Comparison of four learning-based methods for predicting groundwater redox status

dc.contributor.authorFriedel, MJ
dc.contributor.authorWilson, SR
dc.contributor.authorClose, ME
dc.contributor.authorBuscema, M
dc.contributor.authorAbraham, P
dc.contributor.authorBanasiak, L
dc.date.accessioned2020-04-21T22:10:08Z
dc.date.available2019-10-17
dc.date.issued2020-01
dc.date.submitted2019-09-30
dc.description.abstractKnowing the location where groundwater denitrification occurs, or by proxy the groundwater redox status (oxic, mixed, and anoxic), is valuable information for assessing and managing potential agricultural land-use impacts on freshwater quality. We compare the efficacy of supervised (Linear Discriminant Analysis LDA; Boosted Regression Trees, BRT; and Random Forest, RF) and unsupervised (Modified Self-Organizing Map, MSOM) learning-based methods to predict groundwater redox status in the agriculturally dominated Tasman, Waikato, and Wellington regions of New Zealand. Thresholds applied to regional groundwater-quality samples provide redox status variables and learn heuristics constrained by these variables and applied to spatial factors (climate, elevation, geologic, hydrology soils, and well depth) identify optimal sets of regional predictor variables. A split-sample approach is used to train and test the learning methods ability to predict redox status using the optimal predictor variables. Overall, the supervised methods demonstrate a prediction bias toward oxic conditions and inability to perform statistically well when using independent regional data; for example, consider kappa statistics for BRT (Tasman: 0.42, Waikato: 0.38, Wellington: 0.17), RF (Tasman: 0.42, Waikato: 0.47, Wellington: 0.17 and LDA (Tasman: 0.46, Waikato: 0.32, Wellington: 0.17). By contrast, the unsupervised method performs statistically well when predicting oxic, mixed, and anoxic conditions and corresponding depths when using independent regional data; for example, consider MSOM kappa statistics for Tasman: 0.78, Waikato: 0.80, Wellington: 0.76. The unsupervised learning method provides the added benefits of being (1) able to combine predictions into 3D regional anoxic probability plots for interpreting the spatial influence of paleosols and groundwater flowpaths on redox status, and (2) readily extended to map 3D redox status across New Zealand and other countries despite data bias and sparsity.
dc.format.extent19 pages
dc.identifierhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=elements_prod&SrcAuth=WosAPI&KeyUT=WOS:000509620900015&DestLinkType=FullRecord&DestApp=WOS_CPL
dc.identifier.doi10.1016/j.jhydrol.2019.124200
dc.identifier.eissn1879-2707
dc.identifier.issn0022-1694
dc.identifier.otherKG0GY (isidoc)
dc.identifier.urihttps://hdl.handle.net/10182/11760
dc.languageen
dc.language.isoen
dc.publisherElsevier
dc.relationThe original publication is available from Elsevier - https://doi.org/10.1016/j.jhydrol.2019.124200 - http://dx.doi.org/10.1016/j.jhydrol.2019.124200
dc.relation.isPartOfJournal of Hydrology
dc.relation.urihttps://doi.org/10.1016/j.jhydrol.2019.124200
dc.rights© Elsevier
dc.subjectboosted regression trees
dc.subjectlinear discriminant analysis
dc.subjectmodified self-organizing map
dc.subjectrandom forest
dc.subjectredox status
dc.subjectNew Zealand
dc.subject.anzsrcANZSRC::040603 Hydrogeology
dc.titleComparison of four learning-based methods for predicting groundwater redox status
dc.typeJournal Article
lu.contributor.unitLU
lu.contributor.unitLU|Lincoln Agritech
lu.contributor.unitLU|Research Management Office
lu.contributor.unitLU|Research Management Office|OLD QE18
lu.identifier.orcid0000-0003-2357-6523
lu.identifier.orcid0000-0002-9212-2026
pubs.notesArticle number: 124200
pubs.publication-statusPublished
pubs.publisher-urlhttp://dx.doi.org/10.1016/j.jhydrol.2019.124200
pubs.volume580
Files