Publication

The backscattering contribution of soybean pods at L-band

Date
2020-10
Type
Journal Article
Fields of Research
Abstract
L-band (1.25 GHz) radar measurements of a soybean canopy indicate that the emergence of seed pods is a significant contributor to the backscatter during the late stages of the growing season. In order to validate the measured data, a realistic scattering model of the soybean canopy is developed. The parameters of the soybean canopy and underlying soil used in the model vary over the growing season based on in situ measurements. Scattering amplitudes for soybean leaves are modeled analytically by using a thin disk approximation; stem and pods are jointly modeled using a numerical electromagnetic field solver. These scattering amplitudes are together incorporated into a coherent scattering model to obtain the backscattering coefficient for VV- and HH-polarizations. The modeling results show good agreement with the radar field measurements, having RMSEs of 0.51 dB for VV-pol and 1.1 dB for HH-pol. Both measured data and modeled results show that the change of soil moisture can be accurately monitored by L-band backscatter. It is also found that the difference between HH- and VV-polarized backscatter increases as the size of the soybean pods becomes larger. A method is developed here to estimate the number of pods in a soybean canopy based on polarimetric radar backscatter at L-band.
Rights
Creative Commons Rights
Access Rights