaces burn at about 550°C then 

about 75% of total feed As would be found within the ash (Rogers, Stewart, Petrie, & Haynes, 2007). 

Therefore, for every m3 of timber burnt, between 0.62 kg and 1.20 kg of As could be expected to be 

found within the ash. Rogers et al. (2007) also found the concentrations of Cu and Cr to 

be relatively stable within the ash with no volatilisation observed in Cu, and very little volatilisation 

observed in Cr. If the 23-24% for Cu was averaged to 24% and the 38-45% for Cr to 42% then the 

same sample would have between 0.58 to 1.13 kg Cu, and between 1.01 and 1.97 kg Cr. Compost 

quality is dependent on length of maturation and composting procedure. Many studies have found 

reduced chemical extractability and water solubility when composting trace metals. Studies have 

found that metal availability decreased with the period of composting and compost maturation 

time (Leita & De Nobili, 1991). Additionally, immature MSW compost tended to have a lower pH 

prior to the thermophilic stage, which in some cases resulted in some metals having higher water-

extractable concentrations (Brady & Weil, 1996). Therefore, composts that have matured are 

believed to have lower leaching potentials of trace metals than immature counterparts and even raw 

un-composted MSW (Leita & De Nobili, 1991). It is believed that the decrease in metal availability 

with increasing compost maturity can be explained by the formation of stable metal-humus 

complexes during the composting process (Garcia, Moreno, Hernandez, Costa, & Polo, 1995).   

2.4 Management / mitigation of elevated trace metal concentrations: 

2.4.1 Compost maturity: 

Compost quality is dependent on degree of maturation and composting procedure. Studies have 

found reduced chemical extractability and water solubility of trace metals within MSW that have 

been composted. The studies also found that metal availability decreased with increasing period of 

composting and compost maturation time (Leita & De Nobili, 1991). Additionally, immature MSW 

compost tended to have a lower pH prior to the thermophilic stage, which in some cases resulted in 
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some metals having higher water-extractable concentrations (Brady & Weil, 1996). Therefore, 

composts that have matured are believed to have lower leaching potentials of trace metals than 

immature counterparts and even raw un-composted MSW  (Leita & De Nobili, 1991). It is believed 

that the decrease in metal availability with increasing compost maturity can be explained by the 

formation of stable metal-humus complexes during the composting process (Garcia et al., 1995).   

2.4.2 Source separation: 

Source separation is a method of waste collection where the organic component is separated from 

the other non-organic components at the source before collection and processing. In terms of MSW 

there are a lot of possible sources of heavy metals within the home, such as household dust, 

batteries, disposable household materials (such as bottle tops), within plastics, paints and inks, body-

care products, medicines and household pesticides (Bardos, 2004). As a result, when these materials 

are separated from the compostable organic component at the source, there is less chance of 

contamination of heavy metals later in the composting process, and composts produced from this 

source separated waste is generally reported to contain smaller amounts of heavy metals compared 

to mechanically-sorted products (on average reduced by a factor of 2-10) (Amlinger, Pollak, & 

Favoino, 2004; Epstein et al., 1992; Sharma, Canditelli, Fortuna, & Cornacchia, 1997). This is the 

method already in place in New Zealand where household waste is separated into organic garden 

waste, recyclable waste and waste to landfill. As a result, source separation of compostable material 

is widely accepted as the most effective approach to minimise metal concentrations in MSW 

compost (Amlinger et al., 2004; Bardos, 2004; Richard & Woodbury, 1992).   

2.4.3 Dilution of metal concentration with a bulking agent: 

Co-composting of MSW with bulking agents such as sawdust has been researched to observe their 

effects on compost quality. It is believed that the application of sawdust (provided it has a lower 

concentration of heavy metals than in the MSW) could have a dilution effect on the overall heavy 

metal concentration within the final product. Yousefi, Younesi, and Ghasempoury (2013) completed 

a study with MSW co-composted with sawdust at 0, 16, 32 and 70% sawdust (per dry weight) and 

found significant decreases in heavy metal concentrations in all heavy metals observed after seven 

weeks of composting (Table 2.4). Additionally, they found increasing the percentage of sawdust 

increased the C/N ratio, but decreased the EC value (therefore lower salinity with higher sawdust 

application) and the pH (although they were still within optimum pH ranges) (Figure 2.1).   

Increasing the percentage of sawdust in the mixtures would increase the initial starting C/N ratios 

and essentially the final C/N ratios once composting was completed (seen in results).  Microbes only 

digest C and N at certain ratios and any extra material will usually not be digested (McLaren & 
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Cameron, 1996). Therefore, higher than ideal C:N ratios as seen in the treatments with higher % 

sawdust would lead to slower C breakdown. The C:N ratio of 25-30 is believed to be ideal for 

composts (Tchobanoglous & Kreith, 2002). Therefore, a sawdust application % would need to be 

applied that resulted in an initial and final C:N ratio ‘range’ (C:N ratio decreased during composting) 

that was in the ideal region of 25-30 to reach optimum microbial breakdown.  

 

Table 2.4 Heavy metal concentrations of MSW co-composted with sawdust at different % (0, 16, 
32, 70) of applied sawdust  

  Metal concentrations mg/kg  
  Sawdust  MSW0  MSW16  MSW32  MSW70  

Fe  0.01 ± 0.00  0.78 ± 0.01a  0.523 ± 0.1abc  0.35 ± 0.02b  0.164 ± 0.02c  
Cu  1.4 ± 0.26  53.71 ± 7.82a  40.46 ± 5.13b  41.5 ± 7b  17.6 ± 1.08c  
Zn  19.66 ± 2.1  138.74 ± 20.16a  106.175 ± 8.28b  110.44 ± 4.02b  71.54 ± 8.84c  
Mn  23.46 ± 1.65  173.98 ± 1.38a  143.075 ± 13.47b  132.23 ± 6.93b  96.575 ± 8.6c  
Ni  0.6 ± 0.13  37.41 ± 10.07a  26.91 ± 3.22ab  23.74 ± 6.10bc  11.92 ± 3.18c  
Cr  n.d.  n.d.  n.d.  n.d.  n.d.  
Pb  n.d.  31.33 ± 6.28a  27.83 ± 3.37a  24.41 ± 3.54a  11.33 ± 1.42b  
Cd  n.d.  n.d.  n.d.  n.d.  n.d.  
Hg  0.037 ± 0.00  0.34 ± 0.03a  0.25 ± 0.016b  0.23 ± 0.04bc  0.19 ± 0.01c  

Values are mean ± standard deviation (n=3). Means in each column with different superscript 
letters are significantly different (p<0.05). (Yousefi et al., 2013). 
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Figure 2.1 The effect of sawdust application % (0,16, 32, 70) to MSW on (a) C/N ratio, (b) pH, and 
(c) EC after 7 weeks of co-composting process (Yousefi et al., 2013). 
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2.5 Aims: 

The study was completed at Lincoln university with data used that was collected at Living Earth Ltd. 

in Christchurch, New Zealand. They have been recording consistent seasonal spikes in Arsenic (As) 

concentrations over winter in their commercially available kerbside organics (KSO) compost. The 

hypothesis is that the elevated As concentrations were due to the burning of chromated copper 

arsenate (CCA) treated timber as a residential heating fuel over the winter months and the 

subsequent addition of the ashes to the residential green waste bins which are emptied by Living 

Earth Ltd.  

