Publication

The effect of sonication on bubble size and sensory perception of carbonated water to improve quality and consumer acceptability

Date
2019-09
Type
Journal Article
Abstract
Bubbles are important for carbonated beverage quality since smaller bubbles contribute to higher acceptability. Therefore, the effects and acceptability of the application of audible sound in carbonated water were studied using three brands and applying five frequencies for one minute each in ascending order. Six samples, two from each brand, were used for treatments: (i) control and (ii) sonication. Physicochemical measurements consisted of total dissolved solids (TDS), electric conductivity (EC), pH, bubble size, and bubble size distribution. A sensory session (N = 30) was conducted using the Bio-Sensory application to assess acceptability and emotions using self-reported and biometric responses. Statistical analysis included: ANOVA (α = 0.05) and principal component analysis (PCA) for quantitative data and Cochran Q test with pairwise comparisons (p < 0.05) for self-reported emotion responses. Results showed that the sonication effect for the sample with higher TDS, EC, and pH (SPS) reduced bubble size by 46%, while in those with lowest TDS, EC, and pH (IceS) caused an increase of 158% compared to the control. For samples with intermediate values (NuS), there were non-significant differences (p < 0.05) compared to the control. Acceptability was higher for samples with sonication for the three brands. Emotional self-reported responses were more positive for samples with sonication, showing significant differences (p < 0.05) for emotions such as “happy” and “pleased” during both sound and visual assessments. From PCA, a positive relationship between bubble size and liking of bubbles was found as well as for the number of medium bubbles and happy facial expression. The audible sound generated by ubiquitous sound systems may potentially be used by the industry, applying it to the bottled product to modify bubble size and improve quality and acceptability of carbonated beverages.
Rights
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
Creative Commons Rights
Attribution
Access Rights