Thermal adaptation of soil microbial growth traits in response to chronic warming

Eng, AY
Narayanan, A
Alster, Charlotte
DeAngelis, KM
Journal Article
Fields of Research
ANZSRC::410603 Soil biology , ANZSRC::310703 Microbial ecology , ANZSRC::410102 Ecological impacts of climate change and ecological adaptation , ANZSRC::3107 Microbiology , ANZSRC::3207 Medical microbiology
Adaptation of soil microbes due to warming from climate change has been observed, but it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have been experimentally heated to 5°C above ambient temperature with unheated controls for 30 years. We hypothesized that Alphaproteobacteria from warmed plots have (i) less temperature-sensitive growth rates; (ii) higher optimum growth temperatures; and (iii) higher maximum growth temperatures compared to isolates from control plots. We made high-throughput measurements of bacterial growth in liquid cultures over time and across temperatures from 22°C to 37°C in 2–3°C increments. We estimated growth rates by fitting Gompertz models to the growth data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum growth temperature were estimated by the Ratkowsky 1983 model and a modified Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran phylogenetic generalized least squares tests on isolates from warmed and control soils. Our results showed evidence of adaptation of higher optimum growth temperature of bacterial isolates from heated soils. However, we observed no evidence of adaptation of temperature sensitivity of growth and maximum growth temperature. Our project begins to capture the shape of the temperature response curves, but illustrates that the relationship between growth and temperature is complex and cannot be limited to a single point in the biokinetic range.