The aims of this honours research were to ascertain whether any patterns could be found that would 

disprove the initial hypothesis and to investigate potential issues arising from the application of the 

compost product to agricultural soils in terms of trace metal accumulation and subsequent human 

health, environmental or productivity issues. 
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Chapter 3 

Materials & Methods: 

3.1 Background information: 

Living Earth Christchurch produce two main green waste composts for use by businesses, 

industry and the public. Their KSO compost is produced from a variety of materials and used 

predominantly in the agricultural sector, while Canterbury compost is more controlled feedstock 

material and therefore available for sale to the public. This study focussed specifically 

on the inputs and trace metal concentrations of the KSO compost.  

KSO compost is made up of a variety of waste materials. This includes waste from the residential 

kerbside collected bins, yard waste from the eco-drop (figure 3.3b), food waste from commercial 

businesses such as restaurants (Figure 3.1d), source separated wood waste from Fulton Hogan Ltd. 

and Maugers Contracting Ltd., river weed collected from the Avon and Heathcote rivers (Figure 3.3c) 

and woodchip from various arborist companies (Figure 3.1a). The ratios of material used within the 

compost stayed relatively constant with minor differences occurring in the early spring where they 

commonly receive a larger amount of green grass clippings in the kerb-side bin collection and as a 

result they add more tailings to bulk up the compost and decrease the bulk density allowing for 

better airflow through and rate of degradation of the compost.  

The waste material is combined with a loading tractor (Figure 3.2a) and processed through a 

shredder (Figure 3.2b) before being loaded and sealed within enclosed concrete bunkers for further 

composting (figure 3.2c,d). During the composting process the waste material can reach 

temperatures as high as 80°C. The developing compost is left within these tunnels to degrade for 14 

days (slightly shorter periods during later spring/early summer) before being taken out and arranged 

outside in small windrows on the asphalt (commonly about the amount of material coming from two 

tunnels) to aid in final maturation before being combined into larger three-meter high windrows 

(two smaller windrows brought together). The compost is finally put through sorter one final time to 

separate the coarse material (Figure 3.3a) (tailings - incorporated back into the system to further 

compost and degrade) from the finer composted material (Figure 3.3d). The windrows are turned all 

through the process to aid in air flow.     
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Samples were dried and the <2mm fractions analysed with Nitric/Hydrochloric acid digestion and 

Inductively coupled plasma mass spectrometry (ICP-MS) to quantify the concentrations of As, Cd, Cr, 

Cu, Hg, Ni, Pb, and Zn. Phosphate buffer extraction followed by colorimetry was used to quantify the 

concentration of the Cr6+.  The weekly Trace metal concentrations are not included in the results, 

however averaged trace metal concentrations with additional measures of central tendency 

are shown in Table 4.1 including values from the previously mentioned New Zealand compost trace 

metal thresholds in Table 4.2.   

3.5 Statistical analysis: 

3.5.1 Data normality: 

The raw data (temperature data and trace metal concentrations) were analysed for normality and 

transformed accordingly to ensure the data was normally distributed. This resulted in all the 

concentrations for Cr, Cr6+, Cu, Hg, Pb, and Ni being log transformed.   

3.5.2 Pearson linear correlations: 

The dataset was split into the four observed years and Pearson linear correlations completed for all 

trace metals and average temperature for the whole dataset (Table 4.3) and each separate 

year where necessary. These analyses were completed on Microsoft Excel 2016 using the analysis 

tool pack add in software. The level of significance was 0.05 and relevant r values at the yearly and 

overall levels are shown in Table 4.4.  

3.5.3 Weeks to season conversion and assumptions: 

Assumptions were made regarding what weeks within each year the seasons fit into. Each season 

was averaged to about 11-week lengths with a week period in between each season to account for 

the differences between seasons. The seasons were set to follow closely what is considered the 

change of season in New Zealand with the seasons starting on the first days of the respective 

months. The start of March – end of May is considered autumn, start of June – end of August is 

considered winter, start of September – end of November is considered Spring and the start of 

December to the end of February the following year is considered summer. This translated to a start 

of Autumn set from week 10 to week 21, winter from week 23 to week 34, spring from week 36 to 

week 47, and summer from week 49 to week 8 the following year.  

3.5.4 ANOVA 

ANOVAS were completed for each trace metal to ascertain how much of the variation in 

concentration was due to differences in season. The season sorted data was averaged for each year 

giving 16 values (4 values for each season). One-way ANOVAs were completed treating years as 
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blocking and the seasons as treatment factors, and results for summer and winter are shown in 

Figure 4.3. These Analyses were completed using GenStat for Windows 18th edition (VS N 

Interna tiona l, H emel Hem ps tead, UK . Web pa ge : G enS tat.co.uk ).  

3.6 Trace metal accumulation model: 

3.6.1 Model Assumptions and values used: 

Certain assumptions needed to be made to model trace metal accumulation in soil. It was assumed 

that the compost was incorporated into the top 10 cm of soil at time of sowing crops. It was also 

assumed that following application of the compost the trace metals accumulated only in the top 10 

cm and that any losses out of the soil system such as from leaching, volatilisation and other losses 

were negligible. The range of ~1.13 – 1.4 t/m3 was used for the soil bulk density in the 

calculations as this covers what the bulk density is within the top 10 cm of common 

Canterbury soil types (Table 5.3). 

Background trace metal concentrations from Christchurch soils were used as starting points for the 

accumulation (Table 5.2) and application rates of 25, 50, and 100 t/ha (fresh weight – in dry weight 

terms this translates to 13, 26 and 51 t/ha respectively) were used to simulate normal application 

rates by farmers (Horrocks, Curtin, Tregurtha, & Meenken, 2016). In terms of application frequency, 

it was assumed application was completed pre sowing in  either Autumn or Spring (results included 

for both scenarios) every three years as was practised in a study by Horrocks, Tregurtha, and 

Meenken (2015).   

