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MODELLING TDR RESPONSE IN HETEROGENEOUS COIVIPOSITE 
MATERIALS 

Ian Woodhead, Graeme Buchan, Don Kulasiri 

Lincoln University, Canterburj, New Zealand. Woodhead@lincoln.ac.nz. 

ABSTRACT. The use of time domain reflectometry (TDR) techniques for measuring the 
moisture content of composite materials is a mature art but usually makes assumptions about the 
homogeneity of the material, since the response of a parallel transmission line to transverse 
dielectric variation is non-linear. Further, because the electric field distribution depends on the 
moisture distribution within the material, an analytic solution to the sensitivity distribution in the 
transverse }ilane is impracticable, so numerical solutions are required. We describe an integral 
equation approach to model the response of the TDR system to a heterogeneous dielectric body. 
Then, in conjunction with a suitable dielectric model of the composite material, the TDR 
response to moisture content distribution may be quantified. 

Keywords: TDR, heterogeneous, dielectric, spatial. 

1. INTRODUCTION 

TDR (time domain reflectometry) is used extensively for measurement of e, the volumetric 
moisture content in soil, and applicable but less widely used in other materials .mch as grains, 
powders, and minerals. For measurement of e, a short open-ended transmission line that is 
typically 300 mm long, is buried in the material under test. The travel time of a pulse with very 
short risetime (typically < 300 ps) is measured and provides the mean propagation velocity v, on 
the line of known length. Since most biological and composite materials make no contribution to 
the permeability of the region, v indicates the mean relative permittivity ~ of the material 
surrounding the transmission line. 'vVhen the loss tangent is small, and the relative permeability 
is one, Er is: 

(1) 

where c is the velocity of light. Since ~ for most biological and composite materials is typically 
in the range of three to five whereas that of water is typically 80, ~ of a material forms a useful 
surrogate for its moisture content. Frequently, empirical calibration techniques are used since 
practical dielectric models are usually unable to account for the subtle interactions between water 
molecules and the material that affect the water's polarisability. For example Topp et al [1] 
developed a polynomial relating the measured ~ to the moisture content of soil. This calibration 
is applicable to quite a wide i"Jnge of soil types (::md hence orders of magnitude variation in 
particle size with their attendant variable interactions with water molecules) and typically has an 
accuracy of better than 2% in e over the range 5 to 50%. 



It has been shown [2] that longitudinal variation in moisture content is fairly accurately 
integrated by TDR systems. However the lateral sensitivity is not J linear function of distance 
from the transmission line, so lateral variations are not integrated linearly. Knight [3] derived 
analytically, an approximate lateral sensitivity weighting function that is useful for a nearly 
uniform permittivity distribution. For an exact solution with all but the simplest permittivity 
distributions, a numerical approach is required. Knight et al [4] used a numerical method that 
agreed well with previous analytical calculations of Annan [5] and Knight [2]. The method used 
a finite element algorithm adapted to the electrostatic case since this approach adequately 
represents a TEM transmission on parallel lines provided the line is essentially lossless. 

Here an IE (integral equation) method is chosen as the forward model for use with a tomographic 
inversion algorithm which we are currently deveioping. This application exploits a key 
characteristic of IE methods, namely that where the region of anomalous permittivity is 
surrounded by free space, only the anomalous region need be calculated. The IE approach also 
has advantages in tomography, since matrix recalculation is not necessary for changes to the 
impressed electric field. However a disadvantage is that when applied to arbitrary permittivity 
distributions, IE methods require volume integration even where one dimension is invariant. 
Under these circumstances and in the present case, quasi 3-D or 2.5-D variants reduce the 
computational burden of the IE method to compare more favourably with the DE approach. In 
our application, we use the output from the model to directly calculate the velocity of 
propagation on the transmission line 

2 INTEGRAL EQUATION AND DISCRETISATION 

The polarisation of a discretised zone or cell within a dielectric material may be represented by a 
dipole at its geornetric centre. In most dielectric materials, there is no net polarisation until 
generated by an external or impressed field. When applied to this quasi-static electric field 
problem, the method of moments may be considered as the summation in each cell, of the 
electric field contributions due to the polarisation in all other cells. The potential t/J p at point 

p(x,y,z) generated by a dipole with dipole moment or polarisation P, is: 

- /\ 

t/J = P.r 
p 4JrE r2 o 

/\ 

where r is a unit vector pointing from the centre of the dipole to p [6]. In Cartesian 3-space: 

¢ = P.(x+y+z) 
p 4JrE r3 o 

where x, y and z are the rectangular components of r. The potential arising from many such 

dipoles in a region is: 

(2) 

(3) 



(4) 

/\ 

where dv is the differential volume over which each P. r applies. Reverting to the single dipole 
case, its electric field is the space rate of change of potential ( - grad¢J p) so that: 

- j5 [/\ /\ /\ ] Epx = 5 • x(r2 - 3X2) - y(3.xy) - z(3xz) 
47Z'c or 

(5) 

and with corresponding equations for Epy and Epz, may be expressed as a dyadic equation 

