Research@Lincoln
    • Login
     
    View Item 
    •   Research@Lincoln Home
    • Research Centres and Units
    • Centre for Advanced Computational Solutions
    • Centre for Advanced Computational Solutions
    • View Item
    •   Research@Lincoln Home
    • Research Centres and Units
    • Centre for Advanced Computational Solutions
    • Centre for Advanced Computational Solutions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrasound based computer aided diagnosis of breast cancer: evaluation of a new feature of mass central regularity degree

    Al-yousef, Ali; Samarasinghe, Sandhya
    Abstract
    Breast cancer is the second leading cause of death after lung cancer in women all over the world. The survival rate of breast cancer patients depends on the stage of diagnosis; patients with stage 0 are more likely to reach cancer free state. Therefore, early detection of breast cancer is the key to patient survival. In order to enhance diagnostic accuracy of breast cancer, computer aided diagnosis (CAD) systems have been built. Ultrasound is one of the most frequently used methods for early detection of breast cancer. Currently, the accuracy of CAD systems based on ultrasound images is about 90% and needs further enhancement in order to save lives of the undetected. A meaningful approach to do this is to explore new and meaningful features with discriminating ability and incorporate them into CAD systems. Recently, from a thorough investigation of the images, we extracted a new geometric feature related to the mass shape in ultrasound images called Central Regularity Degree (CRD). The CRD reflects the degree of regularity of the middle part of the mass. To demonstrate the effect of CRD on differentiating malignant from benign masses and the potential improvement to the diagnostic accuracy of breast cancer using ultrasound, this study evaluated the diagnostic accuracy of different classifiers when the CRD was added to five powerful mass features obtained from previous studies including one geometric feature: Depth-Width ratio (DW); two morphological features: shape and margin; blood flow and age. Artificial Neural Networks (ANN), K Nearest Neighbour (KNN), Nearest Centroid, Linear Discriminant Analysis (LDA), and Receiver Operating Characteristic (ROC) analysis were employed for classification and evaluation. Ninety nine breast sonograms- 46 malignant and 53 benign- were evaluated. The results reveal that CRD is an effective feature discriminating between malignant and benign cases leading to improved accuracy of diagnosis of breast cancer. The best results were obtained by ANN where the area under ROC curve (Az) for training and testing using all features except CRD was 100% and 81.8%, respectively, and 100% and 95.45% using all features. Therefore, the overall improvement by adding CRD was about 14%, a significant improvement.... [Show full abstract]
    Keywords
    ultrasound; neural networks; breast cancer; detection
    Fields of Research
    111202 Cancer Diagnosis
    Date
    2011-12
    Type
    Conference Contribution - Published (Conference Paper)
    Collections
    • Centre for Advanced Computational Solutions [53]
    Share this

    on Twitter on Facebook on LinkedIn on Reddit on Tumblr by Email

    Thumbnail
    View/Open
    alyousef_modsim_11.pdf
    Metadata
     Expand record
    Copyright © 2011 The Modelling and Simulation Society of Australia and New Zealand Inc. All rights reserved.
    Citation
    Al-yousef, A. & Samarasinghe, S. (2011). Ultrasound based computer aided diagnosis of breast cancer: evaluation of a new feature of mass central regularity degree. In Chan, F., Marinova, D. and Anderssen, R. S. (eds) MODSIM2011, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2011
    This service is managed by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us
     

     

    Browse

    All of Research@LincolnCommunities & CollectionsTitlesAuthorsKeywordsBy Issue DateThis CollectionTitlesAuthorsKeywordsBy Issue Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    This service is managed by Learning, Teaching and Library
    • Archive Policy
    • Copyright and Reuse
    • Deposit Guidelines and FAQ
    • Contact Us