Table 3.1 The background concentrations of selected trace metals in Christchurch urban and rural 
gardens 

Land use Background trace metal concentrations (mg/kg) 
As Cu Pb 

Rural 0.9-36.9 2.1-27.3 3.63-44.4 
(Ashrafzadeh et al., 2017) as reported by Environment Canterbury in 2007 

Table 3.2 Bulk density of common Canterbury soils 

Soil type bulk density 
(t/m3) Source 

Templeton silt loam ~1.3 – 1.4 (Harrison, Cameron, & 
McLaren, 1994) 

Shallow stony Lismore silt loam  ~1.06 – 1.2 (Francis & Knight, 1993) 

Timaru silt loam ~1.13 – 1.38 (Houlbrooke, Paton, Littlejohn, 
& Morton, 2011) 

Wakanui silt loam ~1.17 – 1.31 (Francis & Knight, 1993) 
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3.6.2 Accumulation calculation: 

The accumulation model includes factors such as the background trace metal concentration in soil, 

trace metal concentration in the compost, the application rate of compost, the soil bulk density 

(Table 3.2), and the volume of soil in the top 10 cm in a Ha area. 

Firstly, the volume of soil in a hectare (10’000 sqm) are had to be worked out as seen below: 

100 m *100 m * 0.10 m = 1000m3 (volume of soil per ha, v)  

The equation to work out the accumulation in soil after one application of compost can be described 

by equation 1:  

 csoil  + [(ccompost * rate) / (ρ * v)]                                                                                       (Equation1) 

Where cbaseline is the background concentration of the trace metal in the soil before application of the 

trace metal, ccompost is the concentration of the trace metal in the compost, ρ is the bulk density of the 

soil, rate is the application rate of the compost, and v is the volume of soil. 

The accumulation was simmulated for the first three applications under different environmental 

conditions (soil density, background concentration, trace metal concentration) and then it was 

calculated how many applications would lead to the respective trace metal reaching their compost 

threshold level (as shown in Table 4.2).  
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Chapter 4 

Results: 

4.1 Trace metal concentrations: 

Table 4.1 shows the average As concentration as well as the upper quartile value was above the 

20mg/kg thresholds set by both AsureQuality and standard NZS4454. On further inspection of the 

dataset, it was found that 40.2% of the time during the four-year period between the years 2013 and 

2016 the As concentrations were above the 20 mg/kg thresholds (Figure 4.1). Average Cu 

concentrations weren’t higher than their thresholds (Table 4.2), however they did increase past the 

AsureQuality threshold 17% of the period of sampling. All other trace metals had average 

concentrations below their respective thresholds and only increased in concentration above their 

thresholds between 0 - 4.6% of the time (Table 4.1).  

Table 4.1 Average trace metal concentrations in KSO compost for the years 2013, 2014, 2015, and 
2016 including standard deviation (SD), lower Quartile (25th%) and upper quartile 
(75th%). 

     
   Mean/geomean 

(mg/kg)  
S.D.  L.Q.  U.Q.  

Arsenic  20.10  6.57  15  25  
Cadmium  0.50  0.13  0.4  0.6  

Chromium*  27.56  20.68 – 36.73  23  31  
Chromium 6*  0.45  0.35 – 0.57  0.4  0.4  

Copper*   51.38  38.23 – 69.05  44  57  
Mercury*   0.09  0.06 – 0.13  0.07  0.1  

Lead*  113.81  90.58 – 143  98.25  130  
Nickel*  9.80  6.91 – 13.89  7.8  12  

Zinc  250.73  64.73  230  260  
* geometric mean 
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Table 4.2 Relevant trace metal concentration thresholds for organically certified compost in New 
Zealand 

   Standards for limits in compost 
(mg/kg)  

   AsureQuality1  NZS44542  
Arsenic  20  20  

Cadmium  0.7  3  
Chromium  70  600  

Chromium 6  1  no limit  
Copper   60  300  

Mercury   0.4  2  
Lead  200  250  

Nickel  25  60  
Zinc  300  600  

1(AsureQuality, 2016) 2(Standards_New_Zealand, 2005a) 
 

 

 

Figure 4.1 Arsenic concentrations within KSO compost in the years 2013, 2014, 2015, and 2016, 
against the 20 mg/kg threshold (as set by AsureQuality and NZS4454 - red dashed line) 
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4.2 Correlations: 

Table 4.3 Summary of correlations between trace metal concentrations within KSO compost for the 
years 2013, 2014, 2015 and 2016. Expressed as r.  

temp Arsenic Cadmium Chromium Chromium 6 Copper Mercury Lead Nickel Zinc
temp 1.000

Arsenic -0.662 1.000
Cadmium -0.185 0.042 1.000

Chromium* -0.180 0.234 0.339 1.000
Chromium 6* 0.258 -0.237 -0.088 -0.075 1.000

Copper* -0.261 0.292 0.138 0.122 -0.021 1.000
Mercury* 0.176 0.007 -0.545 -0.353 0.020 -0.113 1.000

Lead* -0.315 0.476 0.110 0.215 -0.055 0.120 -0.125 1.000
Nickel* 0.033 -0.023 0.293 0.754 0.050 0.062 -0.327 0.061 1.000

Zinc -0.039 0.102 0.110 0.296 0.047 0.137 -0.073 0.176 0.264 1.000  
* trace metals that were log transformed for normality, highlighted boxes are significant correlations 
(see Table 4.4) with relevance to variation in As concentration. 
 

Table 4.4, Critical r values for significance of Pearson correlations of KSO compost trace metal 
concentrations when degrees of freedom (d.f.) is at 51 (n = 53) for per year 
correlations, (refer to Appendix a for correlation tables), and 192 (n = 194) for total 
data set (Table 4.3) 

 

4.2.1 Arsenic: 

In terms of the overall dataset, As concentrations had a strong negative correlation with average 

temperature (r = -0.66, d.f.=192, P<0.001) (Figure 4.2, Table 4.3). When this was observed at the per 

year level (Appendix A) from 2013 to 2016 for confirmation, the r value averaged at r=-0.66 and 

never went below r=0.592 (2014). This still resulted in a highly significant correlation (d.f.=51, 

p<0.001) (Figure 4.4).  

Arsenic Also correlated highly significantly with the log of trivalent (Figure 4.3) and hexavalent Cr 

(r=0.23, d.f.=192, p<0.01; r=-0.24, d.f.=192, p<0.001), however the correlation was positive with 

trivalent Cr and negative with hexavalent Cr. On further inspection, when comparing trivalent Cr at 

yearly basis an average of r=0.290 was obtained (p<0.05, d.f.=51), however the correlation for 2014 

was negative (r=-0.058). At the yearly basis hexavalent Cr was only significant in 2014 (r=-0.343, 

p<0.05) and 2016 (r=-0.272, p<0.05).  

Arsenic had a highly significant correlation with the log of Cu (r=0.29, d.f.=192, p<0.001) (Figure 4.4). 

When compared at the per year level, it resulted in an average of r=0.348 (d.f.=51, p<0.05) with the 

lowest r value being 0.165.  

