Effect of increasing dietary proportion of plantain on milk production and nitrogen use of grazing dairy cows in late lactation
Authors
Date
2021-03-04
Type
Journal Article
Collections
Keywords
Abstract
Context: Plantain has shown promise as a forage that can mitigate nitrogen (N) losses from farm systems, although adoption and regulation requires knowledge of the minimum amount of forage area or diet quantity to observe an effect.
Aims: A grazing study was conducted to evaluate the effect of offering increasing proportions of spatially adjacent plantain (PL) and perennial ryegrass–white clover (PRGWC) on milk production and N utilisation of dairy cows.
Methods: Forty-eight late lactating cows blocked into replicated (n = 3) groups of four cows were randomly allocated to one of the following four forage treatments based on percentage area of plantain: 0%, 15%, 30%, or 60%. Cows were allocated 25 kg DM/cow.day of forage above ground level daily on the basis of metabolisable energy requirements. Dry matter intake was estimated from the difference between pre- and post-grazing pasture mass, using a calibrated electronic rising-plate meter. Milk production was measured as yield and milk solids, while N use was estimated from total milk N excretion and spot subsamples of blood, urine and faeces.
Key results: Offering cows spatially adjacent strips of PL increased apparent dry matter intake compared with PRGWC pasture alone (16.4 vs 15.1 kg DM/cow.day, P = 0.027) and apparent metabolisable energy intake (203 vs 188 MJ/kg.cow.day, P < 0.001). Milk yield (16.1 kg/cow.day), milk solids production (1.6 kg/cow.day) and fat concentration (5.69%) were unaffected by the proportion of plantain in the diet. PL offered at 60% of the area increased milk protein concentration compared with PRGWC (4.65 vs 4.36%, P < 0.01). There was no treatment effect on total apparent N intake (563 g N/cow.day), N excretion in milk (113 g N/cow.day) and N-utilisation efficiency (20 g milk N/100 g N consumed). However, total milk urea, blood urea and urine urea N concentrations declined with increasing plantain in the diet, reflecting an influence on urea metabolism.
Conclusions: Offering plantain to grazing dairy cows did not improve milk yield or N-use efficiency, but influenced urea metabolism.
Implications: Sowing plantain in spatially separate strips within perennial ryegrass–white clover pastures is a useful option to achieve target levels of plantain in the diet and, in conjunction with other mitigation strategies, can be used to improve the sustainability of pastoral dairy farming.
Permalink
Source DOI
Rights
© CSIRO 2021