1\/\ AI\. 1\/\ 

xx(3x2 - r2) + x y(3.xy) + xz(3xz) 

E = j5 
p 47Z'c r 5 

o 

A/\ 1\/\ /\A 

Y y(3/- r2) + y x(3.xy) + y z(3xz) 
1\/\ 1\/\ A/\ 

zz(3z2 
- r2) + zx(3zx) + z y(3zy) 

We may combine the above in an integral equation describing the electric field Ep at a point p: 

/\ 

Ep(x,y,z) = -V(fJf P.r 2 dv) 
47Z'cor 

The polarisation region may now be discretised, and following the method of moments [7], we 
calculate the matrix of polarisation vectors P(x,y,z) using: 

L(P) = -Ej (x,y,z) 

E ( ) 
P(x,y,z) 

= p x,y,z -
coX(x,y,z) 

(6) 

(7) 

(8) 

where L is a linear operator, Ei the external impressed field and X(x,y,z) the electric susceptibility 
(£r(x,y,Z) - 1). Equation 8 is converted to matrix form and solved for the vector of polarisations 
P, and the electric field strength in each cell is recovered from the polarisation: 

E( ) 
_ P(x, y,z) 

x,y,z -----
coX(x,y,z) 

(9) 

The inputs required for the method are: a vector comprising sets of three elements describing the 
impressed field, a matrix describing the permittivity within each cell, and the dimensionality of 
the problem. While the above method applies to any impressed field distribution, in this case Ei 
is the vector of impressed field components due to a parallel transmission line. To obtain the 
potential difference between the two lines and hence determine line capacitance, the matrix E is 



integrated along a path connecting the two lines (along the x-axis for example). Then to obtain 
the velocity of an electrical edge on the transmission line (assumed lossless), the standard 
transmission line formula is used: 

1r f E(x,y,z).dl 

QflCOSh-l(: ) 
(10) 

Here dl is the length element of the numerical integration (the cell length in this discretised case), 
Q the same initial line charge density that defined the impressed field, fl the tC?tal permeability, b 
the transmission line rod spacing, and a the rod diameter. 

3 VERIFICATION 

We chose to verify the above calculation by comparison with propagation times from a Tektronix 
1502C connected with 0.8 m of URM 43 coaxial cable to a 1:4 balun. Balun construction 
followed [8], but omitted the initial 1: 1 transformer, and used a single, grade S3 ferrite toroid. A 
relay (similar to Teledyne 172) switched the balanced line to either a reference transmission line 
or the measuring line. The 6 mm diameter stainless steel rods were spaced 60 mm apart, with the 
measuring rods 300 mm longer than the reference rods. At the end of the transmission lines 6 x 
Imm steel shorting straps provided sharper, better defined reflections than unterminated lines. 
Waveform data retrieved from the 1502 were smoothed and differentiated using 25 point routines 
[9]. The intersection between the tangents to the maximum negative slope and the immediately 
preceding stationary point defined the edge of the pulse. Finally, the reading from the reference 
line was subtracted from that of the measuring line to obtain the actual travel time of the edge. 

A rectangular thin walled plastic container 150 by 500 by 80 mm and filled with water, formed 
the phantom dielectric body. The transmission line was located near the phantom and used 
computer readable position sensing with 1 mm precision to record relative positions. 

4 RESULTS AND DISCUSSION 

Table 1. Comparison of measured and calculated data 

Position (mm) Measured (ns) Model (ns) Discrepancy (ps) Normalised (ps) 
-30,5 1.071 1.076 5 -16 
-30, 10 1.016 1.039 23 2 
-30,20 1.001 1.017 18 -3 
-30,30 0.992 1.010 18 -3 
45,5 1.172 1.204 32 11 
45,10 1.047 1.103 56 35 
45,20 1.009 1.035 26 5 
45,30 0.998 1.019 21 0 
distant 0.987 1.008 21 0 



The position is defined as the (x, y) distances (mm) between top edge of the container and the 
geometric centre of transmission line. A 'distant' separation provided a reference reading to 
normalise the data. Model predictions were calculated using 5 mm cubic cells and a quasi 3-D 
approach that includes the influence of the neighbouring cells in the z direction within the 2-D 
(xy) matrix. The constant portion of the discrepancy between the model prediction and the 
measurements is attributed to the imperfect measuring system. The value used for Cr of water in 
the model, took account of the water temperature in the container. 

5 CONCLUSIONS 

We describe an integral equation method for determining the electric field distribution in a low 
loss, inhomogenous dielectric material given a tie-determined impressed field, Ei. In the case of 
a parallel transmission line generating E i , the procedure has been extended to calculate line 
parameters and hence the propagation velocity of a pulse on the line. Thus the procedure enables 
prediction of the impact of arbitrary dielectric (or moisture content) distributions on a TDR 
measurement system, and quantification of its sensitivity distribution. Experimental verification 
using water as a dielectric body, provided good agreement with the model predictions. 
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