(d.f.) Probability (P) 
<0.05 <0.01 <0.001 

51 0.271 0.351 0.440 

192 0.141 0.185 0.235 
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Arsenic also had a significant correlation with the log of Pb (r=0.48, d.f.=192, p<0.001) (Figure 4.5). 

when this was observed at the yearly level, an average r value of r=0.477 (d.f.=0.51, p<0.001) and 

never went below r=0.351 (p<0.01).   

 

 

Figure 4.2 Correlation plot between average temperature and As concentrations in KSO compost 
between 2013 and 2016 
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Figure 4.3 Correlation between As concentration and Log Cr (trivalent) concentration in KSO 
compost for all years between 2013 and 2016 

 

 

Figure 4.4 Correlation between As concentration and Log Cu concentration in KSO compost for all 
years between 2013 and 201 
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Figure 4.5 Correlation between As concentration and Log Pb concentration in KSO compost for all 
years between 2013 and 2016 

4.3 ANOVA: Seasonality of As concentrations 

The ANOVA completed for As showed the differences in concentration between summer and winter 

seasons were significant (F = 37.32, p<0.001) (Figure 4.3). The As concentrations increased from 2013 

to 2016 when comparing within season variation (Figure 4.2), however the differences weren’t 

significant except for the winter peak concentrations in 2014 which were significantly lower than the 

winter peak concentrations in 2016 and the summer minimum concentrations in both 2013 and 2014 

which were significantly lower than the concentrations obtained in the summer of 2015. Additionally, 

Figure 4.1, 4.6 and 4.7 showed the repetitive nature of the As concentration over the trial period. 

The ANOVAs completed for the other trace metals yielded no significant results therefore were 

omitted from the report. 
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Figure 4.6  Arsenic concentration within KSO compost against average temperature for the years 
2013, 2014, 2015, and 2016. 

 

 

Figure 4.7 Comparison of winter and summer As concentrations in KSO compost for the years 2013, 
2014, 2015, and 2016. a, b, c, and d denote significant differences and seasons with 
the same letters aren’t significantly different. Error bars relate to the standard error 
(SE) of each season. 
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4.4 Trace metal accumulation: 

As seen in Table 4.5, 4.6, 4.7 and 4.8 the model predicted maximum accumulation when the soil bulk 

density was at a minimum (ρ = 1.13), trace metal concentration in compost([t.m.], ccompost) was at a 

maximum, and application rate was a maximum. The background soil trace metal concentrations 

(csoil) did not influence the rate of accumulation however as seen in Table 4.6 and 4.8, it did affect the 

starting point of accumulation and therefore affected how quickly the soil accumulation reached the 

threshold limits.    

4.4.1 Autumn compost application: 

Arsenic accumulation: 

Autumn As levels of between 13.28 – 17.46 mg/kg were used for As concentrations within the 

compost as these were the minimum (2015) and maximum (2016) average concentrations in 

compost found for autumn in this study.  Arsenic accumulation rates according to the model would 

be between 0.12 - 0.20, 0.25 – 0.40 and 0.48 – 0.79 mg/kg/application for compost application rates 

of 13, 26 and 51 t DM/ha respectively. This would result in an average As concentration within the 

soil after three applications of compost of between 1.27 and 39.26 mg/kg (Table 4.5).   

The model predicted extremes of between 0 – 155 applications of compost applied before the 

AsureQuality 20mg/kg threshold was breached.  

Copper accumulation: 

Compost Cu levels of between 42.73 – 102.27 mg/kg were used in the model as these were the 

maximum (2014) and minimum (2013) average concentrations in KSO compost for autumn obtained 

from the dataset. The Cu accumulation rates would be between 0.4 – 1.18, 0.79 – 2.35, 1.56 – 4.62 

mg/kg/application for compost applied at 13, 26, and 51 t DM/ha respectively. This resulted in an 

average soil Cu concentration after three compost applications of between 3.29 and 41.15 mg/kg 

(Table 4.5). 

The model predicted extremes of between 8 - 146 applications before the soil concentration 

exceeded the 60 mg/kg threshold set by AsureQuality and between 60 – 751 applications before the 

NZS4454 300 mg/kg threshold was breached (Table 4.6). 

Lead accumulation: 

Compost Pb levels of between 95.083 – 117.636 mg/kg were used in the model as this was the range 

between minimum (2015) and maximum (2014) average concentrations in the KSO compost for 

autumn in this study. The Pb accumulation rates would be between 0.88 – 1.35, 1.77 – 2.71, 3.46 – 

5.31 mg/kg/application for compost applied at 13, 26, and 51 t DM/ha respectively. This could result 
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in an average soil Pb concentration of between 6.28 and 60.33 mg/kg after three compost 

applications (Table 4.5).  

The model predicted extremes of between 31 – 143 applications needed to breach the AsureQuality 

200 mg/kg threshold and between 39 – 280 applications before the soil Pb concentration exceeded 

the 250 mg/kg threshold set by NZS4454 (Table 4.6).   

Table 4.5 Accumulation of As, Cu, and Pb in soil after 1, 2, and 3 applications in soils with bulk 
densities of between 1.13 and 1.4 t/m3 and minimum and maximum background trace 
metal concentrations when applying composts in autumn with a lower and upper 
maximum trace metal (t.m.) concentration.  

[t.m.]
1.13 1.4

min max min max min max min max min max min max
As

0.15 0.12 13 1.05 37.05 1.02 37.02 1.21 37.21 1.15 37.15 1.36 37.36 1.27 37.27
0.31 0.25 26 1.21 37.21 1.15 37.15 1.51 37.51 1.39 37.39 1.82 37.82 1.64 37.64
0.60 0.48 51 1.50 37.50 1.38 37.38 2.10 38.10 1.87 37.87 2.70 38.70 2.35 38.35
0.20 0.16 13 1.10 37.10 1.06 37.06 1.30 37.30 1.22 37.22 1.50 37.50 1.39 37.39
0.40 0.32 26 1.30 37.30 1.22 37.22 1.70 37.70 1.55 37.55 2.11 38.11 1.87 37.87
0.79 0.64 51 1.69 37.69 1.54 37.54 2.48 38.48 2.17 38.17 3.26 39.26 2.81 38.81

Cu
0.49 0.40 13 2.59 27.79 2.50 27.70 3.08 28.28 2.89 28.09 3.57 28.77 3.29 28.49
0.98 0.79 26 3.08 28.28 2.89 28.09 4.07 29.27 3.69 28.89 5.05 30.25 4.48 29.68
1.93 1.56 51 4.03 29.23 3.66 28.86 5.96 31.16 5.21 30.41 7.89 33.09 6.77 31.97
1.18 0.95 13 3.28 28.48 3.05 28.25 4.45 29.65 4.00 29.20 5.63 30.83 4.95 30.15
2.35 1.90 26 4.45 29.65 4.00 29.20 6.81 32.01 5.90 31.10 9.16 34.36 7.80 33.00
4.62 3.73 51 6.72 31.92 5.83 31.03 11.33 36.53 9.55 34.75 15.95 41.15 13.28 38.48

Pb
1.09 0.88 13 4.72 45.49 4.51 45.28 5.82 46.59 5.40 46.17 6.91 47.68 6.28 47.05
2.19 1.77 26 5.82 46.59 5.40 46.17 8.01 48.78 7.16 47.93 10.19 50.96 8.93 49.70
4.29 3.46 51 7.92 48.69 7.09 47.86 12.21 52.98 10.56 51.33 16.50 57.27 14.02 54.79
1.35 1.09 13 4.98 45.75 4.72 45.49 6.34 47.11 5.81 46.58 7.69 48.46 6.91 47.68
2.71 2.18 26 6.34 47.11 5.81 46.58 9.04 49.81 8.00 48.77 11.75 52.52 10.18 50.95
5.31 4.29 51 8.94 49.71 7.92 48.69 14.25 55.02 12.20 52.97 19.56 60.33 16.49 57.26

13.275 
(min)

17.458 
(max)

42.727 
(min)

102.273 
(max)

95.083 
(min)

117.636 
(max)

Application 2 Application 3
1.13 1.4 1.13 1.4

Application 1
1.13 1.4

Δ Soil App rate

Soil background metal concentrations: As min/max = 0.9 – 36.9 mg/kg; Cu min/max = 2.1 – 27.3 
mg/kg; Pb min/max = 3.63 – 44.4 mg/kg. Δ soil denotes the amount the soil trace metal 
concentration increases by with each application in soils with bulk densities of 1.13 and 1.4 t/m3. 
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Table 4.6 Number of compost applications needed for As, Cu, and Pb to exceed their AsureQuality 
and NZS4454 concentration thresholds in the soil when comparing soils with bulk 
densities of between 1.13 and 1.4 t/m3 and minimum and maximum background trace 
metal concentrations and when applying composts in autumn with a lower and upper 
maximum of trace metal content. 

[t.m.]
rate

min max min max min max min max
As

13.28 13.00 131 0 155 0
26.00 66 0 78 0
51.00 34 0 40 0

17.46 13.00 100 0 118 0
26.00 37 0 59 0
51.00 26 0 31 0

Cu
42.73 13.00 118 67 146 83 607 555 751 688

26.00 59 34 73 42 304 278 376 344
51.00 31 17 38 22 155 142 192 176

102.27 13.00 50 28 61 35 254 232 314 288
26.00 25 14 31 18 127 116 157 144
51.00 13 8 16 9 65 60 80 74

Pb
95.08 13.00 180 143 223 177 226 188 280 233

26.00 90 72 112 89 113 94 140 117
51.00 46 37 57 45 58 48 72 60

117.64 13.00 146 115 180 143 183 152 226 189
26.00 73 58 90 72 92 76 113 95
51.00 37 30 46 37 47 39 60 48

1.13
Threshold AsureQuality Threshold NZS4454

1.13 1.41.4

 
Soil background metal concentrations: As min/max = 0.9 – 36.9 mg/kg; Cu min/max = 2.1 – 27.3 
mg/kg; Pb min/max = 3.63 – 44.4 mg/kg.  
 

4.4.2 Spring compost applications: 

Arsenic accumulation: 

Spring As levels of between 19.500 – 23.750 mg/kg were used for As concentrations within the 

compost as these were the minimum (2013) and maximum (2015) average concentrations in 

compost found for autumn in this study.  Arsenic accumulation rates according to the model would 

be between 0.2 -0.27, 0.4 – 0.55, 0.7 – 1.07 mg/kg/application for compost application rates of 13, 26 
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and 51 t DM/ha respectively. This would result in an average As concentration within the soil after 

three applications of compost of between 1.44 – 39.50 mg/kg (Table 4.7).   

The model predicted extremes of between 0 – 87 applications of compost applied before the 

AsureQuality 20mg/kg threshold was breached. (Table 4.8).  

Copper accumulation: 

Compost Cu levels of between 52.417 – 56.00mg/kg were used in the model as these were the 

maximum (2016) and minimum (2014) average concentrations in KSO compost for autumn obtained 

from the dataset. The Cu accumulation rates would be between 0.50 – 0.64, 1.00 – 1.29, 1.9 – 2.53 

mg/kg/application for compost applied at 13, 26, and 51 t DM/ha respectively. This could result in an 

average soil Cu concentration after three compost applications of between 3.56 and 34.88 mg/kg 

(Table 4.7). 

The model predicted extremes of between 13 - 97 applications before the soil concentration 

exceeded the 60 mg/kg threshold set by AsureQuality and between 108 - 495 applications before the 

NZS4454 300 mg/kg threshold was breached (Table 4.8). 

Lead accumulation: 

Compost Pb levels of between 114.750 – 151.000 mg/kg were used in the model as this was the 

range between minimum (2013) and maximum (2015) average concentrations in the KSO compost 

for autumn in this study. The Pb accumulation rates would be between 1.1 – 1.74, 2.1 – 3.49, 4.2 – 

6.84 mg/kg/application for compost applied at 13, 26, and 51 t DM/ha respectively. This could result 

in an average soil Pb concentration of between 6.83 and 64.91 mg/kg after three compost 

applications (Table 4.7).  

The model predicted extremes of between 23 – 150 applications needed to breach the AsureQuality 

200 mg/kg threshold and between 31 – 188 applications before the soil Pb concentration exceeded 

the 250 mg/kg threshold set by NZS4454 (Table 4.8).   
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Table 4.7 Accumulation of As, Cu, and Pb in soil after 1, 2, and 3 applications in soils with bulk 
densities of between 1.13 and 1.4 t/m3 and minimum and maximum background trace 
metal concentrations when applying composts in spring with a lower and upper 
maximum trace metal (t.m.) concentration. 

[t.m.] App. rate
1.13 1.4 1.13 1.4 1.13 1.4 1.13 1.4

min max min max min max min max min max min max
As

0.22 0.2 13 1.12 37.12 1.08 37.08 1.35 37.35 1.26 37.26 1.57 37.57 1.44 37.44
0.45 0.4 26 1.35 37.35 1.26 37.26 1.80 37.80 1.62 37.62 2.25 38.25 1.99 37.99
0.88 0.7 51 1.78 37.78 1.61 37.61 2.66 38.66 2.32 38.32 3.54 39.54 3.03 39.03
0.27 0.2 13 1.17 37.17 1.12 37.12 1.45 37.45 1.34 37.34 1.72 37.72 1.56 37.56
0.55 0.4 26 1.45 37.45 1.34 37.34 1.99 37.99 1.78 37.78 2.54 38.54 2.22 38.22
1.07 0.9 51 1.97 37.97 1.77 37.77 3.04 39.04 2.63 38.63 4.12 40.12 3.50 39.50

Cu
0.6 0.5 13 2.70 27.90 2.59 27.79 3.31 28.51 3.07 28.27 3.91 29.11 3.56 28.76

1.21 1 26 3.31 28.51 3.07 28.27 4.51 29.71 4.05 29.25 5.72 30.92 5.02 30.22
2.37 1.9 51 4.47 29.67 4.01 29.21 6.83 32.03 5.92 31.12 9.20 34.40 7.83 33.03
0.64 0.5 13 2.74 27.94 2.62 27.82 3.39 28.59 3.14 28.34 4.03 29.23 3.66 28.86
1.29 1 26 3.39 28.59 3.14 28.34 4.68 29.88 4.18 29.38 5.97 31.17 5.22 30.42
2.53 2 51 4.63 29.83 4.14 29.34 7.15 32.35 6.18 31.38 9.68 34.88 8.22 33.42

Pb
1.32 1.1 13 4.95 45.72 4.70 45.47 6.27 47.04 5.76 46.53 7.59 48.36 6.83 47.60
2.64 2.1 26 6.27 47.04 5.76 46.53 8.91 49.68 7.89 48.66 11.55 52.32 10.02 50.79
5.18 4.2 51 8.81 49.58 7.81 48.58 13.99 54.76 11.99 52.76 19.17 59.94 16.17 56.94
1.74 1.4 13 5.37 46.14 5.04 45.81 7.12 47.89 6.44 47.21 8.86 49.63 7.85 48.62
3.49 2.8 26 7.12 47.89 6.44 47.21 10.60 51.37 9.26 50.03 14.09 54.86 12.07 52.84
6.84 5.5 51 10.47 51.24 9.15 49.92 17.31 58.08 14.67 55.44 24.14 64.91 20.19 60.96

Δ Soil Application 1 Application 2 Application 3

19.500 
(min)

23.750 
(max)

52.417 
(min)

56.000 
(max)

114.750 
(min)

151.500 
(max)

Soil background metal concentrations: As min/max = 0.9 – 36.9 mg/kg; Cu min/max = 2.1 – 27.3 
mg/kg; Pb min/max = 3.63 – 44.4 mg/kg. Δ soil denotes the amount the soil trace metal 
concentration increases by with each application in soils with bulk densities of 1.13 and 1.4 t/m3. 
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Table 4.8 Number of compost applications needed for As, Cu, and Pb to exceed their AsureQuality 
and NZS4454 concentration thresholds in the soil when comparing soils with bulk 
densities of between 1.13 and 1.4 t/m3 and minimum and maximum background trace 
metal c 

[t.m.]
rate

min max min max min max min max
As

13.28 13.00 86 0 87 0
26.00 43 0 44 0
51.00 22 0 23 0

17.46 13.00 70 0 71 0
26.00 35 0 36 0
51.00 18 0 19 0

Cu
42.73 13.00 97 55 97 56 494 453 495 454

26.00 49 28 49 29 247 227 248 228
51.00 25 14 26 15 126 116 127 117

102.27 13.00 90 51 91 52 463 424 464 423
26.00 45 26 46 27 232 212 233 213
51.00 23 13 24 14 118 108 119 109

Pb
95.08 13.00 149 118 150 119 187 156 188 161

26.00 75 59 76 60 94 78 95 79
51.00 38 31 39 32 48 40 49 41

117.64 13.00 113 90 114 91 142 118 143 119
26.00 57 45 58 46 71 59 72 60
51.00 29 23 30 24 37 31 37 32

Threshold AsureQuality Threshold NZS4454
1.13 1.4 1.13 1.4

Soil background metal concentrations: As min/max = 0.9 – 36.9 mg/kg; Cu min/max = 2.1 – 27.3 
mg/kg; Pb min/max = 3.63 – 44.4 mg/kg.  
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Chapter 5 

Discussion: 

5.1 Trace metal concentration comparisons: 

Concentrations of trace metals are commonly variable among different types of compost but also 

among municipal composts. The differences in trace metal concentrations between different 

composts are most likely due to differences in source material, composting procedure and sampling 

techniques at the time of sampling (Richard & Woodbury, 1992; Woodbury & Breslin, 1992) 

As seen in table 5.1 Ding et al. (2017)completed a study of composts in the main provinces of China. 

The main feedstocks in their composts were mainly farming manures such as cattle, chicken and pig 

manure. The study had similar trace metal concentrations of As and Zn to the Living earth KSO 

compost, albeit a 384% higher concentration of Cd, 28% higher concentrations of Cr (potentially due 

to the Cr6+ being included), 51% higher Cu concentrations and 71% lower concentrations of Pb (lack of 

contaminants that would potentially be in MSW compost). The feedstocks are very different 

between these two composts and therefore most likely accounts for most of the differences in metal 

concentrations. The feedstock was mostly animal manure therefore could be assumed that the 

metals have elevated concentrations (As, Cu, Cd, Zn) due to the diets of the animals (F. Zhang et al., 

2012).   

The composts from the UK study by Dimambro, Lillywhite, and Rahn (2007) had a range of different 

feedstocks and composting procedures. The compost listed in table 5.1 (referred to as compost A in 

the study) consisted of only source separated kitchen and garden green waste with cardboard. The 

compost had similar levels of most trace metals but no data for As (assume insignificant 

concentrations present) and 35, 37, and 38% lower Cr, Pb, and Zn levels than the KSO 

compost respectively. The compost was found to consist of 0.1% glass as well as 0.4% plastic 

contaminants.  Additionally, due to strict regulations in the UK regarding composts having contact 

with animal products it was kept in a vessel for an amount of time at high temperature (either at 

70°C for an hour or 60°C for two days), before the process was repeated in a second vessel. After this 

the compost was kept in open windrows outside. This compost followed a similar procedure as the 

KSO compost but had marked differences in some trace metal concentrations suggesting the 

differences in feedstock could be the cause of the reduced Cr, Pb and Zn concentrations.  

The study completed by Amlinger et al. (2004) was also completed in the UK, but from mechanically 

sorted MSW material as opposed to source separated material. Mechanical sorting is generally 

believed to be less effective than source separation, hence the increase in Pb, Zn and Cu when 
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compared to the source separated compost (Amlinger et al., 2004; Bardos, 2004; Richard & 

Woodbury, 1992). The KSO compost concentrations were similar to the concentrations obtained in 

the mechanically sorted data except for Pb and Ni which were 47%, 216% larger than the 

concentrations found in the KSO compost. Differences in concentration would most likely be related 

to the failure to separate out some materials however the fact that the KSO compost Pb 

concentrations are higher than the source separated compost as well (Table5.1) suggests that there 

may be another significant source of Pb other than what normally occurs in source separated 

compost. When source separated composts from ther studies on source separated material, th  

Table 5.1 Comparison of trace metal concentrations of different composts 

As Cd Cr Cr6+ Cu Hg Pb Ni Zn Source  
20.10 0.50 27.56 0.45 51.38 0.09 113.81 9.80 250.73 1Living Earth: KSO compost  
16.33 2.42 35.52 nd 72.24 0.320 32.38 9.71 258 2(Ding et al., 2017)  

nd 0.41 16 nd 91 0.15 167 31 286 3(Amlinger et al., 2004)  
nd 0.47 17.9 nd 46.0 0.19 71.5 11.3 155 4(Dimambro et al., 2007)  

1compost in this study for comparison; 2manure based compost; 3mechanically sorted municipal 
composy; 4source separated municipal compost    

5.2 Correlations with As: 

Arsenic was the only trace metal in KSO compost that increased above its 20 mg/kg threshold (as set 

by AsureQuality and NZS4454) as often as it did (40.2% of the total study time between 2013 and 

2016, and every year) and as consistently (Figure 4.1), hence why the study focus was largely around 

variation in As concentration. Arsenic had significant correlations with the average temperature (r = -

0.66, p<0.001), and the logs of Cu (r =0.348, p<0.05), Cr (r = 0.290, p<0.05) and Pb (r = p<0.01). The 

correlations between As and the other metals weren’t strong but because of the large sample sizes 

(194 data points, d.f. = 192 and 54 data points for yearly data, d.f. = 52) these correlations were still 

significant.    

5.2.1 Seasonal effect of As concentration: 

Figure 4.1 and 4.2 shows there was a consistent trend from 2013 to 2016 where 

the As concentrations increased to a peak around week 25 to week 35 which roughly corresponds to 

the winter period (as mentioned in Chapter 3). Arsenic concentrations consistently shared a 

significant negative correlation with average temperature (p<0.001) suggesting a possible seasonal 

winter peak effect on the As concentrations in the KSO compost. The ANOVA completed further 

supported this and suggested that season had a significant effect on the concentration of As in 

compost (F = 37.32, d.f. = 2, p<0.001).   

The apparent overall increase in As concentration later in the trial period (most pronounced in the 

significantly higher winter As concentration in 2016 than winters before) suggests an upward trend 
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As concentration in KSO compost with time. This could potentially be explained by accumulation of 

As in soil over time leading to an increased soil baseline level, but more likely points to 

anthropogenic causes of the increase in concentration. With the gradual increase in concentration 

incidence of the breaching of critical thresholds can only be expected to increase in future years, 

emphasising the need to establish what the cause is. 

5.3 Potential sources of elevated trace metal concentrations: 

5.3.1 CCA treated timber as a residential winter fuel source: 

The burning of CCA treated timber as a residential winter heating fuel source could potentially be the 

source of the seasonal variation in As concentrations in the KSO compost. It is believed that the 

ash from these fires would be added to the residential green bins and composted as part of the KSO 

compost. It is generally believed that wood ash has benefits for the performance of compost when 

used at appropriate application rates as was found in a study by Kuba, Tscholl, Partl, Meyer, and 

Insam (2008), who found that an admixture of compost with up to 18% wood ash had no negative 

effects on the composting process and even improved performance. A home heating survey from 

Auckland found that up to 17% of local respondents were using timber offcuts (framing timber and 

fence post offcuts) which could potentially have been treated (Stones-Havas, 2014). Additionally, a 

study looking at the ambient air concentrations of Benzo(A)Pyrene (BaP) and As in New Zealand 

found a seasonal effect of As levels in the air in New Zealand urban areas where elevated 

concentrations were seen in and around July every year (Cavanagh, Davy, Ancelet, & Wilton, 

2012). Source apportionment studies that looked at different materials present in particulate matter 

in a New Zealand town found little correlation between As and other trace metal concentrations in 

the particulate matter which doesn’t suggest the source of the As to be from industrial activity such 

as smelting and coal combustion (Cavanagh et al., 2012). They found the As was more 

correlated with black carbon and potassium (K) which are common indicators for biomass burning 

and wood combustion (Fine, Cass, & Simoneit, 2001; Khalil & Rasmussen, 2003), 

which indicated that the As was potentially due to the burning of biomass and CCA contaminated 

wood due to the presence of As in the ash (Davy, Ancelet, Trompetter, Markwitz, & Weatherburn, 

2012).  

It could be assumed that similar results could be obtained in Christchurch, especially following the 

large-scale Christchurch rebuild due to the earthquakes in 2011 which would have resulted in a lot of 

surplus waste/damaged timber (treated and untreated) available for use as a heating source. Overall, 

more research would need to be done on the winter heating habits of Christchurch residents as well 

as the concentrations and chemical profiles of particulate matter in Christchurch to be sure whether 

this was a definite and substantial source of As in KSO compost. In terms of the correlations that 
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were completed, As is significantly correlated with both Cu (p<0.001) and Cr (p<0.01) and therefore 

the initial hypothesis cannot be rejected.  

If CCA was the only source of As, Cu, and Cr in the municipal compost, then provided there was no 

volatilisation in Cr and Cu and only the amount mentioned earlier for As (2.3.4) then these trace 

metals would be found in the compost at a ratio of 1.06:1:1.75 (As:Cu:Cr). This would mean at 

20.10mg/kg of As, only 18.96 mg/kg of Cu would be present and 33.18 mg/kg of Cr. While this value 

for Cu is lower than the actual recorded figure, the value for Cr is within 1 S.D. of the average. This 

could either suggest a slight difference in the CCA mixture ratio, resulting in some differences in 

ratios of As:Cu or that there is another significant source of Cu. Another potential source of Cu as 

well as other trace metals in particulate form could be from industrial sources such as high 

temperature metal smelting. 

 

5.4 As, Cu, and Pb accumulation within soil: 

The model quantified the effects of the main factors associated with the accumulation of trace metal 

in soil and explored a range of possible outcomes relevant to the Canterbury region. The factors of 

trace metal concentration within compost, application rate, soil density, and background trace metal 

concentrations were considered in the model. The main drawback of the model is the exclusion of 

losses of trace metals out of the soil system which could affect the accumulation rate of certain trace 

metals. In terms of As, Cu and Pb this isn’t as much of a problem though as these metals are tightly 

adsorbed to the soil surfaces and therefore the losses out of the soil system would be negligible 

(Asher & Reay, 1979; Epstein et al., 1992; Meharg et al., 1994; O’Neill, 1990; Ullrich-Eberius et al., 

1989). However, if the model were to be applied to trace metals that were not as tightly held in soil 

the model could lose some accuracy. 

The model predicted As would reach its 20 mg/kg threshold in a range of applications between 0 and 

155 in autumn and 0 and 87 in spring, however the lower limits were based on a soil that was already 

on or above threshold concentration before the initial application. Therefore, if the maximum 

background concentration soil is excluded for the purpose of indicating As accumulation and the next 

lowest figure used, it could be expected that threshold would be reached in between 26 – 155 

applications if autumn produced compost was used or between 18 – 87 applications if spring 

produced compost was used. This translates to between 78 – 465 years and 54 and 261 years before 

the 20 mg/kg threshold is reached at 3 yearly application intervals for autumn and spring produced 

compost respectively. Copper thresholds (60, 300 mg/kg) were reached in 24 – 438 and 39 – 291 

years for an autumn and spring produced compost respectively while Pb concentrations reached 
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threshold (200, 250 mg/kg) from 117 – 840, and 93 - 564 years for autumn and spring produced 

composts respectively. Out of the 3 metals, Cu would present the earliest problem followed by As, 

followed by Pb. 

Possible management from the model outputs, the accumulation rates were lower for the autumn 

produced composts which suggests that it could be better for farmers to use the autumn produced 

composts as these result in lower accumulation rates and allowed for more applications before 

threshold concentrations rare reached. Additionally, as is already practised by Living Earth Ltd., the 

application of a bulking agent but for diluting the trace metal concentrations within the compost. 
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Chapter 6 

Conclusions:  

The objectives of this study were to ascertain whether any patterns could be found that could 

disprove the initial hypothesis, and to investigate potential issues arising from the application of the 

compost product to agricultural soils in terms of trace metal accumulation and subsequent human 

health, environmental or productivity issues. 

The initial hypothesis was that the elevated As concentrations that Living Earth Ltd. had been finding 

was due to the burning of CCA treated timber and the subsequent addition of the ash to the 

residential green bins that get emptied as part of council kerbside bin collection. From the results in 

the study it was found the initial hypothesis could not be disproved. 

The study found significant correlations between the concentrations of As, Cu, Cr and the average 

temperature in Christchurch. Arsenic was found to have significant positive correlations with both Cu 

and Cr as well as a negative correlation with average temperature. This suggested that as 

temperature decreased as would be expected in winter (leading to the increased incidence of 

residential heating use), the As concentrations in KSO compost increased. Copper and Cr didn’t have 

significant correlations with temperature as consistently as As did however, they were still 

significantly positively correlated with As concentration. this could be assumed to be due to other 

sources that affected the concentrations of those trace metals within the compost.     

The results for the correlations were only reinforced with the ANOVA completed on the effect of 

season on the concentration of As which found that season had a significant effect on the As 

concentration in KSO compost. The results showed that the As concentrations were significantly 

different between winter and summer and that a significant amount of this variation was due to 

season.     



 40 

Appendix A 

Yearly correlations:  

A.1 2013: 

Table A. 1 Trace metal correlations (r values) for the year 2013 

2013 temp Arsenic Cadmium Chromium Chromium 6 Copper Mercury Lead Nickel Zinc
temp 1.000

Arsenic -0.724 1.000
Cadmium -0.260 0.246 1.000

Chromium* -0.023 0.029 0.116 1.000
Chromium 6* 0.275 -0.220 -0.209 0.122 1.000

Copper* -0.668 0.661 0.468 0.164 -0.304 1.000
Mercury* 0.042 -0.147 -0.165 -0.206 -0.115 -0.146 1.000

Lead* -0.446 0.665 0.140 0.238 -0.074 0.539 -0.146 1.000
Nickel* 0.173 -0.186 0.057 0.850 0.000 -0.004 -0.289 0.068 1.000

Zinc 0.016 0.119 -0.007 0.228 -0.159 0.078 -0.061 0.303 0.247 1.000

*log transformed 

A.2 2014: 

Table A. 2 Trace metal correlations (r values) for the year 2014 

2014 temp Arsenic Cadmium Chromium Chromium 6 Copper Mercury Lead Nickel Zinc
temp 1.000

Arsenic -0.592 1.000
Cadmium -0.113 0.145 1.000

Chromium* 0.219 -0.058 0.010 1.000
Chromium 6* 0.193 -0.343 -0.207 -0.031 1.000

Copper* -0.085 0.165 -0.125 -0.189 -0.078 1.000
Mercury* -0.139 0.174 0.313 0.102 -0.108 -0.064 1.000

Lead* -0.386 0.351 0.096 -0.118 0.023 -0.105 0.400 1.000
Nickel* 0.425 -0.265 -0.065 0.875 0.065 -0.113 0.086 -0.278 1.000

Zinc 0.011 -0.134 -0.167 0.243 0.430 -0.009 -0.044 -0.038 0.254 1.000  
*log transformed 

A.3 2015: 

Table A. 3 Trace metal correlations (r values) for the year 2015 

2015 temp Arsenic Cadmium Chromium Chromium 6 Copper Mercury Lead Nickel Zinc
temp 1.00

Arsenic -0.64 1.00
Cadmium 0.05 -0.22 1.00

Chromium* -0.31 0.41 -0.09 1.00
Chromium 6* 0.22 -0.23 0.33 -0.08 1.00

Copper* -0.50 0.37 -0.03 0.29 0.19 1.00
Mercury* 0.12 0.29 -0.39 -0.09 -0.27 -0.08 1.00

Lead* -0.03 0.41 -0.07 0.23 0.03 0.02 0.17 1.00
Nickel* -0.25 0.29 0.03 0.74 -0.12 0.13 -0.21 0.08 1.00

Zinc -0.05 0.41 -0.21 0.17 -0.21 0.23 0.38 0.36 0.16 1.00  
*log transformed 

A.4 2016: 

Table A. 4 Trace metal correlations (r values) for the year 2016 
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2016 temp Arsenic Cadmium Chromium Chromium 6 Copper Mercury Lead Nickel Zinc
temp 1.000

Arsenic -0.702 1.000
Cadmium -0.149 0.243 1.000

Chromium* -0.427 0.775 0.272 1.000
Chromium 6* 0.335 -0.272 -0.040 -0.190 1.000

Copper* 0.021 0.196 0.279 0.288 0.106 1.000
Mercury* 0.139 -0.175 -0.032 -0.210 0.180 -0.076 1.000

Lead* -0.419 0.484 0.099 0.386 -0.235 0.203 -0.317 1.000
Nickel* -0.005 0.215 0.066 0.495 -0.147 0.198 -0.253 0.188 1.000

Zinc 0.015 0.166 0.330 0.348 0.026 0.359 0.077 0.158 0.295 1.000  
*log transformed 
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